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Abstract : We are concerned with systems which
generalize the form & = h(y,u), ¥y = f(y,u) , where
the state components z integrates functions of the
others components y and the inputs u. We give suffi-
cient conditions under which global asymptotic sta-
bilizability of the y-subsystem (resp. by saturated
control) implies global asymptotic stabilizability of
the overall system (resp. by saturated control). This
is established by an explicit Lyapunov design of the
control law. And we show how it serves as a ba-
sic tool to be used, may be recurrently, to deal with
more complex systems. In particular the stabiliza-
tion problem of the so called feedforward systems is
solved this way.

1 Problem statement and main results

1.1 Problem statement

The technique of adding one integrator, as intro-
duced by Tsinias [16]} or Byrnes and Isidori [2], has
become one of the basic tools invoked today to design
stabilizing controllers. It concerns the problem of
knowing when asymptotic stabilizability for the sys-

tem :
v = fly,u) (1)
implics asymptotic stabilizability for the system :
v = fly,z) , & = hiz,y,u). (2

From the solution of this problem, control designs for
systems admitting the following recurrent structure,
called feedback form can readily be obtained :
&y = f(zx1,22),
: (3)
:bn = f(‘l"‘l)--'ywnwu) .

In this paper, we propose a solution to the problem of
knowing when global asymptotic stabilizability for :

v = f(y,u) (4)
implies global asymptotic stabilizability for :
&= hiy,u) , 9= fly.u). (5)

The knowledge of a solution for this problem, called
"adding one integration”, allows us to deal with an-
other recurrent structure, called feedforward form®

Tp =fn(Ili .- "I"’u) ’
(6)

.’i,‘l :fl(.’ll'l,'u) .

INote that, on the contrary of the feedback form (3). systems in
the form (G) are “generically” not feedback linearizable.
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For this feedforward form, a seminal result has al-
ready been obtained by A. Teel in [13]. The useful-
ness of this result has been demonstrated by Teel in
[12] and Sussmann et al. in [11] to prove the stabi-
lizability of null controllable linear systems via satu-
rated control and by Teel in {14} and Lin and Saberi
in [8] to prove asymptotic stabilizability for some par-
tially linear composite systems (see Corollary 1.1).
The technique introduced in [13] is based on the ro-
bustness of local exponential stability together with
the use of comparison theorems. It takes advantage
of the property shared by some systems that small or
convergent inputs lead to bounded state and eventu-
ally small state.

Our intent here is to make the tool of adding one
integration more efficient and, for this, to propose
a Lyapunov design counterpart to the approach of
Teel. Among other things, this will allow us to slightly
relax some assumptions of [13] and to reach a class of
control laws larger than the one considered by Teel.

1.2 Notations and Basic definitions

o Regularity plays very little role here. So this aspect
will be considered only when really needed.

e Throughout the paper, the symbol ¢ is used to de-
note generically a strictly positive real number.

o For any matrix ® we denote by As; one of its eigen-
values.

e By < h(z,y), y >, we denote a matrix whose (3, 7)
entry (< h(z,y), y >); is:

<h(z,¥), y>5= D (@, ¥)rin v -
k

¢ A function f(x) on R! is said of order p if :
s { U2
|z]—0 '.'L‘ |p
e For any positive definite symmetric matrix Q, we
denote : |z|g = /z'Qz .
. V(7) denotes the function %(z) f(z):R* > Rand
the subscript (7) refers to equation number (7) of
the differential equation:

z = f(z) . (7)
e For a C! function k(t) of the real variable, we de-
note by k'(t) its first derivative.

1.3 Main results

We consider the controlled system :
E=ho(y)z + hi(y) + hao(z,y,u)u
y = f(y) + fz(iﬂ,y: u)u

}<+oo.

(8)
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with  in R?, z in R™, v in R? and k, and f are zero
at 0. We denote :

M = ho(0), C = 2P2(0), D = 1y(0,0,0)

dy (9)
A= 2_!_(0) ) B= fZ(O, o, 0)
dy

and we introduce the following assumptions :

All : The matrix A is asymptotically stable, the ma-
trix M is stable and the of these matrices are
such that, for any (4, 7, k)%,

) Mit+Au; # Ame ) A # A (10)

Al2 : The point y = 0 is a globally asymptotically
stable point of the y-subsystem when u = 0.

