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Notation:

• d(t) is a continuous time-varying signal contained in a
compact set D ⊂ IRd.
• V̇(0) denotes the function ∂V

∂x (x)f(x, d) : IRl ×D → IR
and the subscript (0) refers to equation number (0) of
the differential equation:

ẋ = f(x, d(t)). (0)

• | · | denotes the Euclidean norm.
• A function f : A→ IR+ where A is a neighborhood of

0 in IRp is said to be proper on A if :

lim
x→∂A

f(x) =∞ (1)

where ∂A denotes the boundary of the set A. Note
that if f is proper on A then, with 0 ≤ c1 ≤ c2, {x :
c1 ≤ f(x) ≤ c2} is a compact subset of A.
• A function f : A→ IR+ is said to be positive (negative)

definite on B, a subset of A if f(x) is strictly positive
(negative) for all x in B.

1 Introduction

An equilibrium of a finite dimensional nonlinear control
system is semi-globally stabilizable if it can be made lo-
cally asymptotically stable and be given an arbitrarily
large basin of attraction. This problem has recently been
addressed in [12, 2, 1]. In [1], Bacciotti provided a proof
for this problem that separated the issue of boundedness
from the issue of convergence. Inspired by his proof, we
present tools for semi-global stabilization that generalize
previous results. The proofs for the lemmas that follow
can be found in [14].

2 Boundedness tools

Our first two tools will consider the problem of adding
integrators to an already stabilized system. Namely, we

will consider integrators added to the following system

ż = h(z, u, d(t)) (2)

where z ∈ IRm and the following property is satisfied:

Assumption MMP (Modified Minimum Phase)
Assume for the system (2), with a zero input u, there

exists a neighborhood A1 of the origin in IRm and a C1

function V : A1 → IR+ which is positive definite on
A1\{0} and proper on A1 and satisfies when u is zero,

V̇(2) ≤ −Φ1(z) (3)

where Φ1(z) is continuous on A1 and positive definite on
{z : ϑ < V (z) ≤ c+ 1} for some nonnegative real number
ϑ < 1 and some real number c ≥ 1.

This assumption is satisfied, for example, if the system
(2) does not depend on d and, when u is zero, the origin is
a locally asymptotically stable equilibrium with domain
of attraction A1 (see [5, Theorem 7]).

From now on the positive real number c is given by
this assumption and the parameter µ, encoutered later,
is to be computed from the given compact set of initial
conditions.

Lemma 2.1 (Semi-global ‘backstepping’ I)
Consider the C1 nonlinear control system

ż = h(z, x, d(t))
ẋ = f(z, x, d(t)) + g(z, x, d(t))u

(4)

where x ∈ IR,z ∈ IRm, assumption MMP is satisfied and

|g(z, x1, . . . , xr, d)| ≥ b ∀(z, x, d) ∈ IRm × IRr ×D.
(5)

Given µ ≥ 1, we define the function and the set

W (z, x) = c
V (z)

c+ 1− V (z)
+ µ

x2

µ+ 1− x2
(6)

A2 = {z : V (z) < c+ 1} × {x : x2 < µ+ 1}. (7)

Then W (z, x) : A2 → IR+ is positive definite on A2\{0}
and proper on A2. Further, if

u = −Ksgn(g)x (8)
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then, for each ρ > 0, there exists K∗ > 0, such that, for
each K ≥ K∗, W satisfies

Ẇ(4) ≤ −Φ2(z, x) (9)

where Φ2(z, x) is positive definite on {(z, x) : ϑ + ρ ≤
W (z, x) ≤ c2 + µ2 + 1}.

Remark 2.1 Note that u in (8) does not depend on z.
Observe that eventual bounds on (z, x) can be determined
from the fact that

c ≥ 1 , µ ≥ 1 , W (z, x) ≤ ϑ+ ρ (10)

=⇒ V (z) < 2(ϑ+ ρ) , x2 < 2(ϑ+ ρ) .

