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Abstract: We are concerned with the problem of stabilizing the equilibrium point of a non linear system in

presence of both parametric and dynamic uncertainties. For the parametric uncertainty, we propose a new

adaptive controller based on a Lyapunov design and guaranteeing Lagrange stability if a growth condition is

satisfied. For the dynamic uncertainty, we propose a new way of characterizing the unmodelled effects which

encompasses at least some singular perturbations as illustrated by an example. Finally we show how, by

modifying the above controller, Lagrange stability can be made robust to these unmodelled effects.
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1 Introduction

Important progress has been done in adaptive con

trol of non linear systems. Main difficulties are now

well understood and some very sophisticated solu

tions are available. Most of the results are synthetized

in [17] and the references therein with more recent

developments in [9.10]. However, these studies con

cern the ideal case, the case where the system to be

controlled is exactly modelled up to the knowledge of

some constant parameters. We know from the lin

ear case that robustness to unmodelled effects of the

properties of adaptive systems is a very difficult is

sue. For the non linear case, results are already avail

able for particular systems about the robustness of

Lagrange stability to some unmodelled effects : Tay

lor et al. [19] and Kanellakopoulos et al. [8] have

studied feedback linearizable systems in presence of

singular perturbations, Campion and Bastin [1,2] and

Reed and Ioannou [18] have considered manipulators

under bounded disturbances and singular perturba

tions. The objective of this paper is to report some pre

liminary results for more general circumstances about

the following two aspects :

l - introduce a new way of characterizing unmodelled

effects,

2 - study the robustness of Lagrange stability given

by an adaptive stabilizer based on a Lyapunov de

sign.

In proposing a characterization of the unmodelled

effects in section 2, our goal is to study to what class

of uncertainties Lagrange stability is robust. We look

for a as general as possible description which could

encompass as many types of effects as possible. How

ever, to remain simple, we shall focus our attention on

qualitative more than quantitative results. The idea to

get this characterization is to generalize to non linear

systems what was proposed in the linear case in [14],

namely the so called normalizing signal technique. It

has been shown to be a very powerful concept and its

ability to describe all the possible linear unmodelled

effects has been established in [6.15.16].

The adaptive stabilizer will be proposed in section

3. Based on a Lyapunov design, it will allow us to

stabilize a larger class of ideal systems than the one

considered in [12], namely those which are stabiliz

able by a state feedback such that some particular

growth condition about the non linearities are satis

fied. Moreover, for the purpose of robustness, specific

modifications will be introduced — parameter update

projection and signal normalization - .

To remain as simple as possible in this preliminary

study, we have considered only the global Lagrange

stability case. This will be the reason for some over

restrictive assumptions.

Due to space limitations, the proofs will be omitted.

They can be found in [7].

2 Unmodelled effects

Let the system to be controlled admit a finite state

representation on RN and its dynamics, may be aug

mented by input and output filters, be described glob

ally by :

x : F(X,t,u), 1: = H(X,t) (1)

where the vector X is the state in RN which is not

measured and the dimension N is unknown, u is

the input vector in W", :t' is a measured output in

R" and, finally, F and H are C‘ unknown functions

with %(X, t), %(X,t) and F(X,t, u) bounded for all

(X, it) in compact sets and t 2 0. We assume also :

Assumption BO (Boundedness Observability) (2)

For all compact subsets K, in R" and K“ in Rm and

for all initial condition X(0) in RN , we canfind a com~

pact subset ICX in RN such that, for the corresponding

solution X (t) of (1) defined on [0, T),

r(t) 6 1C, and u(t) E ICU Vt G [0, T) implies X(r) E

Klx VT E [0, T).

Namely to know that the trajectory {X(t)},€[o,T) is

bounded, it is sufficient to observe that the trajecto

ries {e(t)},qoyT) and {u(t)}t€[o,q~) are bounded.
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Our problem is design a controller such

that the solutions X(t) of (l) are bounded and

lim,_._|.oo H(X(t),t) = 8, a desired set point for the

measurement 1'.

