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Abstract 

We introduce a concept of input-to-output practical 
stability (IOpS) which is a natural generalization of 
input-testate stability proposed by Sontag. It allows 
us to establish two important results. The first one 
states that the general interconnection of two IOpS 
systems is again an IOpS system if an appropriate 
composition of the gain functions of the components 
is smaller than the identity function. The second 
one shows an example of gain function assignment by 
feedback. Applications to the problem of global sta- 
bilization via partial-state feedback and output feed- 
back are also considered. The proofs can be found in 
PI. 

1 Introduction 

In this paper we introduce some new design tools 
which, when combined together, allow us to ad- 
dress the problem of stabilizing systems with intricate 
structure. Among the tools, the main contributions 
are to set up a small nonlinear gain theorem and a 
gain assignment theorem. 
Notation 

0 1 .  I stands for the Euclidean norm, and Id denotes 
the identity function. 

0 For any measurable function U : IR+ --+ IR”, llull 
denotes ess.sup.{lu(t)l, t 2 0). And for any T 2 
0, UT is the usual truncated function. 

0 A function y : IR+ + IR+ is said to be of class I< 
if it is continuous, strictly increasing and is zero 
at zero. It is of class K ,  if, in addition, it is 
unbounded. 

0 A function IR+ -+ Et+ is said to be of 
class K L  if, for each fixed t ,  the function /?(., t)  
is of class IC and, for each fixed s, the function 
@(s, .) decreases to zero at infinity. 

: IR+ 

0-7803-1 968-O/94$4.O001994 IEEE 

e GAS stands for globally asymptotically stable and 
LES stands for locally exponentially stable. 

e U 0  (resp. SUO) stands for (resp. strong) un- 
boundedness observability (see Definition 2.1). 

0 ISS stands for input-testate stable and IOpS 
stands for input-teoutput practically stable (see 
Definition 2.2). 

2 Definitions and main results 

2.1 Input-to-output practical stability 

We begin with some definitions relative to  the control 
system having x as state, U as input and y as output : 

(1) 
x =  f(x,.) , x E R” , ‘U E IRm 
y = h ( l , U ) ,  

where f and h are smooth. 

Definition 2.1 The system (1) is said to have the 
property o f :  

1. Unboundedness Observability (UO)  if there exist a 
function a’ of class K and a nonnegative constant Do 
such that, for each measurable control ~ ( t )  defined on 
[0, T )  with 0 < T 5 +m, the right maximal solution 
x ( t )  of (1) defined on [0, T’) (0 < T’ 5 T )  satisfies : 

1441 I 0’ ( I ~ ( 0 ) l - t  l l(Ut,Yt)l l) + Do (2) 

for all t in [O, T’). 

2. Strong Unboundedness Observability (SUO) if, 
moreover, there exist a function p” of class K L ,  a 
function yo of class K and a nonnegative constant do  
such that : 

3444 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:24 from IEEE Xplore.  Restrictions apply. 



Definition 2.2 The system (1) is input-to-output 
practically stable (IOpS) if there exist a function P 
of class K L ,  a function y of class K and a nonneg- 
ative constant d such that,  for any initial condition 
z(O), and three functions z ( t ) ,  u ( t )  and y(t) defined 
on [O,T) which satisfy the system (l), we have the 
following property : 

IY(t)l I P(I~(O)I,~)+~(l lut l I)+d, a x t  E [O,T) (4) 

When (4) is satisfied with d = 0, the system (1) is 
said to be input-to-output stable (IOS). 

In the sequel, any function y which satisfies (4) and 
is CO, nondecreasing, zero at  zero will be called a 
(nonlinear) gain from input to output. 

Remark 2.1 The notions of U 0  (or SUO) and 10s 
introduced here differ slightly from the strong observ- 
ability and 10s properties introduced by Sontag in 
[16, eq. (38)] and resp. [16, eq. (lo)] in that depen- 
dence on the initial condition of the particular state 
space representation (1) is made explicit. In addi- 
tion, the offsets Do, do have been introduced. When 
y = z in ( l ) ,  IOpS is called input-to-state practical 
stability (ISpS). In this case, if d = 0 in (4) then 
IOpS becomes input-to-state stability (ISS) proposed 
by Sontag in [16, 171. 

