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Abstract : We are concerned with systems which 
generalize the form k = h ( y , u ) ,  y = f ( y , ~ )  , where 
thc state components 5 integrates functions of the 
others components y and the inputs U.  We give suffi- 
ricnt conditions under which glolml asymptotic sta- 
I~ilizal~ility of the y-subsystem (resp. by saturated 
con1 rol) implies glolial asymptotic staliilizability of 
the overall system (resp. by saturated control). This 
is csta1,lishecl Iiy an explicit Lyapunov design of the 
control law. And we show how it serves as a lm- 
sic tool to lx used, may be recurrently, to deal with 
more complex systems. In particular the staliiliza- 
tion prdllem of the so called feedforwarcl systems is 
solvcxl this way. 

1 Problem statement and main reedts 
1.1 problem statement 
The technique of adcling one integrator. as intro- 
duced by Tsinias 1161 or Byrnes and Isidori 121, has 
lxxome one of the Imsic tools invoked totlay to design 
stabilizing controllers. It concems the problem of 
knowing when asymptotic stabililiility for the sys- 
tem : 

implies asymptotic stabilizability for the system : 

From the solution of this prolilem, control designs for 
systems admitting the following recurrent structure, 
rallecl fceclback form can readily k obtained : 

Y = f(y,71) (1) 

i = f ( ~ , z )  , 5 = h ( z , y , ~ )  . (2) 

rt.1 = f(z],:c,) , 

in = f(51,. . . ,Z,, 11) . 
(3) 

6 = f ( Y , U )  (4) 

i = h ( Y , U )  , Y = f ( Y 9 U ) .  (5) 

i ;  

i -  .,Cl = fl(X],U) . 

In this paper, we propose a solution to the problem of 
knowing when glolial asymptotic stabilizability for : 

implies global asymptotic staliilizability for : 

The knowledge of a solution for this problem, called 
"adding one integration", allows us to deal with an- 
other recurrent structure, called feedforward form' 

kn=fn(zl,...,Zn,U) , 
(6) 

'Note that, on the contrary of the feedback form (3). system in 
the form (G) are 'generically" not feedback linearlzable. 
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For this feedforward form, a seminal result has al- 
ready been obtained by k Teel in [ 13). The useful- 
ness of this result has been demonstrated by Teel in 
[ 121 and Sussmann et al. in [ 1 1 J to prove the stabi- 
lizability of null controllable linear systems via satu- 
rated control and by Ted in [ 14) and Lin and S a i i r i  
in [SJ to prove asymptotic stabilizability for some par- 
tially linear composite systems (see Corollary 1.1). 
The technique introduced in [ 131 is based on the ro- 
bustness of local exponential stability together with 
the use of comparison theorems. It ukes advantage 
of the property shared by some systems that small or 
convergent inputs lead to bounded state and eventu- 
ally small state. 

Our intent here is to make the tool of adding one 
integration more efficient and, for this, to propose 
a Lyapunov design counterpart to the approach of 
Teel. Among other things. this will allow us to slightly 
relax some assumptions of [ 131 and to reach a class of 
control laws larger than the one considered by Teel. 
1.2 Notations and Basic definitions 
0 Regularity plays very little role here. So this aspect 

will be considered only when really needed. 
0 Throughout the paper, the symbol c is used to de- 

note generically a strictly positive real number. 
0 For any matrix CP we denote by A+i one of its eigen- 

values. 
0 By < h(z,  y) , y >. we denote a matrix whose ( i , j )  

en- (< h(z ,  Y) 9 Y >)ij is: 

< h(z ,  Y) P Y >ij = h(5, Y)(k, i j )  Yk . 
k 

0 A function f(z) on IR' is said of order p if : 

0 For any positive definite symmetric matrix Q, we 
denote : l z l ~  = d a .  

0 q,) denotes the function g(z)f(~) : IRn -+ IR and 
the subscript (7) refers to equation number (7) of 
the differential equation: 

x = f(Z) . (7 )  
0 For a C' function k ( t )  of the real variable. we de- 

note by k'(t) its first derivative. 
1.3 Main result. 
We consider the controlled system : 