Assumption All implies the existence of a positive
definite symmetric matrix Q satisfying :
QM +M'Q < 0. (11)

and of P; and P,, solutions of the linear systems (see
Lemma 2.1) :

MPl—PlA = C (12)

Bho i j)
o = Zotd) g 13
2t (o) (19)
+ ) [MapPaers — Paest Mag) — Patia) Auw) -
]

Then the following assumption makes sense with :
HZ("’) u = —< PZ’ f2($7 0, 0)11. >z (14)
+ [hz (z,0, 0) + P fe (z,0,0)] u.

A2 : r = 0 is the only bounded solution of 3 :
#=Mz, z'Q (Hz(z,0,0), Mz) =(0,0). (15)

Our main result, proved in section 2.1, is :

Theorem 1.1 Under assumptions All, Al2 and A2,
for any @ in (0, +o0], the origin can be made a glob-
ally asymptotically stable solution of the system (8]
by a state feedback bounded by u. Moreover, if the

pair ((Ig g) , (g)) is stabilizable, the linearized

closed-loop system is asymptotically stable. Finally,
in the case where M is asymptotically stable, the
feedback can be taken identically zero.

In [6], we give systems which while not satisfying
only one of the assumptions in this Theorem cannot
be globally asymptotically stabilized.

“This requirement is satisfied if A is asymptotically stable and
the real part of the eigenvalues of M are zero.

IWhen M has all its eigenvalues with zero real part. Assump-
tion A2 holds if we have that. at all point z, the vectors Ha(r),
Adpg, Hy(x) ... Ad;‘,_jl ‘Ha(x}) span the entire space.

1.4 Application
Consider the following system :

Tn = hon(Un-1)Zn + Rin(¥n-1) + han(@n, Yn_1, vy

&y = hoy(yo)z1 + A1 (vo) + hai(z1, Yo, v)v

%o = fo(yo) + fao(yo, v)v
(18)
with h;; and fp zeroat O and :

T
v = (=], ,,...,2],) - (17)
By applying Theorem 1.1 repeatedly, we have :

Theorem 1.2 ([6]) Assume the following for (16) :
1.2.1 : There exists a control law vo(yo). withve(0) =
0, which globally asymptotically stabilizes the origin
of the yo-subsystem of (16) and so that the linearized
closed-loop system is asymptotically stable.
1.2.2 : For all i, there exists a positive definite matrix
Qi satisfying :

Qihoi(0) + hai(0)'Qi = 0. (18)
1.2.3 : The linearized system is stabilizable.
1.2.4 : The function hy; satisfies, foralli in{1,...,n}
and for all vectors (z;, ¥i-1,v),

Oha; Phy;

E:%(-’E;,O, 0)=0, #(Zi,yi—nv) =0.
Under these conditions, for any @ in (0, +oo], the oni-
gin can be made a globally asymptotically stable so-
lution of the system (16) by a state feedback bounded
by T+ sup,, {lvo(yo)|} and the linearized closed-loop
system is asymptotically stable.

A straightforward application of this result gives
(see section 2.2) :

Corollary 1.1 Consider the system:

£ = Af + Bu, ¢ = ¢(su). (19)
Assume:
1. The pair (A, B) is stabilizable,
2. The eigenwalues of A have nonpositive real part,
3. The point ¢ = 0 is a globally asymptotically stable
equilibrium point of ¢ = ¢(¢, 0) and the linearization
of this system is asymptotically stable.
Under these conditions. for any % in (0, 400, the ori-
gin can be made a globally asymptotically stable so-
lution of the system (19) by a state feedback bounded
by @ and the linearized closed-loop system is asymp-
totically stable.

