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Abstract 
Our objective in this paper is twofold : 
1 - Study a growth condition, 
2 - Propose a new Lyapunov design of an adaptive 

The growth condition we consider has been intro- 
duced by Praly et al. in 19, Proposition (375)l. Its  in- 
terest is to involve only a control Lyapunov function 
and not the system nonlinearities. We mention it is 
satisfied by strict pure feedback systems with poly- 
nomial growth non linearities and some other non- 
linearizable systems. 

Our new Lyapunov design leads to an adaptive reg- 
ulator where the adapted parameter vector is trans- 
formed before being used in the control law. Namely, 
the so called certainty equivalence principle is not 
applied. Unfortunately, the implementation of this 
regulator needs the explicit solution of a fixed point 
problem. This difficulty is rounded in a companion 

regulator under this condition. 

paper I1 01. 

For linear systems, it is now well established that 
parameterized controllers can be made adaptive (see 
I51 for example). In the non linear case, this is not 
true in general when we are concerned with global 
stability. As shown in the survey (91, this follows 
from the fact that, in general, the closed loop sys- 
tem depends on the parameters. Tho routes have 
been explored to overcome this difficulty : 
1 - A  first route assumes that the parameters can be 
rejected when considered as disturbances with mea- 
sured time derivatives. This is the so called matching 
condition, introduced by Taylor et al. 1121. extended 
by Kanellakopoulos et al. [2] (see also [ 1)) and gener- 
aked  by Pomet [SI. This generalized matching condi- 
tion depends on the open loop system, an assignable 
Lyapunov b c t i o n  and the adaptation law. Kanel- 
lakopoulos. Kokotovic and Morse [3] have shown 
that, at least for systems in a pure feedback form, 
a simultaneous design of the control and the adap- 
tation law allows us to satisfy systematically this ge- 
neralized matching condition. 
2 - The second route has been followed by Nam and 
Arapostathis [4]. Sastry and Isidori [ 1 11 and Pomet 
and Praly [7.8.9]. Robustness is used instead of dis- 
turbance rejection as before and the matching condi- 
tion is replaced by some growth condition. This lat- 
ter condition - always satisfied in the linear case - is 
such that we can design an adaptive controller mak- 
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ing the closed loop system Lagrange stability robust 
with respect to the effects of the adapted parame- 
ters. Unfortunately. on the contrary of the first route 
where sufficient geometric conditions on the open 
loop system are known for the generalized matching 
condition to hold [2,9]. them is no precise character- 
ization of the systems for which the various proposed 
growth conditions hold. 

In this paper, we follow the second route. In section 
2, we present our assumptions with, in particular, 
the same growth condition as the one introduced in 
191 for a least square estimation scheme with initial- 
ized filters. In section 3. we show that this condition 
is satisfied by at least some systems in a strict pure 
feedback form. In section 4. we design an adaptive 
regulator from a Lyapunov design and prove Lagra- 
nge and asymptotic Lyapunov stability. 

Let the system to be controlled have a measured state 
z in R" and an input U in Rm. We assume : 
Assumption LP (Linear Parameterization) (1) 
?Xem exist two known C' functions Q and A and a n  
unknown uector p* in R' such that the dynamics of 
the system to be conhued are globally described by : 

(2) 
We shall restrict our attention to the case where p* 
is in a known convex set II*. Precisely. we assume : 
Assumption ICs (Imbedded Convex Sets) (3) 
 em exists a known conuex ~ ~ f i n c t i o n  P : R' -+ R 
such that : 
I - [- 1,3] is a subset of? (R') and, by Zetting : 

(4) 
we denote II* (respectsely no. II,, II,, II) the set 
obtained for X = -1  (respectiuely X = 0, X = 1. 
A = 2, X = 3). 

2 - then? exists a strictly positive constant N such 
that : 

2 Assumptions 

i. = U ( Z , U )  + A ( z , u ) p * .  

HA = {PIP(P)  I XI 1 

Ilg(P)ll I N V P  E { P  l o 5  P(P) I 1) I(5) 
3 - the parameter vector p* of the system to be mn- 

Namely, p* is in the set 11* and the sets 
11* C IIo 5 II, 5 II, 
Notation : We denote 6 the strictly positive real num- 
ber defined as the minimum among the distances 
fiom II, to the complement of II and from II* to the 
complement of I I O .  
To design our adaptative controller, we consider 

the system to be controlled as a particular element 

trolled is in U*. 