Since the system to be controlled is only partially

known, we shall work from a reduced order model

whose state is :c. This is why it may be interesting to

augment the dynamics of the system to be controlled

by filters (see [17, Example (24)]). The dynamics of

this model are chosen as being described by an equa

tion involving an unknown constant parameter vector

‘k

p :

:i: = a(:c, u) + A(a:, u) p* (3)

where the functions a and A are known and continu

ously differentiable, and p* is an unknown parameter

vector in a known compact convex subset H of RI.

This model is said to be linearly parameterized in ex

plicit form. This is more restrictive than the case of

linear parameterization in implicit form :

(b($)+B(1)P*)i‘ = a(18,“) + (WHO!)it (4)

as obtained with manipulators and considered in [1,

2,18]. Our model is supposed to be stabilizable for all

p :

Assumption S (Stabilizability) (5)

There exist three known functions u,,, T and V such

that: l—un:R"XII—+RmisofclassC1,

2 — T isposittve, ofclass C1, T(u) : 0 if)“ u = 0 and

liminfv_.+oo T(v) > O, 3 — V isofclass C2, positive,

V(:r, p) = 0 iff :r : 8 and, for any positive real number

K”, the set: {x |V(:r,p) 5 K0 , p E II} is acompact

subset of R", 4 —for all (x,p) in R" X H, we have:

5V

Ezglahiunlt=A(wun)P] fl -*T(V) (6)

Namely. for any p in II, 5 is a globally asymptotically

stable equilibrium point of the system :

:i: : a(:r,un(1:,p)) + A(Z,Un($,P))P (7)

and V is a corresponding Lyapunov function for this

closed loop model with time derivative —T(V).

Knowing that the model can be stabilized whatever

the (constant) value of the parameter vector is, we

need now to characterize the discrepancy between our

model (3) and the actual system (1). For this, we need

to choose two strictly positive real numbers a and

r0 and a strictly increasing C 1 and convex function

\11 : IL, ——> R1,. with \Il(0) = 0. Then, we assume:

Assumption UEC(a, r0, \II) (Unmodelled Effects

Characterization) (8)

There exist an open subset X of RN, with H(X, O) :

R", and positive real numbers u), #2, D and 2 such

that, for any C 1 timefunction 5 : R+ —> H and any

solution X (t) of:

X = F(X, t, un(x,p)) ,1: = H(X,t), X(O) e x

(9

defined on [0,T), there exists a C 1 timejunction p* :

[0,T) —+ H, with s E, satisjying for allt G

[0,T) :

fl " '_ _A *|@I($,P) [11 a($,Un($,I3)) ($,Un($,5))p 1|

5 u,T(V(x,p)) + u2\ll'1(r) + D

(10)

where r, called the normalizing signal. is defined by :

-a (1' - ‘I’(T(V($,f1)))) , (11)

Note that p* is allowed to be time dependent and to

depend on Also, the condition H(X , 0) = R" means

that we are looking for results which are global with

respect to the model state initial condition 1(0).

This assumption is the unmodelled effects charac

terization we mentioned in Introduction. This charac

terization is in some sense a closed loop one. Instead

of asking for inequality (10) to hold for all possible

input function u which would be a very stringent re

quirement, we need only it holds for the particular

class of input fianctions u,,(-, among which will be

the one actually used. However. one open loop as

pect remains. since not knowing a priori what will be

the time function ii, we are led to ask for (10) to hold

for all possible time function Also, the closed loop

model Lyapunov function V is involved in inequality

(10). One way to understand this is : the control law

un should be designed in such a way that the corre

sponding V satisfies (10). i.e. the unmodelled effects

should be taken into account in the control design.