Also note that the number “1” in (6) and (7) is arbi-
trary and could be replaced by any strictly positive real
number.

Example 2.1 Lemma 2.1 allows a semi-global solution
to the almost disturbance decoupling problem as de-
scribed in [7] for minimum phase systems in an upper
triangular (strict feedback) form. An illustration is to
achieve an utlimately arbitrarily small bound on the out-
put y, from an arbrarily large set of initial conditions, for
the system:

ẋ1 = x2 + d1(t)
ẋ2 = x32d2(t) + d3(t) + u
y = x1

(11)

where d1(t), d2(t), d3(t) are unmeasured disturbances
with known bounds. This example was previously used
in [4] and [7] to show that a naive high gain design would
lead to a vanishing region of attraction. �

When the system has the structure described in the
following lemma, it is possible to handle a block of inte-
grators in one step, instead of iterating lemma 2.1.

Lemma 2.2 (Semi-global ‘backstepping’ II) Con-
sider the C1 nonlinear control system

ż = h(z, x1, d(t))
ẋ1 = x2 + f1(z, x1, d(t))

...
ẋj−1 = xj + fj−1(z, x1, d(t))
ẋj = u+ fj(z, x1, d(t))

(12)

where x = (x1, . . . , xj)
T ∈ IRj, z ∈ IRm. Suppose as-

sumption MMP is satisfied. Let the polynomial

p(s) = sj + ajs
j−1 + . . .+ a1 (13)

be Hurwitz and let A be the controllable canonical form
matrix corresponding to p(s). Also let P solve the matrix
equation ATP + PA = −I. For K ≥ 1 to be specified,
define the variables

ξi =
xi

Ki−1 i = 1, . . . , j. (14)

Then given µ ≥ 1, define the function and the set

W (z, ξ) = c
V

c+ 1− V
+ µ

ξTPξ

µ+ 1− ξTPξ
(15)

A2 = {z : V (z) < c+ 1} × {ξ : ξTPξ < µ+ 1}. (16)

Then, W (z, ξ) : A2 → IR+ is positive definite on A2\{0}
and proper on A2. Also, if

u = −Kj(a1ξ1 + . . .+ ajξj) , (17)

then, for each ρ > 0, there exists K∗ ≥ 1 such that,
∀K ≥ K∗, W satisfies

Ẇ(4) ≤ −Φ2(z, ξ) (18)

where Φ2(z, ξ) is positive definite on {(z, ξ) : ϑ + ρ ≤
W (z, ξ) ≤ c2 + µ2 + 1}.
Remark 2.2 The effect of large K in (14) and (17), like-
wise in (8), is to introduce an exponential dichotomy be-
tween the z and x subsystems. This implies the exis-
tence of a center-stable manifold x = H(z,K) and the
fact that the motion can be decomposed into two stages:
“convergence” to this manifold and “sliding” along this
manifold. This decomposition is the standard tool used
to analyze (12), (14), (17) with K large. (See [12, 2] for
example.) Here instead, like in [1] but now with robust-
ness, we completely ignore this decomposition and use a
Lyapunov argument showing the decrease of an energy
function outside a neighborhood of the origin. More pre-
cisely what is implicitly used here is the fact that as K
tends to∞, the manifold tends to the set {(z, x) : x = 0}.
So a Lyapunov function which is simply the sum of the
energy functions of x and z separately should be suffi-
cient and indeed it is. Note also that the availability of a
Lyapunov function makes explicit the ultimate bound on
trajectories as well as the domain of attraction without
the formalism of invariant manifolds.

Example 2.2 We have used lemma 2.2 as a tool in [15]
to design a semi-globally stabilizing output feedback for
the following class of systems:

ż = h(z, y)
y(r) = u+

∑r
i=1 fi(z, y)(r−i)

(19)

where ·(i) denotes the ith time derivative, when the equi-
librium z = 0 of ż = h(z, 0) is globally asymptotically
stable. Our algorithm, which is inspired by the global
results in [8, 9], yields a semi-global solution but requires
fewer assumptions. We begin by building the dynamic
compensator

˙̂x1 = x̂2 + `1(x1 − x̂1)
...