Remark 2.2 If a system has the U 0  property and 
is IOpS then the system has the “bounded input 
bounded state” property. If a system has the U 0  
property and is 10s then, in addition, the system has 
the “converging input converging output” property. 
If a system has the U 0  property with Do = 0 and 
is 1 0 s  then, in addition, it is stable in the sense of 
Lyapunov when U = 0. See Section 3 for additional 
properties of IOpS systems. 

Associated with a detectability property, the U 0  and 
IOpS properties imply global asymptotic stability 
(GAS). To state such a result, we recall the following 
definition : 

Definition 2.3 Let @(t,  2, U )  be the flow of the sys- 
tem (1) a t  time t starting from the point 2 under the 
input U. The system (1) is said to  be weakly aero-state 
detectable if, for all 3: E Etn, 

{ U  zz 0 , y(t) = 0 Vt 2 0) 3 lim @(t ,  x,O) = 0 
t“03 

Proposition 2.1 Assume the system (1) has the U0 
property with Do = 0 and is IOS. Under this condi- 
tion, the origin of (1)  is GAS when U = 0 i f  and only 
if (1)  is weakly aero-state detectable. 

2.2 Main results 

Consider now the general interconnected system : 

El = fI(Zl,Y2,W), y1 = hl(zl,Y2,ul) (5) 
Xz f 2 ( 2 2 , ~ 1 , ~ 2 )  ~2 = hz(z2,yi,uz) (6) 

where, for i = 1,2,  xi E Rn., U; E IRmt and 
yi E IR?. The functions f1, f2, hl and h2 

are smooth and such that, for all zi and ui(i = 

h2(z2, hl(z1, y2, u l ) ,  u2) have a unique smoot,h solu- 
tion y1 and y2. Our first main result is : 

1,2),  YI = hi(~i,h2(~2,~l,~2),ul) and y2 = 

Theorem 2.1 (Generalized small-gain theorem) 
Suppose (5) and (6) are IOpS in the sense that : 

IYl( t ) l  I Pl(lzl(O)l,t) + 7: ( I l Y Z l l )  + -/? (11~111) + dl 
IYdt)l L P2(1zz(O)l, t )  + 7; (IlYlll> + 7; (11.211) + d2 

(7) 
Also, suppose that (5) and (6) have the IJO property 
with couple (af, Df) (resp. (a;, D,”)). If there exist 
two functions p1 and p2 of class I<, and a nonneg- 
ative real number sf satisfying : 

(8) 
(Id+Pz)O^/zYo(Id+pl)oy:(s) L s 

(Id + Pi) 0 7: 0 (Id + P z )  0 7 ; ( S )  5 S 

Vs 2 sf, then the system (5)-(6) with (u1, u2) as input 
and (ylry2) as output and ( ~ 1 ~ x 2 )  as state is IOpS 
and has the U0 property (is IOS and has the U0 
property with Do = 0 when sc = d, = DP = 0 ( i  = 

More specifically, for  each pair of class K, functions 
(r3,p3), there exist a function P of class K L  and 
a nonnegative constant d (equal t o  zero when st = 
di = DP = O ( i  = 1,2)) such that the system (5)-(6) 
i s  IOpS with the triple (p, r1 + r2 + 1-3, d) where 

1,211. 

T~(s) = (Id + p;’) 0 (Id + p3)’ 0 [$ 
+y! 0 (Id + p;’ )  0 (Id + ~ 3 ) ~  0 y;] (SI (9) 

r2(s) = (Id + p ; l )  0 (Id + p3)’ 0 [T; 

+Ti  0 (Id + $1 0 (Id + P d 2  0 r;l] (s) (10) 

Remark 2.3 Condition (8) has been introduced by 
Mareels and Hill in [lo] to state the boundedness part 
of this small-gain theorem for nonlinear feedback sys- 
tems. This condition is a nonlinear version of the 
classical small-gain condition (see, for instance, [2]). 
Sufficient conditions to guarantee the condition (8) 
are given in [IO]. In particular one inequality implies 
the other. Our task here was to complete the result 
of [lo] in order to take into account the effects of the 
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initial conditions and to  express the gain function 7 
of the closed loop system in terms of the gains of the 
two subsystems. Our result can be used to  conclude 
asymptotic stability for the internal variables under 
the conditions of the next corollaries 2.1 and 2.2. 