(8) 
= ho(Y)a :  + h,(Y) + k b , Y , U ) U  

Y = f ( Y )  + f z ( z , Y , U ) U  
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with y in W. 5 in Rm, u in Rq and hl and f are zero 
at 0. W e  denote : 

D = b ( O , O , O )  
(9) 

A = a f ( O ) ,  B = f2(0,0,0) 
ay 

and we introduce the following assumptions : 

A12 : 7he pofnt y = 0 is a globalIy asymptotkdy 
stable point of the y-subsystem when U E 0. 

Assumption A1 1 implies the existence of a positive 
definite symmetric matrix Q satisfying : 

Q M + M ~ Q  I 0 .  (11) 

and of P1 and Pz, solutions of the linear systems (see 
Lemma 2.1) : 

MPl - PlA = C ( 12) 

Our main result, proved in sectlon 2.1, is : 

Theorem 1.1 Under assumptions A1 1 ,  A 1 2  and A2. 
.for any Ti in (0,  +CO], the origin can be made a glob- 
ally asymptotically stable solution of the system (8) 
by a s ta te - fcdack  bounded by Ti. Moreover. if the 
pair (( f 5;') , (g)) is stabilfiable. the linearized 
closcd-Ioop system is asymptotically stable. Flnally, 
in the case where M is asymptotically stable. the 
.fc~dback can be taken identically zero. 

In [GI. we give systems which while not satisfying 
only one of the assumptions in this Theorem cannot 
be glolJally asymptotically stabilized. 

"This rrrluirenient is  sati..tiecl if A is asyrnptotirally stable and 
the reid 

,%tien M tias all its eigenvalues witti zero real part. ~ s s u i n p -  
t i i i i i  K? hc~ lc l s  if we have that. at all poiiit z. the vrctcirs ' H z ( z ) .  
.4(fnr,'Hp(.r). . . . .ArS;;J'Hz(z)) sliaii the entire spire. 

of the eigenvalues of M are zero. 

E3y applying Theorem 1.1 repeatedly, we have : 

"orem 1.2 ([el) Assume thefollowfng for (16) : 
1.2.1 : ?hemextstsacontrolkzwvo(yo). LoithvO(0) = 
0, wh6% gbhUy asymptoticauy stabUizes the origin 
of the yo-subsystem of (16) and so that the linearized 
closed-loop system is asymptoticdy stable. 
1.2.2 : For all i .  there exists a posittoe deJinite m M x  
Qi SatlSfyW : 

Q i k ( 0 )  + k.(o)TQi = 0. (18) 
1.2.3 : ?he Unearized system fs stabilfiable. 
1.2.4 : ?hefunction bi satisJies, for all i fn { 1, . . . , n} 
and forall wctors (zi,y,-1,v). 

Under these conditions. -for any in (0, +m], the od- 
gin can be made a globally asymptotically stable so- 
lution of the system (16) by a state feedback bou& 
byt+sup, {Ivo(y~)l} and the Unearizcdcbscd-bop 
system is asymptotically stable. 

A straightforward application of this result gives 
(see section 2.2) : 

Corollary 1.1 Consider the system: 

t = A€ + 1 3 1 1 ,  i = 4(c,u) .  (19) 
Assume: 
1. Ihe pair (A, B) is stabilizable. 
2.me eigenvalues of A have nonpositive real part, 
3. ?he point q = 0 is a globally asymptoticaUy stable 

equilibdumpoint of< = +(c, 0) and the linearization 
of this system is asymptotically stable. 