˙̂xr = u+ `r(x1 − x̂1)

(20)

where the coefficients `i are the coefficients of a Hurwitz
polynomial. If we define ei = xi − x̂i we get the error
dynamics

ė = Ae+ F (z, x1) . (21)
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We remark that the equilibrium (z, e) = (0, 0) of the
augmented zero dynamics

ż = h(z, 0) , ė = Ae+ F (z, 0) (22)

is globally asymptotically stable. This follows from the
cascade structure and since the state e is input-to-state
stable with respect to the input z. (See [11] or lemma
2.4.) Now we consider the complete system

ż = h(z, x1)
ė = Ae+ F (z, x1)
ẋ1 = x̂2 + e2 + f1(z, x1)
˙̂x2 = x̂3 + `2e1

...
˙̂xr = u+ `re1.

(23)

It is in the form (12), and we can apply lemma 2.2 to con-
struct a controller depending on x1, x̂2, . . . , x̂r, achiev-
ing bounded trajectories from a compact set of initial
conditions. To prove convergence to the equilibrium
(z, e, x1, x̂2, . . . , x̂r) = (0, . . . , 0) we will need the result
of lemma 2.4. �

The output feedback problem for a more general class
of systems can not be solved in this manner. A possi-
ble solution is to construct a controller using the output
and a sufficient number of its derivatives which are esti-
mated by a high gain “approximate observer”. However
high gain observers may exhibit a destabilizing peaking
effect. In [3] it was shown that, for a special class of
systems, saturating the controller outside the domain of
interest could overcome this effect. The success of this
modification was demonstrated using a singular pertur-
bation approach. The result is now generalized. In the
following, the e subsystem represents the observer error,
the initial conditions of which depend on the high gain
L. When e = 0, the z subsystem is appropriately stabi-
lized. The interconnection conditions (26) is satisfied by
saturating the controller.

Lemma 2.3 (Robust Observer [3]) Consider

ż = h(z, e, d(t)) , ė = LAe+ g(z, e, d(t)) (24)

where z ∈ IRm, e ∈ IRn and L is a strictly positive real
number. Suppose assumption MMP is satisfied and let

Γ = {z : V (z) ≤ c+ 1} . (25)

Also assume the matrix A is Hurwitz, and assume there
exist positive real numbers β and ν and a bounded func-
tion γ with γ(0) = 0 satisfying, for all (z, e, d) in
Γ× IRn ×D:

|h(z, e, d)− h(z, 0, d)| ≤ γ(|e|)
|g(z, e, d)| ≤ β + ν|e|

 (26)

Let µ(L) be a class-K∞ function satisfying

lim
L→∞

L

µ4(L)
→∞. (27)

Let P solve the matrix equation ATP +PA = −I. Define
the function and the set

W (z, e) = c
V (z)

c+ 1− V (z)
+ µ(L)

ln(1 + eTPe)

µ(L) + 1− ln(1 + eTPe)

A2 = {z : V (z) < c+ 1} × {e : ln(1 + eTPe) < µ(L) + 1}.

Then, for each L > 0, W (z, e) : A2 → IR+ is positive
definite on A2\{0} and proper on A2. Also, for each
ρ > 0, there exists L∗ > 0 such that, for all L ≥ L∗, W
satisfies

Ẇ(24) ≤ −Φ2(z, e) (28)

where Φ2(z, e) is positive definite on {(z, e) : ϑ + ρ ≤
W (z, e) ≤ c2 + µ2(L) + 1}.