Remark 2.4 Theorem 2.1 deals with global practi- 
cal stability. Its complement, local asymptotic stabil- 
ity, holds (as in [22]) when di = Df = 0 and Vs 2 st 
is replaced by Vs 5 sf in (8). 

Remark 2.5 The IOpS properties (7) and the small 
gain condition (8) imply that the topological separa- 
tion condition of [15, Theorem 2.11 holds. Indeed, to 
each t in IR+ and each output pair (yl, yz), we can 
associate the real number : 

Then (7) implies readily that [15, eq. (2.3.2)] holds 
with the symbol v representing cz(O), d2 and U Z .  Also 
(7) and (8) imply that [15, eq. (2.3.1)] holds for some 
function 41 of class K ,  and with the symbol U rep- 
resenting s ~ ,  c1(0), dl and u1. 

Corollary 2.1 Under the conditions of Theorem 2.1, 
ifsf = di = 0: = 0 (i = 1,2)  and the systems (5) and 
(6) are weakly zero-state detectable, the system (5)- 
(6) i s  G A S  when U = 0. 

Remark 2.6 When establishing GAS results using 
Corollary 2.1 we will, in certain instances, assume 
that each subsystem is ISS since this is sufficient to 
guarantee that each subsystem has the U 0  property 
and is weakly zero-state detectable. See Proposition 
3.1 and Corollary 3.1 for another motivation of the 
ISS assumption. 

As stated in Remark 2.1, IOpS (resp. 10s )  is ISpS 
(resp. 1%) when the state is seen as an output. In 
this case, the U 0  property with Do = 0 is obviously 
satisfied. The following corollary is a particular case 
of Theorem 2.1. 

Corollary 2.2 Consider the special case of system 
(5)-(6) with y1 = 21 and y2 = 2 2 ,  i.e. : 

21 = fl(~l,YZ,~l), Y1 = 21 (12) 
xz = fz(z2, Y1, u 2 )  , Y2 = $2 (13) 

Assume that both the XI and 2 2  subsystems are ISpS 
(resp. ISS) wath (yz, ul )  and (y1, uz) considered as 
inputs, i.e. (7) holds. If, in addition, the small-gain 
condition (8) is satisfied, then the complete system 
(12)-(13) is ISpS (resp. ISS when. st in  (8) is equal 
to zero) with ( u 1 ,  u2) as anput 

Another interesting fact relying upon the notion of 
IOpS is that it is possible to assign any gain to certain 
classes of systems including n integrators. Precisely, 
we have : 

Theorem 2.2 (Gain assignment) : Consider the 
control system 

(14) 
< = A< + B ( H < + w a )  
[ = F < + G u + w  

with U E IR as input, 6 E IR', ( E IR" as components 
of the state, ( w o , w )  E IR x IR" as perturbations and < as output. Assume (A ,  B )  is stabilzzable, ( F ,  G )  is 
controllable, (F ,  H )  is observable and ( H ,  F ,  G)  has 
maximal relative degree. Under these conditions, for 
any function 7 of class K,, there exists a smooth 
function U " ( < , [ ) ,  with u,(O) = 0 ,  such that the sys- 
tem (14) in closed-loop with U = un(<,<) + v is : 

1. ISS with ( W O ,  w ,  U )  OS input, 

2. IOpS with ( w o , w , v )  as input, C as output and 
the function 7 as gain. 

Moreover, i f  the inverse function y-' of y is linearly 
bounded on a neighborhood of 0 ,  the closed-loop sys- 
tem (14) can be rendered IOS. 

Remark 2.7 There is no contradiction between the 
ISS and IOpS properties. The "practical" in the lat- 
ter means only that, in general, 7 is actually assigned 
only outside a neighborhood of 0. 

Remark 2.8 Following [24], a sufficient condition 
under which an ISS system x = f ( z , u )  has a lin- 
early bounded gain near zero is that its zero-input 
system x = f (z ,  0) is exponentially stable at  z = 0. 