To help the designer in choosing the constant a

and the function T which are involved in assumption

UECla, r0, \II) (8) and will be explicitely used in the

controller we shall propose in section 3.3. we have

the following Lemma whose proof is straightforward

from the arguments of [4, Chapter 3] :

r : r(0) = r0

Lemma 1 Let u(t) be a C1 function defined on

[0, T). We have thefollowing properties :

l - If \I! is a strictly increasing convex function with

—l

\I'(O) : 0 then 9—252 (resp. w—riil) is non decreasing

(resp. increasing) and, for all positive 1', y and k 2 1,

W_1(kx)§ lc ‘11“(13)

w-*(=v+y)sw-1<x> + We) (12)

2 — Let r, and r2 be positive and such that :

1*, g —a1(r1— \Ir,(v)) , 1", = —a2 (r2.—- \I12(v)) (13)

where a) 2 a2 > 0 are constant and \Ill, W; are

strictly increasing functions with 111(0) : 112(0) 2 O

and ‘112 and \Ilz\II,_l are convex. For allt E [0,T), we

have :

iron» 5 \II;‘(r2(t))

+ my (Max{0, (wzw;1(r,(o)) - gram) e_““})

(14)

3 — Let r3 and r4 be positive and such that :

r3 5 —ar3 + B\Il(v) + 7, r4 : -a (r.,, — (l5)

wherea > 0,5 > Oandy Z Oareconstantand

\II is a strictly increasing and convex function with

\II(0) = O. For allt E [0,T), we have:

‘1'"(ra(t)) 5 Max{1.§}w-1(r.(i)) (16)
+ w-1 (Max{0, “(ran—theatre

 



ECC 91 European Control Conference, Grenoble, France, July 2-5 1991 1341

Inequality (10) in assumption UEC(a, r0, \I!) (8) cap

tures — at least qualitatively - a wide variety ofunmod

elled effects. In order to help the reader to get some

grip on this assumption, we propose the following ex

ample :

Example 1 (Singular perturbations) : Let the state

X = ( of the system to be controlled satisfy the fol

lowing equation :

:i: = fn(:r,u) + f12(:r,u)z

(17)

52 = f21(1?) + f22(13) Z

where 6 is a small positive real number, m E R" is mea

sured. 2 G RN'" is not and the functions f11,f12,f21

and f” are partially known (see (21) below) and con

tinuously differentiable on R" x Rm.

Assumption BO. (2) holds if : There exist a positive

definite symmetric matrix P and a strictly positive real

number /\ such that, for all x 6 R" :

Pf22(-’B) 'l- f22($)TP S _’\IN—n (18)

Indeed, the time derivative of V1 : zTPz along the

solutions of (17), when they exist, satisfies :

617, < -_-_v
— 2A,,m(P) ‘+

/\ 2/\,,,,,,,(P)2

fume (19)

The conclusion follows from continuity of f2).

The reduced order model used for the control design

is obtained by setting 6 = O, i.e. :

:i: : a(:r, u) + A(:c, u) p* (20)

where, precising the a priori knowledge on f,,~, the

known functions a and A and the unknown vector p*

satisfy :

a(:c, u) + A(:c, u) p* d-if

fll(zi u) _ f12(xi u)f22(x)-lf21(x)

For this model, we assume the existence of un, T and

V such that assumption S (5) holds. For example,

this model could be globally feedback linearizable as

assumed - locally — by Taylor et al. in [19] and Kanel

lakopoulos et al. in [8].

Let us show now that assumption UEC(a, r0, \II)

(8) is satisfied if : there exist positive real numbers

10,, D1 and ,3 6 (0,2] such that, for all (135,17) 6

R" x H x RN"",

(21)

||% late") + A(~,u,.)p*]l|2 S k1T(V)” + D1

ll%fn<»u~)vll’ s In lT(V)"+||ollzl + o.

l%%f12(',un)|| S k1T(V)l'fi/2+Dl

(22)

where all thefunctions are evaluated at (:r, and :

he) ‘f—f‘ ram-1mm) (23)

Indeed, as in [19]. we define a new variable 17 :

fin = z + h(x) (24)

In the coordinates (x, 17), the system is:

i' = a(“1210+ A(flaunt + fifldwiu) 1)

517=f22(z)'l+ fill, (25)

H gene) be. u) + Abs. “)2 + was, ")17]

Then let r1 dzef (nTPn)'l/')’ With 7 Z With our

assumption and Young's inequality, the time deriva

tive of 1'), along the solutions of this system with

u = un(x,p). satisfies :

. Ci 62 p

< —— —- '7 D 267'1 _ 6 T'1 + fi'r + 2 ( )

where 01 > O. Cg > 0 and D2 2 0 are real numbers.