Under these conditions. for any E in (0, +m], the on'- 
gin can be made a globally asymptotically stable so- 
lution of the system (1 9) by a state feedback bounded 
by T i  and the linearized closed-loop system i s  asymp- 
totically stable. 
By applying the technique of adding one integrator, 
Corollary 1.1 ran 1x extended to systems in the form : 

where the linear system (Cl, AI, Bl) has maximum 
relative degree. With this extension, Corollary 1.1 be- 
longs to the cl.ass of results known for the so called 
partially linear romposite systems studied for exam- 
ple in (113, 14. 8. 71). In particular, when the c- 
subsystem is not present, we recover the result that 

122 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:27 from IEEE Xplore.  Restrictions apply. 



null controllable linear systems can be stal,ilizecl by 
saturated control (see (I 1 1 I),((  171)). Another closely 
related result is (8, Theorem 2.21 which generalizes 
[ 141. There Lin and Salxri consider the more gen- 
eral case of multiple inputs, do not assume asymp- 
totic staliility of the matrix %(o, 0 )  and prove semi- 
glolid asymptotic stabilization by partial state feed- 
back. Here we consider the single input case for the 
sake of simplicity in this illustration and we obtain 
glolxd asymptotic staliilization by full state feedback. 
Such a result of global asymptotic stability was al- 
ready proved in (7) by Salxri. Kokotovic and SUSS- 
mann with an assumption of stability for the matrix 
&. The lact that full stat.e feedhack may be neces- 
sary follows from the fact that, for n 2 3. there is 
no glolmlly asymptotically stabilizing dynamic feed- 
back law using only [ as measurement. for the system 
(apply 15. Lemma 31). 

SI, comparecl with 18) or (7). the only restrictive as- 
sumpt ion in Conllary 1 . 1  is the asymptotic stability 
of the matrix p ( 0 , O ) :  we know from (15. Section 41 
that  it is superhuous. 

2 Proof of our main results 
2.1 Roof of Theorem 1.1 
Our proof is constructive and, in our mind, is more 
important than the result itself. I t  is important to 
emphasize: that it is strongly related to the technique 
of Jurc1jt:vic and Quinn I41 
2.1.1 About the simplification of and hl 

k t  us first investigate if we can find appropriate co- 
ordinates where hl and hO(y)  - M would disappear 
in (8). We consider the change of varialiles : 

(22) 
where the matrix function Pz and the vector PI are 
to be chosen. The system (8) takes the same form : 

= U , < = -< +GnU2 . (21) 

X = exp(-Pz(y)) (x  + P1(y)) , Y = y 

(23) 
S=Ho(Y) x f H](Y) + HZ(X, Y, U) U I Y=F(Y)+ F2(X,Y,PL)U 

with in particular : 

HOW) = e x d - ~ d y ) )  W') exp(Pz(Y)) (24) 

HI(Y) = exp(-Pz(Y)) (25) 

- < $ ( Y ) , f ( Y )  > 

x [ W Y )  + $p(Y)f(Y) - h(I,(Y)Pl(Y)] . 
We have : 

Lemma 2.1 If the spectra of A and M s&Jy (10). 
then there exist smooth~finctions PI and Pz which 
give HO - M. in (24). and H I .  in (25). oforder 2. 
Roof : Arguments similar to those used in [ 1, Proof 
of Lemma 1.11 allow us to prove, with (1 0.i). the exis- 
tence of a unique solution Pz to (13). Then by letting : 

we olltain that the function H&') - M is of order 2. 

Similarly, Ill in (25) is of order 2 if we choose : 

where PI is the solution of the linear system (12) 
which exists if (1O.ii) holds (see 13. Section 8.11). 0 

2.1.2 ho - M and hl are of higher order 
In view of Lemma 2.1, we consider the system : 

P ] ( Y )  = P1Y (26) 

x = M X  + HI(Y) + Hz(X,Y,u)u + M Y ) X  
Y = F(Y) + FZ(X,Y,U)U { :  (27) 

We first assume conditions related to A1 1 ,  A12. A2 : 

BI :  here exist a positiw definite and proper C2 
function V and a positiw dejinite matrk Q so that : 

Q M + M ~ Q = - R  I 0 ,  (28) 
BV - ( Y ) F ( Y ) = - W ( Y )  dY < 0 VY # 0 .  (291 

B2 : X = 0 i s  the only bounded solutton of: 

X = M X ,  XTQ(H2(X,0,0), MX) = ( 0 , O )  

But we need also the following extra assumption : 
(30) 

We have : 

Proposition 2.1 Assume the system (27) s&is As- 
sumptions B1. B2 and (31). Under these conditions, 
for any Ti in (0, +m] the origin can be made a gbb- 
ally asymptotically stable solution by a state feedback 
bounded by a. 