To illustrate the interest of these two theorems, let us 
consider the following single-input system : 

where ( U ,  z, z )  is in IR x R x I R P ,  f and h are smooth 
functions. When .i = h ( z , r )  is ISS with 2 as input, 
following the arguments in [17], it is easy to make 
the whole system (15) ISS with a full-state feedback 
law such as U := --z - f ( z , z )  + U. However, to the 
authors' knowledge, making the system (15) ISS with 
a partial-state feedback law like U = t9(z) + w is still 
an open issue. Here, we present a positive answer. 
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Corollary 2.3 (1) I f  in (15) the z-subsystem is ISpS 
with x as input, then we can find a smooth partial- 
state feedback d ( x )  which is zero at zero and such 
that, with U = d ( x )  + U, the system (15) is ISpS with 
v as input. 
(2) If the z-subsystem, with x as input, is ISS and, 
with f ( x , t )  as output, i s  IOS with a gain junction 
linearly bounded on a neighborhood of 0 ,  then the sys- 
tem (15) i s  made ISS with v as input. 
(3) If the z-subsystem, with x as input, is ISS and the 
matrix g(0, 0 )  i s  asymptotically stable, then d ( x )  in 
closed loop with (15) gives GAS and LES. 

Remark 2.9 This result extends to  the partial-state 
feedback case or dynamic uncertain case the "adding 
one integrator technique" (compare with [23, Theo- 
rem 41). 

3 Further facts about the IOpS property 

The main purpose of this section is to  establish some 
properties of IOpS systems. 

We first point out that the notions of IOpS (resp. 
10s) and ISpS (resp. ISS) are strongly related. In- 
deed, for the control system with outputs : 

(16) 
x = f ( X , U ) l  X E I R " ,  u E R m  
y = h ( x , u )  , y E RP 

where f and h are smooth functions, we have, similar 
to [16, Prop. 3.2 & Prop. 7.11, 

Proposition 3.1 If the x-system i s  ISpjS (resp. 
ISS), then the system (16) with y as output is IOpS 
(resp. IOS iJ in addition, h(0,O) = 0). Conversely, 
if the system (16) is IOpS (resp. IOS) and has the 
property SUO with a do in (3)) then the x-system is 
ISpS (resp. ISS i f ,  in addition, do = 0).  

Next result follows readily from Theorem 2.1 and 
Proposition 3.1. 

Corollary 3.1 Under the conditions of Theorem 2.1, 
if the systems (5) and (6) have the SUO property, the 
system (5)-(6) is ISpS (resp. ISS i fs1 = df = di = 0 
( i  = 1,2)). 

In Theorem 2.1 , we gave a nonlinear small-gain condi- 
tion under which the interconnected system made of 
two IOpS systems is again IOpS. In some cases, this 
condition is trivially checked. More precisely, when 
the system (5)-(6) takes the following form : 

(17) 

we have, similar to [16, Prop. 7.21, 

Proposition 3.2 If the x-subsystem of (1  7) is ISpS 
(resp. ISS) with ( z , u )  as input and the z-subsystem 
of (17) is ISpS (resp. ISS) with U as input, then the 
system (1 7) is ISpS (resp. ISS) with U as input. 

4 Applications 

4.1 A detour from the center manifold reduc- 
tion theorem 

Consider the following system : 

(18) 
i =  Qb, 0 c = f ( C )  + U(.,<) 

with ( z ,  C )  E I R P  x R" as state, w E Et'' as coupling 
nonlinearity. Assume : 

1. 

2. 

The vector field f is homogeneous with degree 
r and < = 0 is an asymptotically stable equilib- 
rium point of < = f (C) .  
The z-subsystem with < as input and w ( z ,  c )  as 
output has the SUO property with d," = 0 in 
(3) and is 1 0 s  with gain r Z ( s )  5 P I S ( '  for some 
nonnegative real number p .  

Then, as an immediate application of Corollary 3.1, 
we have : 

Proposition 4.1 Under these conditions and i f  p is 
sufficiently small, the zero solution of (18) is GAS. 

This result generalizes [4, Lemmap.4421 or [l, Lemma 
4.31 where the local counterpart of this result is 
proved by applying the center manifold reduction the- 
orem which imposes f(() = F( with F an asymptot- 
ically stable matrix. System (18) has been treated in 
a different way in [5, Section 41. 

4.2 Linear systems with nonlinear, stable dy- 
namic perturbations 

Consider the following system : 

d z ,  5) 
AC + B ( H t  +wo(z ,C) )  (19) 

t = F t  + G u  + w ( z , C )  

with U E JR as input, (r ,C,<) E Etp x IR' x R" as 
state, (w0,w)  E IR x IR" as coupling nonlinearities. 
Assume : 
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1. ( A ,  B )  is stabilizable, (F ,  G) is controllable, 
(F ,  H) is observable and (H, F, G) has maxi- 
mal relative degree. 