Remark 2.3 The motivation for allowing µ to depend
on L, in contrast to the previous two lemmas, is to allow
for the initial conditions of e to possibly depend on L. If
the initial conditions of e can be bounded independent of
L then:
1- the bounds in (26) are not needed,
2- µ can be chosen independent of L and the function

ln(1 + eTPe) can be replaced by eTPe.
The motivation for the choice of the function ‘ln’ is

that we wish to allow initial conditions e that are of or-
der Lr−1. If we disregard the issue of ultimate conver-
gence, this will recover the result of [3, Theorem 2]. This
requires that we choose a Lyapunov function U(e) and
a function µ(L) satisfying the limit (27) and such that,
given a strictly positive real number λ1,

U(e) ≤ µ(L) =⇒ |e| ≤ λ1Lr−1 (29)

For instance, if we choose µ(L) = ln(1 + λ2L
2(r−1)) with

λ2 any strictly positive real number, then the limit (27)
is satisfied since

lim
s→∞

s

ln(1 + λ2sα1)α2
=∞ ∀λ2, α1, α2 > 0. (30)

Then, with the appropriate choice of λ2, (29) is satisfied
if we choose U(e) = ln(1 + eTPe). The choice of ‘ln’ in
turn requires the special form of the bounds imposed in
(26).

Example 2.3 We consider the multi-input, multi-output
nonlinear system

q̇ = r , ṙ = f(q, r) + g(q, r)u (31)

with q ∈ IRn, r ∈ IRn, u ∈ IRm is the input, and f and
g are C1. This system could represent a robot model
for example. We assume that there exists a (dynamic)
compensator

v̇ = C(q, r, u) , u = α(q, r, v) (32)
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with v ∈ IRl such that the closed loop system

q̇ = r
ṙ = f(q, r) + g(q, r)α(q, r, v)
v̇ = C(q, r, α(q, r, v))

(33)

which we rewrite, with z = (qT , rT , vT )T , as

ż = h(z, 0) (34)

satisfies assumption MMP for some neighborhood A1 and
some function V with ϑ = 0 and c arbitrarily large. As-
sumption MMP is satisfied, for example, if the equilib-
rium (q, r, v) = (0, 0, 0) is made (locally) asymptotically
stable by the compensator (32). To implement the com-
pensator (32) without measurement of r we build the
observer

˙̂q = r̂ + L`1(q − q̂) , ˙̂r = L2`2(q − q̂) (35)

where L is an adjustable parameter and `1, `2 are co-
efficients of a Hurwitz polynomial. We implement the
compensator

v̇ = C(q,∆(r̂), v, u) , u = α(q,∆(r̂), v) (36)

where
∆(r̂) = r̂min{1, rmax

|r̂|
} (37)

and where rmax is the maximum value of |r| on the set
Γ = {(q, r, v) = z : V (z) ≤ c+ 1} where V (z) and c come
from assumption MMP. This idea for the modification of
the compensator is based on the idea in [3]. We choose to
saturate the state r̂ rather than the entire control u and
compensator C because the state r has physical signifi-
cance and thus determining rmax in the region of interest
should be quite natural. If we define the error states
eq = L(q− q̂) and er = r− r̂, we have the error dynamics

ėq = Ler − L`1eq
ėr = −L`2eq + f(q, r) + g(q, r)α(q,∆(r − er), v)

(38)
and we can apply lemma 2.3. The bounds in (26) can be
readily checked, and follow from the introduction of ∆ in
the compensator (36). Consequently, by choosing c large
enough, the modified compensator (36) together with the
observer (35) can be used to yield bounded trajectories
from the compact set of initial conditions U × Uq̂,r̂ ⊂
IR2n+l × IR2n where U is any compact subset of A1.

As pointed out in remark 2.3, the bounds in (26) are
required because the initial conditions of e grow with L.
Specifically, eq = L(q − q̂). However, observe that it
may be reasonable to initialize the value of q̂ such that
q̂(0) = q(0) since q is measured. In this case, the initial
condition of e is (eq(0) = 0, er(0) = r(0) − r̂(0)) which
is independent of L. As mentioned in remark 2.3, in this
case the bounds in (26), and hence the function ∆ in (36),
are not needed. Nevertheless, if this initialization cannot
be done exactly, then the function ∆ should be retained.