Roof: Our candidate Lyapunov function for (271 is 
(see [6] for a motivation) : 

WX, Y) = W ) + q ( X ) + W v ) ) ( 1  +q(m (32) 
where we have introduced the following notations : 

W ) = h ( V ( Y ) )  9 W(Y)=lCr(V(Y)) W ( Y )  (33) 
Q(X)=e(IX&) , ~ ( X ) = f ( l X 1 ~ )  XTRX , 

where I C , .  
proper C' functions4 satisfying : 

and, for all X and Y ,  

and e are three positive, definite and 

k i ( t )  > 0 ,  vi! 2 0 ,  t ( t )  > 0 ,  vi! > 0 .  (34) 

In Lemma B.2. we show that (35) is possible under 
assumption (31). And the condition (36) is met by 
choosing e as any polynomial function L ( t )  = tk or 
as : 

l ( t )  = a(s)ds I" (37) 

'In het, it is sufficient that the functions k ; ( V ( Y ) ) g ( Y )  and 
t'(lx(%)/xl% k continuous. 
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where (I is any continuous function satismng : 

We get : 

5 -WY) - ;k:(V(Y))W(Y)(1+ q ( m  
- [l + kz(V(Y))] R(X) +G(X,Y,q&)24. (41) 

The conclusion follows by applying LaSalle's invari- 
ance principle and Lemma A. 1 in appendix A. 0 

Remark 1 : 
1. We remark that if H3 

in (37). we can take 
0. then by choosing e as 

= 0 and kl satisfylng : 

(42) 
1 
,W(Y) 2 .lHI(Y)l * 

2. The function m(,, is made negative definite 
by the feedback i i1 ,  in appendix A, if, for all X # 0, 

[XTQMXI2 + [XTQ H z ( X ,  0,0)]2 # 0 . 
This is always satisfied if X is of dimension 1. 

2.1.3 Explicit cxpremiona for the control laws 
The control law obtained from Lemma A.l involves 
explicitly the functions V. kl and that we may not 
want to evaluate. In the following Proposition we give 
another expression for the control law which depends 
only on data from the system except for a single pa- 
rameter p which has to Ix tuned. 

To state this result, we choose R and ?i as two 
strictly positive real numlxrs and we introduce two 
functions independent of V : 
1. Let V R  be a smooth positive function onto [O, 11 

'FH(O)= 1 , px(lYI2) = 0 L R . (43) 
such that : 

2 .  L-t X R , ~  Ix a smooth funrtion satisfling : 

then. for any Z In (0, +oo), then? exists a positiue reaI 
number p* fn (O,Ti] so that the &gin can be made 
a globaUy asymptotically stable sdutbn by a state 
feedback bounded @Ti and of #e form : 

aq Y )  = - P ( X ,  Y)" M X ,  Y, 0 )  (46) 

P ( P R ( I y I z )  (1 + ($(x)~Z(x,y,o)~)-l 
p(x' = AR,a(X) (1 q(x) + IFZ(X, y, o)$ )  

(47) 
wherep t s a n y d n u m b e r i n ( O , p ' ] .  

Remark 2 : If the linear approximation of the Y -  
subsystem of (27). is a mptotically stable, then V 
can be chosen so that is of first order and W is 
lower bountltxl by a positive definite quadratic form 
on a neighlmrhoocl of 0. In this case, (45) holds. 