II are convex and closed. 
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of {Sp}pEn, the following family of systems indexed 
b y p E I I :  

(6) 

We assume that each element in this family is Lagra- 
nge stabilizable in the following sense : 
Assumption Is (I;rypanee Stabilhbilityl (71 
Them exist two knownmtions : 

% : R n x I I + R m  whichkC' 

i: = a ( z , u )  + A ( z , u ) p  . 

V : R " x I I + R +  WhkhisC 
such that : 
1 -for all positive real number K, and all compact 

subset II, of II. {z f3p E II, : V ( 2 , p )  5 I(, } is 
a compact subset of R" , 

a V  
-(z,P) ax [ a ( z , u n ( z , ~ ) )  + A ( z ,  ~ L ~ ( z , P ) ) P ]  5 
Inthefollowing. wedenote-W(z,p) thelejthand 
side of this inequality. 

2-foraU(z,p)fnRn x H . w e h a u e :  

Namely, the following closed loop system : 

x = a(z,2Ln(z,p)) + A(z ,%(z ,P))P (9) 

is Lagrange stable with Lyapunov function V whose 
time derivative is - W .  For the more stronger asymp- 
totic Lyapunov stability of a desired set point &*, we 
will invoke : 
Assumption AS (Asymptotic Stabilizability) (10) 
For a Z Z  C' timefindion p̂  : R+ + II with bounded 
derivative. the only bounded solution of: 

(1 1) i: = a(2, % ( Z , p ^ ( W  + A ( z ,  U,(Z,p^(t)))P* > 

W(z(t),p^(W = 0 112) 

satisfying for all t E R+ : 

is the trivial solution z( t )  = P. 
Indeed, with this assumption, asymptotic Lyapunov 
stability will follow from LaSalle's Theorem. 

The closed loop system (9) depends on the param- 
eter vector p. More precisely, the Lyapunov function 
V depends on p. As mentioned in Introduction and 
discussed in 191. this is the origin of most of the diffi- 
culties in adaptive non linear control. To specify this 
dependence in our approach, we assume : 
Assumption GC (Growth Condition) (13) 
There exists a knownpositiw real number7 such that. 
for aU ( z , p )  in R" x II, we haw : 

This assumption GC (1 3) is the same as the one con- 
sidered in 19. Proposition (375)) with an estimation 
design. The interest of the growth condition (14) is 
that the system nonlinearities are not involved expl- 
icitly. It concerns only the parameter dependence of 
the control Lyapunov function V. 

3 Examples 
Let us illustrate our assumptions by means of exam- 
ples : 

3.1 Strict pure feedback syattems 
We consider a system which may be after parameter 
dependent difhmorphism and feedback can be writ- 
ten in the following form called strict pure feedback 
form in (31 : 

where the xi's in R are measured, the fi's are known 
C" function row vectors and the pi's are unknown 
parameter vectors in known convex compact sets. 
For this system, we are interested in asymptotically 
stabillzing the set point P = (0, e i l .  . . , e*,) which is 
uniquely defined by : 

e;+l = -f, (0,. . . ,e$) p: . (16) 

Clearly assumption LP (1) is satisfied. To show that 
functions U, and V can be found to satis@ assump- 
tions LS (7) , AS (1 0) and GC (1 3) , we apply the iter- 
ative Lyapunov design procedure suggested by [ 13. 
Theorem 3.~1. For this, we introduce the following 
more compact notations : 

xi = (x:l,zi)T , x1 = 21 

e = (PLl ,PT)T , Pl = Pl 

) (17) 

2 2  + fl(z1)Pl 

( :  t i + l  + f i ( z l i . . - i z i ) ~ i  
Fi (Xi 9 2i+l j pi) = 

Then, it can be proved (see [ 1 O] for more details) by 
induction that assumptions LS (7) , AS (10) and GC 
(13) are satisfied for the system : 