By applying the technique of adding one integrator,
Corollary 1.1 can be extended to systems in the form :

€0=A0§0 + BoCi&y, < = #(,Ci&1),
&L =A & + B,

where the linear system (C),.A;, B;) has maximum
relative degree. With this extension, Corollary 1.1 be-
longs to the class of results known for the so called
partially linear composite systems studied for exam-
ple in ({13, 14, 8, 7]). In particular, when the ¢-
subsystem is not present, we recover the result that

(20)
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null controllable linear systems can be stabilized by
saturated control (see {({11]),({17]). Another closely
related result is [8, Theorem 2.2} which generalizes
[14). There Lin and Saberi consider the more gen-
eral case of multiple inputs, do not assume asymp-
totic stability of the matrix %?(0, 0) and prove semi-
global asymptotic stabilization by partial state feed-
back. Here we consider the single input case for the
sake of simplicity in this illustration and we obtain
global asymptotic stabilization by full state feedback.
Such a result of global asymptotic stability was al-
ready proved in [7] by Saberi, Kokotovic and Suss-
mann with an assumption of stability for the matrix
Ap. The fact that full state feedback may be neces-
sary follows from the fact that, for n > 3, there is
no globally asymptotically stabilizing dynamic feed-
back law using only £ as measurement for the system
(apply [5. Lemma 3]).

E=u , ¢ = —¢ ¢l (21)
So, compared with [8] or [7), the only restrictive as-
sumption in Corollary 1.1 is the asymptotic stability
of the matrix ‘#(O, 0): we know from [15, Section 4]
that it is super?luous,
2 Proof of our main results
2.1 Proof of Theorem 1.1

Our proof is constructive and, in our mind, is more
important than the result itself. It is important to
emphasize that it is strongly related to the technique
of Jurdjevic and Quinn [4]

2.1.1 About the simplification of hy and h,;

Let us first investigate if we can find appropriate co-
ordinates where h; and hy(y) — M would disappear
in (8). We consider the change of variables :

X = exp(-Py(y)) (z+ P(v) , Y =y (22)
where the matrix function P, and the vector P; are
to be chosen. The system (8) takes the same form :

X=Ho(Y) X + H\(Y) + Hy(X,Y,u)u
{ Y=F(Y)+ E(X,Y,v)u
with in particular :
Ho(Y) = exp(—Po(Y)) ho(Y) exp(P2(Y))  (24)
- <8BY)fY)>
exp(—F3(Y)) (25)
x [m(Y) + GFNFY) = ho(YIPI(Y)] -
We have :

Lemma 2.1 If the spectra of A and M satisfy (10),
then there exist smooth functions P, and P, which
give Hy — M. in (24), and H,, in (25). of order 2.

Proof : Arguments similar to those used in |1, Proof
of Lemma 1.1] allow us to prove, with (10.1), the exis-
tence of a unique solution P, to (13). Then by letting :

2k Pakii Ye
exp(P(Y)) =1),. ., = . ,
(exp(F2(Y)) )("7) 1+ 375130 Pagea Vil

we obtain that the function Hyo(Y') — M is of order 2.

(23)

H\(Y)

Similarly, H, in (25) is of order 2 if we choose :
P(Y) = PY (26)

where P; is the solution of the linear system (12)
which exists if (10.ii) holds (see [3, Section 8.1]). O

2.1.2 hy — M and h, are of higher order
In view of Lemma 2.1, we consider the system :

X=MX+ H\(Y) + Hy(X,Y,u)u + Hs(Y)X
Y = F(Y) + Fa(X,Y,u)u

(27)
We first assume conditions related to All, Al2, A2 :

Bl : There exist a positive definite and proper C?
function V and a positive definite matrix Q so that :

QM +M'Q=-R < 0, 28)
%;(Y)F(Y) =-W({Y) <0 VY #0. (29

B2 : X = O is the only bounded solution of :
X=MX,X'Q (Hg(X,0,0) s MX) = (0,0)
(30)
But we need also the following extra assumption :
. |H\(Y)| + |Hs(Y)|
lim su <ec. (31)
|Y|-.op W(Y)
We have :

Proposition 2.1 Assume the system (27) satisfies As-
sumptions Bl, B2 and (31). Under these conditions,
for any @ in (0, +o0] the origin can be made a glob-
ally asymptotically stable solution by a state feedback
bounded by u.