With point 2 of Lemma 1 and 6 sufficiently small, this

leads us to choose a and \II as :

% g a 5 ii and \i(r) = To (27)

Then. defining r by :

1" 2 —ar + aTfil , 1(0): r0 > O (28)

we get with point 3 of Lemma 1 :

1 l

a“ 5 re (29)

i

+ Max{0,%1 + (13(0) — 2%} —- r0) e“°“}”"

This together with (22) and Young's inequality, implies

the existence of a positive real number c3 such that :

|%(w.2)fif..(x,u.(ap))n| 1

S cox/g [T + rel? + (D1 +

62

l

+ cafiMax{o, _ To) e_at}3?

“1

(so)
This is (10) in assumption UEC(a, r0, \II) (8) with the

last line defining the set X.‘ Precisely, in this line,

we notice the presence of the unmodelled dynamics

initial condition 17(0) but multiplied by times an

exponentially decaying term. In the linear case, if the

controller has a guaranteed bounded gain, there can

not be any finite escape time. In such a case it would

be sufficient to take X : RN . But in the non linear

case, finite escape time is possible. So we let :

X = {an Inn” < (31)

However. the consequent restriction on the initial con

dition X (0) in UEC(a, r0, \I') (8) can be omitted when

the initial condition r0 of the normalizing signal is ar

bitrary as it is the case when this signal is not used

in the controller — it is then completely artificial — .

We remark also :

1 — a should be chosen depending on 6. Precisely, ac

cording to (27), a must be large when 6 is small. This

implies some knowledge on 6. In the case of linear

systems, this strong requirement can be overcome by

input filtering as shown by Ioannou and Tsakalis in
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[6].

2 — 2 in (17) does not depend on u. If u were present,

we would have difficulties since a term it would ap

pear in the 1') equation in (25). With 11 = u,,(:r, i), this

would imply the presence of a term if which is not

bounded for all ((x, z), 5) e R” x 11. This differs from

the local stability analysis of [2,8, 19]. In any case, one

way to make sure that the input will not appear in the

2 equation is. as in point 1 above, to add integrators

on the input (see [5,6]). We know from [20, Theorem

3.c] (see also [3]) that if a system is smoothly enough

stabilizable, it is still stabilizable if we add integra

tors on the input. However, in the context of adap

tive control, adding integrators may cause problems,

the parameter dependence of the closed loop system

being reinforced. In particular for the case of manip

ulators as considered by Reed and Ioannou [l8] and

Campion and Bastin [2], we do not see how integra

tors could be added in the adaptive case due to the

fact that the model is linearly parameterized only in

the implicit form (4).

3 — Assumptions (18) and (22) are restrictive. As re

marked in Introduction. this is a consequence of our

will of establishing global Lagrange stability results —

compare with the local analysis of [2,8,19]. I

3 Lagrange stability

Our objective is now to study if assumptions BO (2) ,

S (5) and UEC(a, r0, \II) (8) are sufficient to guarantee

the existence of a controller solving our problem. We

proceed by increasing order of difficulties.

3.1 p* given and constant

When the vector p* in [10) is given and constant, the

value ofp* is available for computation. Therefore, we

may propose the following control law :

u = un(a:,p*). (32)

We get :

Proposition 1 Let assumptions BO (2) and S

(5) hold. Under these conditions if, for some 0, r0, \I',

assumption UEC(a, r0, \II) (8) holds with 12* known and

constant, i.e. E = 0, and:

l — — 2 — limsu — >
#1 #2 vq+oop

then all the solutions of (1)-(32) are well defined on

[0,+oo), unique and bounded. Moreover: if D = 0 in

(10), then :

o (33)

lim r(t) = 5
t—v+00

(34)

The proof of this Proposition is based on the follow

ing Lyapunov function :

van») = I(V(:r,p*)) + grz (35)

with e > 0 and I( V) the function defined by :

_ v W(T(v))2

1(v2 _ /o Wdv (36)

Since \II, T, V and a are known, this function can be

evaluated on line and therefore used in a Lyapunov

design.