2.1.4 Proof of Theonm 1.1 
Global asymptotic stnbility : To prove the tirst 
point of Theorem 1.1, we show that Assumptions 
A1 1, A12 and A2 imply that Proposition 2.1 applies. 
1. With ( lo)  and Lemma 2.1 we can find PI and Pz 

so that by using the change of variables (22). the 
system (8) can LK rewritten in the form (27) with 
HI and H3 of order 2. 

2. From a converse Lyapunov thmrem, Assumptions 
A1 1 and A12 imply assumption B1 holds with : 

IYI 5 c =5 V(Y) 2: clYI2, W ( Y )  2 clYlz .(48) 

% 

3. From points 1 and 2. Assumption (3 1) holds. 
4. Assumption A2. (1 1). imply that B2 holds. 
So from Proposition 2.1. the first statement of The- 
orem 1.1 holds with a control law u(X, y) ditaincd 
from Lemma A. 1 or from (46). 

Local exponential stability : 
Claim 2.1 lf the pair (M, D) Ls stabilizable and there 
&ts a positfvc dciJinite mat* Q satisfying ( I  I ) .  then 
X = 0 is the only bounti~d solution of: 

2 = M X ,  XTQ (D, h f X )  = (0,O). (49) 
To get asymptotic stability of the linearized closcd- 

loop system, we choose e in (33) so that f ( 0 )  = 1. 
Then. we write, with (9). the linearization of (27) : 

2 = M X  +Du, (50) 
where, with 312 given by (1 4). 

To prove that the linearization of the control U N  given 
l y  Lemma A. 1 or hy (46) is stalAllzing this linear sys- 
tem, we proceed in two steps : 

1. We apply Proposition 2.1 to obtain a linear con- 

2. We check t.hat. this linear controller 711, is nothing 

Y = AY + Bu , 

D = ' H z ( 0 ) .  (51) 

troller 111, for this linear syst.em (50). 

but the linearijr,?tion at 0 o f u ~ .  
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Step I : We first remark that the system (50) is in 
the form (8). Then assumption A1 1 implies that B1 
holds. Also. the assumed stabilizability of the pair 

(( A )  , (g)) implies the stabilizaliility of the 

pair ( M , D ) .  This fact with Claim 2.1 implies B2 
holds. I t  follows that the following linear control sta- 
bilizes (50) (see [SI) : 

A4 c 

(52) 
where : 
0 v is the Lyapunov funrtion satisfying (29) and (48) 
and therefore : 

fPV fPV 
-(O)A + AT-(0) < 0 ,  (53) dY2 ay2 

Q is the positive definite matrix satisfying (1 1). 
'yo is any strictly positive real number. 

o h .  a strictly positive mal number, and a,. a real 
numlxr, satisfy : 

(54) 
Step 2 : Either. using the definitions (39). (9). we take 
(to = 1 and p0 = P ( 0 , O ) .  where /3 is the function de- 
fined in the proof of Lemma A. l. Then (54) is satis- 
ficul. In this case. (52) is the linear approximation a t  
zero of the control law given in Lemma A. 1. 
Or we choose 00 = 0 and p0 = p ( O , O ) ,  where P 
is the function defined in (47). Then with 11 small 
enough (54) is satisfied. In this case, (52) is the lin- 
ear approximation a t  zero of (46). 

M is asymptotically stable : Finally to prove that 
the origin of (8) with 71 = 0 is glolially asymptotically 
stable if the matrix M is asymptotically stable, we 
simply remark that : 

with B given Iiy (37) and Q solution of: 

Q M + M ~ Q  = -I. ( 56) 
0 

2.2 Proof of Corollary 1.1 
There exist coordinates (zn, . . . , zl, cl) so that the 5- 
subsystem can be rewritten as : 

3 n  = Mn ~n + Cn zn-1 + D ~ u  

( 57) 
31 = Mi X I +  D1 U b c'i = Ai <i 

where dl is asymptotically stable, the Mi's are surh 
that their eigen-values have zero real part, are simple 
and of multiplicity i in A in (19) and the (zl, . . . , xn) 
subsystem is controllable. Then the yo-subsystem in 
(16) is : 

ii = Ai ci , i =- A(C,U)  . (58) 