Proof : Our candidate Lyapunov function for (27) is
{see [6] for a motivation) :

U(X,Y) = V(Y)+Q(X)+k(V(Y))(1+Q(X)) (32)
where we have introduced the following notations :
V(Y)=k:(V(Y)) , W(Y)=K,(V(Y)) W(Y)
QX)=€(1X[3) , R(X)=£(IX[3) X RX,
where k;, ky and £ are three positive, definite and
proper C! functions* satisfying :
k@)>o0,vt>0, €(t)>0,vt>0. (34)
and, forall X and Y,

k(V(Y))W(Y)
%m > e[|+ |Hs(Y)]) , (35)

[Zh0| @ +1X) < c+qun) . ©6)

In Lemma B.2, we show that (35) is possible under
assumption (31). And the condition (36) is met by
choosing ¢ as any polynomial function £(t) = t* or
as:

(33)

v
{t) = /0 ta(s)ds. (37)

“In fact, It is sufficient that the functions k{(V(Y))$%(Y) and
l’(lXIa)}XIz be continuous.
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where ¢ is any continuous function satisfying :

{0(0)-—-0, oO<to(t)<ct|] Vi#0

l}r_{l}gj’a(t) >0 (38)

We denote :
GX,Y,0) = [1+ ka(V(¥))] SHOHL(X, V,u) (39)
+ [KV) + KV + QX))
xa—}‘i(Y)Fg(X, Y,u)
We get :

TE )y = ~W(Y) = K(VIYW(¥)(1 + QX))
— [+ ka(V(YY)] Rm + 6(X,Y,wu  (40)

+ [1+ k(V(Y) ] a3 X) [H(Y) + Hy(Y)X] .

< =W(Y) =3k (VIY)W(Y)(1+Q(X))
-1+ V)] RX)+G6(X,Y,v)u.  (41)

The conclusion follows by applying LaSalle's invari-
ance principle and Lemma A.1 in appendix A. a

Remark 1 :
1. We remark that if H3 = 0, then by choosing ¢ as
in (37), we can take k; = O and k, satisfying :
1
EW(Y) > c|H\(Y)]. (42)
2. The function U (X, Y)(27) is made negative definite
by the feedback ), in appendix A, if, forall X # 0,

[XTQMX]* + [XTQ Hx(X,0,0)]* #0.

This is always satisfied if X is of dimension 1.

2.1.3 Ezxplicit expressions for the control laws
The control law obtained from Lemma A.1 involves
explicitly the functions V', k; and k; that we may not
want to evaluate. In the following Proposition we give
another expression for the control law which depends
only on data from the system except for a single pa-
rameter 2 which has to be tuned.

To state this result, we choose R and % as two
strictly positive real numbers and we introduce two
functions independent of V' :
1.Let pg be a smooth positive function onto [0, 1]

such that :

vr(0)=1, ¢r([Y))=0 VY >R. (43)
2.Let Mgy be a smooth function satisfying :
/\ﬁﬁ(X): sup {IFZ(XaY)“)_FZ(XyKO)I}
jul <u Je

YIS R
MoX)= sup {IHz(X’y’“)—Hz(z\,Y,O)l}
o <@ ful
YI<R
Ml X) 2 max {1, Mpn(X) + M0} @4)

Proposition 2.2 ([6]) Assume (27) satisfies Assump-
tions (31). B1 and B2. Under these conditions, if :
W(Y)
ninf——g > 0, (45
|8V (Y)I )
then, for any @ in (0, +00), there exists a positive real
number p* in (0,%] so that the origin can be made

a globally asymptotically stable solution by a state
feedback

bounded by % and of the form :
WX.Y) = —B(X,Y)9A(X) Hy(X,Y,0) (46)

por(Y ) (1+ [SOOHX,Y,0) "

Ara(X) (1 +Q(X) + |[Fa(X, Y, 0)]2)
(47)

B(X,Y)=

where p is any real number in (0, u*].