3.2 p* unknown and time varying, V does not de

pend on p

When the vector p* is unknown and time varying, the

control law (32) cannot be implemented. Instead we

use a dynamic controller with state if :

5 = T(z,i5), u : 1141,19) (37)

which is obtained by applying Parks' Lyapunov design

[1 1]. We just mentioned that V defined in [35) is an

appropriate Lyapunov function for the case where p*

is known. Since the model equation is affine in the

parameter vector, we may try the following as a control

Lyapunov function :

We”) = 1(v(w,p))+ 51* + 5 llp—p*||’ (38)

Namely. let us design the function .77 in (37) so that the

time derivative of W along the solutions of the closed

loop model (3)-(l 1)-(37) — which is not (l)-(37) — be

negative. Assuming that such solutions exist, we get

with (11) in assumption S (5) :

VVf—‘lll2 — earz + sari!

.T . (39)
A W2 3V A W2 6V A

+ (71) - Ta; )(P-P*) + T3711

Hence, in the case where V does not depend on p, this

leads us to choose :

T(xifi) :

Note that, as a consequence, the values of e and r are

not needed to implement the controller. Moreover, we

know that p* is in the known convex compact subset

H. We use this a priori knowledge by projecting .7: onto

the boundary of H whenever ii is on this boundary

and T is pointing outside TI. The following controller

follows : '

\IITVa: 2 A

71(v($)) A($,Un($,P))T %($)T (40)

a . A \rgrgvg 2222 Ap : PTO] (p, 7T(v(a;.)) ACE) un(x1P?)T %g_(z)T)

u = un(x,§)

(41)
0

with O) E H and. with some extra but weak restric

tions on the set U, the function Pro] can be made

locally Lipschitz continuous and have the following

property (see [17] or [12]) :

(P—P*)TPr0j(p,1/) S (P—P*)Ty

||Pr°J(Pil/)|| S llyll

(42)

0

for all (p, p*, y) in R1 X H X R’. It remains to study the

properties this controller provides to the actual closed

loop system (l)-(4l). We have :

Proposition 2 Let assumptions BO (2) and S

(5) hold with V independent of p. Under these con

ditions if, for some a, 1'0, \II, assumption UEC(a, r0, ‘1!)

(8) is satisfied with :

>0
 

1 — u, — 2/12 — limsup

Us... To») (43)
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and if 'y is chosen sujficiently small so that :

72 sup "Pl—Pall <
(Pi.P2)ElFI2

li— —2 —limsu D >liminf\IITv 2

H1 #2 v~+ooPflgj U_+oo ( ())

(44)

then all the solutions of (1)-(41) are well defined on

[0, +00), unique and bounded. Moreover, if D : 0

and E = 0, then :

tlinioo e(t) - 8 (45)

We remark :

l — Inequality (44) implies that the larger the speed 2

of the unknown vector p* or the larger the paramet

ric uncertainty sup(p,,pz)€n¢ Hp, — 172“ the faster the

adaptation should be.

2 — Proposition 2 confirmes one of the conclusion

which can be drawn from the work of Reed and loan

nou [18] and Campion and Bastin [2] for manipula

tors. In the case where we can choose V indepen

dant of the updated parameter vector 5, the only mod

ification which is needed compared with the known

parameter vector case is a mechanism guaranteeing

boundedness of the updated parameter vector In

stead of the projection used here and in [2], Reed and

Ioannou proposed the so called o-modification.

3 — The normalizing signal 1' is not explicitely used in

the controller (41). This implies that for the systems

studied in Example 1, we have a global Lagrange sta

bility.

4 — In the case where singular perturbations are

present, only a local result is obtained in [2] and [18].

This follows from the fact that, in these two cases, the

control appears in the fast subsystem (see Remark 2

of Example 1).

5 — Robustness of Lagrange stability has also been

established locally by Taylor et al. [19] for feedback

linearizable models with a parameter independent lin

earizing diffeomorphism. This independance implies

our parameter independent V assumption. There is

however a possibility to extend those results to the

case where V depends on the updated parameter vec

tor if a so called matching condition is satisfied (see

[8.171). Indeed, when g—p $9 0 but this condition

holds, it is possible by augmenting the control in :

u = Map) + mag) (46)

to annihilate by v the term ‘I'Ta% in (39). Unfor

tunately in this case assumption UEC(a, r0, \II) (8) is

not sufficient since u is no more in the class un(-,p).