All the assumphons 01 Theorem 1.2 being met. the 
conrlusion follows readily. C 

3 Concluding Remarks 
We have proposed a Lyapunov design for deriv- 
ing a state feedback law for systems in the form 
;i: = ~ ( I c ,  y, U), y = f(y, U )  , assuming global asymp- 

totic stabilizability for the y-subsystem. We have 
shown that, if a saturated control is sufficient for 
this subsystem, the same holds for the overall. Our 
technique is called adding integration, since the as- 
sumptions on the x-subsystem are mainly that the x 
components are integrating functions of y and U. 
This key technical tool can be used in mmbina- 

tion with others. In particular, the availability of a 
Lyapunov function makes it very well suited for as- 
sociation with the technique of adding one integrator 
or for the design of adaptive controllers. 

We have applied this tool repeatedly to prove global 
asymptotic stabilizability for systems having a spe- 
cial recurrent structure called feedforward form. 

Unfortunately, our design may not be efficient 
enough for practice. The Lyapunov function we 
get for the overall system has only a non positive 
time derivative whereas the design starts from the 
knowledge of a strict Lyapunov function for the y- 
subsystem. The consequence is that an explicit ex- 
pression of a Lyapunov function for the closed-loop 
system is unknown in general. Nevertheless, in Re- 
mark 1.2. we noted that, in the special case where the 
dimension of IC is one, we do get an explicit expres- 
sion. Also, we have shown that, even if the Lyapunov 
function is not known, a control law can be explicitly 
written. I t  involves in this case the tuning of a single 
strictly positive real number. 

References 
[ 11 Y. Bibikov : Local Theory of Nonlinear Analytic 

Odnary  Differential Equations. Springer-Verlag 
Berlin Heidelberg New York 1979. 

[2lC. Bymes. A. lsidori : New m l t s  and exam- 
ples in nonlinear feedbadc stabilization. Systems 
& Control Letters. 12 (1 989) 437-442 

I31 F.R. Cantmacher, 7Wolle des matrices. Tome 1,  
Dunod. Pans 1966. 

[4] V. Jurdjevic. J.P. Quinn : Conhaability and sta- 
bility. Journal of differential equations. vol. 4 

[5] F. Mazenc. L. Praly. W.P. Dayawansa. Global sta- 
bilization by output f d a c k  : Examples and 
Counter-Examples. To appear in Systems & Con- 
trol Letters. 

I61 F. Mazenc. L. Praly. Adding an integration and 
global asymptotic stabilkation of fseclfoonuarcl 
systems. Submitted for publication in IEEE 
Transactions on Automatic Control. June 1994. 

[71A. Saberi. P. V. Kokotovic. H. J. Sussmann, 
Global stabilization of part idy linear composite 
system. Siam J. Control and optimization. Vol. 
2 8 ,  No 6 , pp. 1491 - 1503 , November 1990. 

(1 978) pp. 38 1-389 

125 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:27 from IEEE Xplore.  Restrictions apply. 



[SI 2. Un. A. saberl: Robust SemlGlobal Stabilh- 
tfon of MinlmUm-Phase Input-Output UnearIzctMe 

To appear in IEEE Transactions on Automatic 
Control. 

191 E.D. Sontag : Feedback StaMUtatdon of nodfn- 
ear systems. in Robust wnirol of Unwr Systems 
and Nonllnevv contrd. M.A Kaashak, J.H. van 
Schuppen, AC.M Ran, Ed.. Birlthuuscr, pages 

1101 E.D. Sontag. H.J. Sussmann , Abnllnear output 
feedback design@ U ” r  system with saiurat- 
ing oontrols, Proceeding of the 29th IEEE confer- 
ence on decision and control. December 1990. 