Remark 2 : If the linear approximation of the Y-
subsystem of (27), is asym, ptotically stable, then V'
can be chosen so that 3y is of first order and W is
lower bounded by a po:,mve definite quadratic form
on a neighborhood of 0. In this case, (45) holds.

2.1.4 Proof of Theorem 1.1

Global asymptotic stability : To prove the first

point of Theorem 1.1, we show that Assumptions

All, A12 and A2 imply that Proposition 2.1 applies.

1. With (10) and Lemma 2.1 we can find P, and P,
so that by using the change of variables (22), the
system (8) can be rewritten in the form (27) with
H, and Hj of order 2.

2. From a converse Lyapunov theorem, Assumptions
All and Al2 imply assumpu'on Bl holds with :

Y| <e = V(Y)2 Y2, W) > Y] .48
3. From points 1 and 2, Assumptlon (31) holds.

4. Assumption A2, (11), imply that B2 holds.

So from Proposition 2.1, the first statement of The-
orem 1.1 holds with a control law »(X, YY) obtained
from Lemma A.1 or from (46).

Local exponential stability :

Claim 2.1 If the pair (M, D) is stabilizable and there
exists a positive definite matrix Q satisfying (11). then
X = 0 is the only bounded solution of :

X=MX, X'Q(D,MX)=(0,0). (49)

To get asymptotic stability of the linearized closcd—
loop system, we choose £ in (33) so that #(0) =
Then, we write, with (9), the linearization of (27) :

X = MX+ Du, Y = AY + Bu, (50)
where, with H, given hy (14),
= Hz(0) . (51)

To prove that the linearization of the control uy given
by Lemma A.1 or by (46) is stabilizing this linear sys-
tem, we proceed in two steps :

1. We apply Proposition 2.1 to obtain a linear con-
troller v, for this linear system (50).

2. We check that this linear controller %y, is nothing
but the linearization at O of uy.
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Step 1 : We first remark that the system (50} is in
the form (8). Then assumption All implies that B1
holds. Also, the assumed stabilizability of the pair
((]g i) , (g)) implies the stabilizability of the
pair (M,D). This fact with Claim 2.1 implies B2
holds. It follows that the following linear control sta-
bilizes (50) (see [6]) :

wi(X,Y) = —fo (70 o

2
T ’gy‘: (0)B+X'Q ’D)
(52)

where :
e V is the Lyapunov function satisfying (29) and (48)
and therefore :

‘2;‘2/( 0)A + AT‘?z—(O) <o, (53)

o (Q is the positive definite matnx satisfying (11),

® 7o is any strictly positive real number,

¢ %, a strictly positive real number, and ap, a real
number, satisfy :

N { 55 (0)A + 475 (0)}

1
- " " > = fBolac — 1170
Muax { G5 (BB V(O)} 2

(54)
Step 2 : Either, using the definitions (39), (9), we take
ag = 1 and By = §(0, 0), where (3 is the function de-
fined in the proof of Lemma A.1. Then (54) is satis-
fied. In this case, (52) is the linear approximation at
zcro of the control law given in Lemma A.1.
Or we choose ap = 0 and B, = f(0,0), where 8
is the function defined in (47). Then with x small
enough (54) is satisfied. In this case, (52) is the lin-
ear approximation at zero of (46).

M is asymptotically stable : Finally to prove that
the origin of (8) with « = 0 is globally asymptotically
stable if the matrix M is asymptotically stable, we
simply remark that :

VY + (X)) < —%W(Y) _ ixpeliXle)

1Xlq
(55)
with ¢ given by (37) and Q solution of :
QM+ M'Q = —I. (56)
w]

2.2 Proof of Corollary 1.1

There exist coordinates (z,, .. ., z;,<;) so that the &-
subsystem can be rewritten as :

In = Myzn+C, Tn_1 + Dyu

) (57)

) = M 12y + D 18

a =Aig
where A, is asymptotically stable, the M;'s are such
that their eigen-values have zero real part, are simple
and of multiplicity i in A in (19) and the (z,...,T,)
subsystem is controllable. Then the y,-subsystem in
(16) is :

G = Aiq, ¢ = Algu). (58)

All the assumplions of Theorem 1.2 being met, the
conclusion follows readily. )

3 Concluding Remarks

We have proposed a Lyapunov design for deriv-
ing a state feedback law for systems in the form
= h{z,y,u), ¥ = f(y,u) . assuming global asymp-
totic stabilizability for the y-subsystem. We have
shown that, if a saturated control is sufficient for
this subsystem, the same holds for the overall. Our
technique is called adding integration, since the as-
sumptions on the z-subsystem are mainly that the z
components are integrating functions of y and u.