We need to make UEC(a, r0, \I!) (8) more restrictive by

replacing :

for any C 1 timefunction i : R+ --+ H and any solution

X(t) of:

X = F(X,t, un(H(X,i),i;)) , X(O)EX (47)

by : for any Cl tirnefunctionp: R+ —+ II and u:

R+ —r Rm and any solution X(t) of:

X = F(X,t,u(t)), X(0)EX (48)

3.3 p* unknown but constant, V depends on p

As mentioned above, when V depends on p we have

the extra term $% in (39). If such a term cannot

be annihilated via the control, we have to consider

it as a disturbance and to design a controller which

will guarantee robustness of Lagrange stability with

respect to it. For this design, we propose to replace

the control Lyapunov function W in (38) by :

We, r, 5) I L [I(V(x,5)) + g r2] +g ||5~ p*||2 (49)

where the function L is to be designed. For this new

function W, the same Lyapunov design as in section

3.2 — without projection — leads to the following in

equality, replacing (39) :

. 2W 5 - [W + we - eaNI! - %§-AT%TL'] L’

T

(50)

where L’ is the derivative of L. We conclude that

this derivative should be positive but as small as pos

sible while guaranteeing radial unboundedness and

positive definiteness of L. This leads us to choose

L(:r) : log(1 + x) and to propose the following con

troller:

rz—a (r—\II(T(V(:L',§)))) , T(O) = To

1 A 2 A A

WA(INI1(I,P))T%%(I,P)T

T(V(:.r))A: Pr A A

p °J 10’ (1+I(V(w.p))+ir’)r (51)

u=Un(w,fi)

O

with E H and I defined in (36). We have :

Proposition3 Let assumptions BO (2) and S

(5) hold with,for all (:c,p) E R" x H :

“an
(52)

where d is a positive real number. We choose a, r0, ‘1',

e and 7 such that :

\I! T v , _ '

1 _ T(v)( 0" T(i)dt)k 15 "on increasmgfor v 2 0, with k

some positive real number,

(9V

5 A('1un)

   

2— as < 2(1—{) (53)

with 120 defined by [8“) T(v)dv : l and:

at 2_d ax W
5 -- 7 M {(l+2k), T(vo)2 } (54)

Under these conditions if UEC(a, r0, ‘1!) (8) holds with

the abovegiven 0, r0, \I! and moreover ith/12, D, E sat

isfy E = O and :

D

(016 +p2)2 < 206(1— ul — [12 —{ — limsup

u—>+oo

(55)
then all the solutions of (1)-(51) are well defined on

[O,+oo), unique and bounded. Moreover, if D = 0,

then :

lirn e(t) : 8
t—->+oo

(56)
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We remark :

1 - In this case where V depends on the updated pa

rameter vector ii, together with the parameter update

projection another modification is used : a normal

ization. Namely, compared with (41), we have intro

duced, in (51), the denominator (1 + I(V) + grz). But

consequently, the normalizing signal r appears ex

plicitely in the controller. This implies in particular

that the initial condition r0 is no more the free pa—

rameter we can use to prove globality of the Lagrange

stability. This is opposite to the case of Proposition 2

(see remark 3 following Proposition 2).

2 — Inequality (52) generalizes the growth condition

introduced in [12] for the case T(v) = v.

‘1! T v .

3 — Monotonicity of flux 0. TUMOI‘ 1s a weak (techni

cal) growth condition on the functions \I' and T. For

instance, it is satisfied when these functions are poly

nomials.

4 — In contrast with remark 1 following Proposition 2,

7 should be large enough for (53) to hold. This is the

well known robustness versus fast adaptation trade

off.

5 — All our assumptions are satisfied if the system to

be controlled is linear, V is quadratic in 2:, un is linear

in :r, \II(T) : T and T(v) : cu. In this case (51) is a

new — as far as we now — robust adaptive linear con

troller which does not require any augmented error.
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