If the original compensator (32) is locally exponentially
stabilizing then the conditions of lemma 2.4 will be sat-
isfied and asymptotic stability is also achieved. �

Example 2.4 The ‘ball and beam’ example can be ro-
bustly semi-globally stabilized with measurement only of
the ball position and beam angle using the tools we have
provided. This example is studied in detail in [13]. �

Example 2.5 Consider the non-minimum phase system
on IR3 with y as the only measured output:

ż1 = −z1 + z2 − z1y2
ż2 = z22 + y + z2z

2
1

ẏ = u+ z2.
(39)

The solution to this example, which is inspired by the
recent work in [16] on non-minimum phase systems, will
make very clear the following fundamental properties we
use to construct semi-globally stabilizing output feedback
solutions:

1. the knowledge of a stabilizing controller depending
on some components of the state vector,

2. the knowledge of functions expressing these partic-
ular components in terms of the input, the output,
and their derivatives (a key idea of [16]).

For the system (39), the zero dynamics:

ż1 = −z1 + z2 , ż2 = z22 + z2z
2
1 (40)

are unstable. Indeed, any initial condition satisfying
z2(0) > 0 exhibits finite escape time. But the assump-
tions of [16], full state linearizability and observability,
are not satisfied. Nevertheless, we remark that, if z2 were
the measured output, the zero dynamics would reduce to

ż1 = −z1 (41)

which satisfies assumption MMP. Although the assump-
tions of lemma 2.2 cannot be satisfied because of the pres-
ence of z1y

2 in the ż1 equation, the result is still valid.
Namely, for K1 large enough, the control

u = −K2
1 (z2 +

y

K1
) (42)

is semi-globally stabilizing. This can be checked by look-
ing at the time derivative of

W = c
z21

c+ 1− z21
+ µ

3
2z

2
2 + z2

y
K1

+ ( y
K1

)2

µ+ 1− ( 3
2z

2
2 + z2

y
K1

+ ( y
K1

)2)
.

(43)
Local convergence follows from the exponential stability
of the new zero dynamics (41). See lemma 2.4. Conse-
quently, property 1 above is satisfied. To satisfy property
2 we need to express z2 in terms of y, u and their deriva-
tives. But we already have

z2 = ẏ − u. (44)
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So we get the following change of variables:
z1
z2
y
u

→


z1
ẏ − u
y
u

 . (45)

This exhibits that we should incorporate u as a compo-
nent of the state vector. This corresponds to the dynamic
extension

u̇ = v (46)

as proposed in [16]. By applying lemma 2.1, and 2.4 for
local convergence, we have that the control

v = −K2(u+K2
1 (z2 +

y

K1
)) (47)

is semi-globally stabilizing for the system

ż1 = −z1 + z2 − z1y2
ż2 = z22 + y + z2z

2
1

ẏ = u+ z2
u̇ = v.

(48)

¿From (44), (47) is implementable if ẏ is available. Since
it is not we will propose an observer for ẏ. Observe that
we have

ẋ1 = x2
ẋ2 = v + (x2 − u)2 + x1 + (x2 − u)z21
y = x1.

(49)

We then build the following “observer”:

˙̂x1 = x̂2 + L(y − x̂1)
˙̂x2 = v + y + L2(y − x̂1).

(50)

Finally, we implement the control:

v = −K2[u+K2
1 (∆(x̂2 − u) +

y

K1
)] (51)

with ∆ defined as in the previous two examples, here with
respect to z2. This control is semi-globally stabilizing
which can be deduced from lemma 2.3 with lemma 2.4,
which follows, providing the local convergence result. �

The tools we have presented up to this point have
just focused on boundedness of solutions. However, we
have constructed Lyapunov functions to guarantee that,
in appropriate coordinates, the states become ultimately
arbitrarily small. Now, if the linear approximation in
these coordinates is exponentially stable we are effectively
done. Hence the motivation for assuming exponential sta-
bility of the state feedback algorithm in [3]. If the linear
approximation is not exponentially stable, then the prob-
lem reduces to studying the local stability on the center
manifold whose existence is guaranteed by the exponen-
tial dichotomy introduced by the fact that K and L can
be chosen arbitrarily large. Because the center manifold
analysis can be quite involved, we choose to develop a

sufficient condition other than exponential stability that
can be checked a priori.