1111 H. Suss” .  E.D. Sontag. Y. Yang : A General 
Result on the StabULz&n of Unear Systems Us- 
tng Baunded Conb-ds. SYCON - Rutgers Center 
for Systems and Control. Department of Mathe- 
matlcs. RuQers University. New Brunswick. NJ 
08903. October, 1992 

[ 121 A. Teel : Global staMllzatlon and rt?sMM tmck- 
tng for multiple intqgmtors with bounded controls. 
Systems & Control Letters 18( 1992) : 165- 171. 

[ 131 A. Teel : Feedback staMbdon : nonlinear so- 
lutions to fnhemntly Nwlunear prablems. Memo- 
randum No. UCB/ERL M!32/65. 12 June 1992 

[ 141 A. Teel : Semi-global stabtlizatlon of m i n f ” -  
phase nonlinear systems in special nonnal form. 
Systems & Control Letters 19( 1-)187 - 1 9 2  

I 151 A. Teel : Additional SdabiUty results with bounded 
controls. Submitted to 1994 CDC, February 26, 
1994. 

[ 161 J. Tsinias : Sugident Lyapunou-Wce condittons 
for stabilization. Math. Control Signals Systems 

[ 171 Y. Yang : Global Stabilization of Unew Systems 
with Bounded Feedback. Ph. D. Thesis. Mathe- 
matics Department, Rutgers University, 1993. 

systems via P d  state and ou$ut Fraadback 

61-81, 1990. 

2 (1989) 343-357 

A A solution to G(z, u)u 5 0. 
Lemma A1 k t  G(z,u) be a C’ ficnction. For any Ti 
in (0, +m]. there &ts a C’ function u~ such that : 

a me function I u ~ ( z ) ~  Is bounded by is. 

a C(z,ul(z))ul(z) ismnposttfueforalfzandzero 
! f a d  only ifG(z,O) is zero. 

Proof. The function G k i n g  C’ , there exists a C’ 
I’unrtion 9 and a Ca function X such that : 

The continuity of g and X insures the existence of a 
strictly positive C’ real function p such that, for all 
real number U bounded by i? and for all vector z : 

P(x)lg(z)l 5 E , P(z)lX(z,ii)l < 1 . (60) 
Our result holds with : 

G(z, u ) ~  = g(z) + uTX(z, PA) . (59) 

‘#A](:c) = -p(:fi) 9(”) . (61) 
U 

B D O ~ M ~ g f u n C ~ O M  

Let V and W be continuous funcUons such that V 
Is poeitive &Wte and proper and W is positive def- 
inite. 
Lemma B.1 Let tc be a wnttnuous positlwjiuvEtion 
Satisfym : 

Then there exists a cvnitnuous, strictly increasing, 
strictly positive and pmper function p such that : 

Proof: The requirement (62) imposed on tc ,  the con- 
tinuity of tc and the fact that V 1s a positive defi- 
nite and proper function guarantee the existence of 
strictly positlve real numbers c such that : 

We define on [0, +oo[ a function p as follows : 

It is positive. non decreasing and constantly equal to 
c, on a neighborhood of 0. So we may define another 
positive function on (0,  +m) by : 

p(v) = d ~ p p ( ” ) ” s  + v (66) 

This function is continuous, strictly increasing and 
proper on IO, +m[. And with the property of p ,  by 
letting p(0 )  = c , we can extend the definition of p to 
[O, +co[ as a continuous, strictly increasing, strictly 
positive and proper function. 0 

Lemma B.2 Let Q and 6 1  be continuous positiw mal 
functfons satisfying : 

under these condiiions, there exists a C1, positiw, 
strfctly increasing and pmperhnction k such that : 

and 
k’( t )  > 0 Vt 2 0 (68) 

k’(V(Y))W(Y) 2 c[(l + V ( Y ) ) ) & d Y )  + .I(Y)l . 
(69) 

Roof : From Lemma B.1, we can find two contin- 
uous functions p0 and 0 1  satisfylng (63) for respec- 
tively /io and l i l .  Then Lemma 8.2 is satisfied with : 

0 
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