2.  The z-subsystem with [ as input and ( W O ,  w )  as 
output has the SUO property with a d,” = 0 in 
(3) and is 10s with a gain function yz linearly 
bounded on a neighborhood of 0. 

Using Theorem 2.2 and Corollary 3.1 gives 

Proposition 4.2 Under these conditions, we can de- 
sign a smooth partial-state global asymptotic stabilizer 
u(C,[) for the system (19) such that the system (19) 
with U = U ( < , < )  + v is ISS with respect to U .  

This proposition belongs to the class of results known 
for these so-called partially linear composite systems 
studied for example in [20, 14, 19, 21, 91. As proved 
in [19], when 1 > 1, extra assumptions must be im- 
posed on the z subsystem to guarantee controllabil- 
ity to the origin even when ( A ,  B )  is controllable and 
the coupling terms (w0,w)  are not present (see also 
[14, Theorem 31). These extra assumptions are in 
place to guarantee that the state z remains bounded 
while the state [ converges to zero, as in [18]. For ex- 
ample, growth conditions on q may be imposed ([14, 
Proposition 51, [20, Theorems 6.2 & 6.41). Here, to 
address the coupling terms, we impose the SUO and 
10s properties on the t subsystem with (w0,w) as 
outputs. According to Corollary 2.1, this could be 
relaxed to U 0  + 10s + weakly zero-state detectable 
if only GAS is desired. 

4.3 Perturbed pure-feedback systems 

Consider the single-input system: 

X i  = 2;+1 + f i ( X i ,  Zi) 
zi = h i ( X i , Z i ) ,  1 5  i s  n -  1 
i n  = U -I- fn(Xn,zn) 

2, = hn(Xn, z n )  
(20) 

where, for each i in ( 1 , .  . ., n} ,  X i  = (21,. . . , x i )  E 
IR’ is part of the measured system state components, 
Zi E Etm% is unmeasured, U E IR is the input and the 
functions fi’s and hi’s are smooth. 

This type of systems has been extensively studied 
by many researchers with different viewpoints includ- 
ing state feedback stabilization, or (dynamic) output 
feedback stabilization (see [8, 11, 131 and the refer- 
ences therein). In the absence of the dynamic uncer- 
tainties characterized here by the Zj’s, results on the 
global stabilization of (20) are availablein [7, 8, 12, 31. 

A recursive use of Corollary 2.3 and Proposition 3.2 
leads to the following: 

Proposition 4.3 Suppose that for  each 1 5 i 5 
n, 2; = hi (Xi ,Z i )  is ISpS with X i  as input. 
Then we can design a smooth partial-state feedback 
u(z1, ..., 2,) such that for  any initial conditions d l  
the trajectories of the system (20) in closed loop with 
U = u ( L ~ ,  ...,xn) are bounded. Moreover, i f  for each 
1 5 i 5 n, f;i(o) = 0, %(o) is an asymptoti- 
cally stable matrix and the Zi-subsystem is ISS, we 
can design a global asymptotic partial-state stabilizer 
u ( z ~ ,  ..., 2,) f o r  the system (20). 

5 Conclusions 

The notion of input-tc-output practical stability 
(IOpS) introduced in this paper is a natural general- 
ization of Sontag’s input-to-state stability property. 
We have shown that the notion IOpS allows us to 
establish a generalized small-gain theorem (see The- 
orem 2.1 and Corollary 3.1) and a gain assignment 
theorem (see Theorem 2.2). The first one extends the 
small monotone gain theorem proved by Mareels and 
Hill in [lo] by including a stability result of Lyapunov 
type. With these results, we have been able to prove 
a result in the spirit of the center manifold reduction 
theorem (see Proposition 4.1), to give conditions un- 
der which a linear system with nonlinear, stable dy- 
namic perturbations is globally asymptotically stabi- 
lizable (see Proposition 4.2) and finally to  show that 
the ISS property can be propagated through integra- 
tors by choosing an appropriate partial-state feedback 
(see Corollary 2.3). The latter provides an interesting 
tool for control design (see Proposition 4.3). 
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