Our approach will be to appeal to the notion of ‘small
gain’. Our next lemma provides a weak form of the small
gain theorem which includes explicitly the effects of initial
conditions. For other purely input-output results see [6]
and the references therein. The global result is included
for completeness.

Lemma 2.4 (Small Gain) Consider the two (time-
varying) subsystems

ẋi = hi(xi, ui, t) i = 1, 2 (52)

with xi ∈ IRni . Assume the existence of strictly positive
real numbers δi, εi and of functions βi and γi, of class-
KL and class-K respectively, such that, for each t◦ ≥ 0,

|xi(t◦)| ≤ δi and sup
t◦≤τ≤∞

|ui(τ)| ≤ εi

implies the existence of solutions xi(t) for t ∈ [t◦,+∞)
and:

|xi(t)| ≤ βi(|xi(t◦)|, t−t◦)+γi( sup
t◦≤τ≤∞

|ui(τ)|) ∀t ≥ t◦ .

(53)
Suppose also there exist strictly positive real numbers λ, ω
such that

(1 + λ)γ1 ◦ (1 + λ)γ2(s) ≤ s
(1 + λ)γ2 ◦ (1 + λ)γ1(s) ≤ s

}
∀s ∈ [0, ω] . (54)

Then (x1, x2) = (0, 0) is a locally asymptotically stable
equilibrium of the system

ẋ1 = h1(x1, x2, t) , ẋ2 = h2(x2, x1, t) (55)

with basin of attraction containing the set:

max {|x1| , |x2|} ≤ κ
(

λ

1 + λ
min {δ1, δ2, ε1, ε2, ω}

)
(56)

where κ is a function of class-K. If inequality (53) holds
for all strictly positive δi, εi and inequality (54) holds for
all ω > 0, then (x1, x2) = (0, 0) is a globally asymptoti-
cally stable equilibrium point.

Remark 2.4 Condition (54) is a small gain requirement.
For the local case, the lemma can be seen as a general-
ization of [2, Lemma 4.13] where, there, γ2 ≡ 0. For the
global case, systems that satisfy (53) are said to be input-
to-state stable. For further details see [10]. In the global
case, this lemma is a generalization of the result that the
cascade of an ISS system and a GAS (globally asymptot-
ically stable) system is GAS. The condition, analogous to
(54), used in [6] is more general and could be useful if we
did not restrict our analysis to linear controllers.

Example 2.6 Let us consider the system

ż = −z3 + y , ẏ = u− z|z|
j

(57)
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where j is some non-negative real number. We can apply
lemma 2.1 to deduce that the point (0, 0) is semi-globally
practically stabilizable by the output feedback

u = −Ky K ≥ K∗ (58)

where K∗ is some positive real number. For lemma 2.4,
we consider the subsystems:

ẋ1 = −x31 + u1 , ẋ2 = −Kx2 + u2|u2|j . . (59)

Following [10, p.441], we have:

γ1(s) = 2s
1
3 . , γ2(s) =

2

K
|s|j+1 . (60)

Therefore by choosing K large enough we can meet the
constraint (54) for some λ strictly positive and ω = 1 if
j is larger than 2. In this condition, we know that the
equilibrium (0, 0) of (57)-(58) is asymptotically stable. In
fact this constraint on j is not necessary. Indeed, asymp-
totic stability holds for j ≥ 0 as can be seen by using the

Lyapunov function
|z|j+2

j + 2
+
y2

2
�
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