This key technical tool can be used in combina-
tion with others. In particular, the availability of a
Lyapunov function makes it very well suited for as-
sociation with the technique of adding one integrator
or for the design of adaptive controllers.

We have applied this tool repeatedly to prove global
asymptotic stabilizability for systems having a spe-
cial recurrent structure called feedforward form.

Unfortunately, our design may not be efficient
enough for practice. The Lyapunov function we
get for the overall system has only a non positive
time derivative whereas the design starts from the
knowledge of a strict Lyapunov funection for the y-
subsystem. The consequence is that an explicit ex-
pression of a Lyapunov function for the closed-loop
system is unknown in general. Nevertheless, in Re-
mark 1.2, we noted that, in the special case where the
dimension of z is one, we do get an explicit expres-
sion. Also, we have shown that, even if the Lyapunov
function is not known, a control law can be explicitly
written. It involves in this case the tuning of a single
strictly positive real number.
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A A solution to G(z,u)u <O0.

Lemma A.1 Let G(x,u) be a C! function. For any &

in (0, +00], there exists a C? function u, such that :
¢ The function |u,(z)| is bounded by .

e G(z,u,(z))u,(z) is non positive for all = and zero
if and only if G(z, 0) is zero.

Proof. The function G being C’, there exists a C!
function g and a C° function X such that :
G(z,u)" = glz) +u X{z,u) . (59)
The continuity of ¢ and X insures the existence of a
strictly positive C! real function 3 such that, for all
real number « bounded by % and for all vector = :
Bl=dg(x)l <@, Ble)ix(zu)l < 1.  (60)
Our result holds with :
u () = —0(x) g(x) . (61)
O

B Dominating functions

Let V and W be continuous functions such that V
is positive definite and proper and W is positive def-
inite.

Lemma B.1 Let x be a continuous positive function
satisfying :
~(Y) }
limsup{ =<7 < +o0o0. 62
mowe {577 (62
Then there exists a confinuous, strictly increasing,
strictly positive and proper function p such that :

k(YY)
< |2 . 63
W) S AV W (e9)
Proof : The requirement (62) tmposed on «, the con-
tinuity of x and the fact that V is a positive defi-
nite and proper function guarantee the existence of
strictly positive real numbers ¢ such that :
&(Y)

We define on [0, +oo[ a function 5 as follows :
&(Y)
plv) = sup {max {c, }} . (e5
) (YV(¥)<v) w(Y) )

It is positive, non decreasing and constantly equal to
c, on a neighborhood of 0. So we may define another
positive function on (0, +o0) by :

2v
plv) = %/ p(s)ds+v . (66)

This function is continuous, strictly increasing and
proper on ]0, +oof. And with the property of 5, by
letting p(0) = c, we can extend the definition of p to
[0, +00] as a continuous, strictly increasing, strictly
positive and proper function. 0

Lemma B.2 Let kg and k) be continuous positive real
Junctions satisfying :
, koY) + 14(Y)
limsup —————F717——
Yool WIY)
Under these conditions, there exists a C!, positive,
strictly increasing and proper function k such that :

K(it)>0 Vi>0 (68)

=c¢ < +o0. (67)

and
EVYNWY) > (1 +k(V(Y)ko(Y) + 51 (Y)] .
(69)

Proof : From Lemma B.1, we can find two contin-
uous functions gy and g, satisfying (63) for respec-
tively xo and k;. Then Lemma B.2 is satisfied with :

ts) = [ ctmto) + (@) (exo [ coutrrar ) ) o

]
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