Xi-] = Fi-](xi-l, z i ,  Pi-1) 
(18) xi = Z i + l +  fi(Xi-l,2i)Pi { :  G+l = U i + l  

by the following C" functions : 

and : 

K+l(Xi, zi+l, Pi) = & K(xi,  pi-^)^* (20) 

+ 4 (zi+l+ fi(xi)pi - ui(Xi,pi-l))' > 

where mi is an integer number. However, for the in- 
duction argument to apply, we have to be able to 
find at each step the integer mi such that, for all 
(Xi-llz,,Pi-i), we have : 

where pi and X i  are some positive continuous func- 
tions. Fortunately. this extra assumption can always 
be satisfied if the fi's and their successive derivatives 
have a polynomial growth. 
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We conclude that our assumptions LP (1) , LS (7) , 
AS (10) and GC (13) arc satisfied at least for linearly 
parameterized systems in a strict pure feedback form 
with polynomial growth non linearitics and a param- 
eter vector in a known convex compact set - a sub- 
class of the family of systems considered by Kanel- 

3.2 A three dimensional system 
Our assumptions may apply also to systems which 
cannot be written in pure feedback form and are not 
even feedback linearizable. To illustrate this point, 
we consider the following system : 

lakopoulos. KOkOtoviC and MO= in [3] - . 

where the parameters p;, p i ,  p$ are unknown. We are 
interested in asymptotically stabilizing the set point 

Equations (22) being linear in the &s, assumption 
LP (1) is satisfied. 

For assumption ICs to hold, it is sufficient to know 
that the vector (p: , p i ,  

(P: - POI)' + (P: - POZ)~ + (P: - ~ 0 s ) '  I Rz - 6'(23) 
where the pa"s and R > 6 > 0 are arbitrary but 
known. Indeed. in this case we may define the func- 
tion P by : 

E* = (o,o,o). 

satisfies : 

?(Ply h I P3) = (24) 
1 

[(Pi - Poi)' + (Pz - Pm)' + (p3 - pa)' - Rz] . 
To meet assumption LS (7) , we choose the follow- 

ing control Lyapunov function : 

h(Y,Pl,h,P3) = p1(p3+ l )y -Pz(P3+1)z  4 y4 . (26) 
Then a Lyapunov design gives the following control 
law : 

% 1 ( ~ , y , ~ , P l , f i r P 3 )  = - ( z + ( P 3 +  q Y 3 )  - y 7  (27) 
-(% - h)(bz - P3(P1 - PZ(P3 + i ) Y 3 ) )  

-3b3 + 1)Y"Z + P3Y3) . 
It follows that (8) in assumption LS (7) is satisfied 
with : 

W(5,Y,Z,Pi,Pz,Ps) = Y'O + (2 + (P3 -k 1)Y3)' (28) 
Assumption AS (1 0) holds also if the set II defined 

by (24) is such that : 

(Pl,fi,PS) E II * PlP3 # 0 * (29) 

Indeed for any C' time function (&(t),&(t),fi3(t)) E 
II , any solution (t(t), y(t), ~ ( t ) )  of (22), with : 

y, 2, gl ( t )  7 f i Z ( t ) ,  F3(t)) 9 (3 0) = 

which satisfies : 

W(z,Y, ZiF1(t),~Z(t),F3(t)) = 0 v t  9 (31) 
is necessarily such that : 

y(t) = z ( t )  = 0 vt . (32) 

But, from (26)-(27). this implies : 

&(t)F3(t )~( t )  = O V t  . (33) 

The conclusion follows from (29). 
Thanks to a straighflonvard computation and the 

fact that the parameter vector is in a compact set. it 
is easy to check that assumption GC (1 3) holds. 

Finally. we remark that, as far as we know, up to 
now, there is no adaptive controller guaranteeing a 
global stabilization for this system without invoking 
assumption GC (13) . 

To design a controller guaranteeing at least Lagra- 
nge stability for the system (2) with p* unknown, we 
follow the standard adaptive control procedure and 
propose the following dynamic state feedback : 

4 A theoretical adaptive controller 

(34) 

where the new control v is to be designed. 
Let L : R+ -, R+ be some positive proper C' 

function with a strictly positive derivative denoted L'. 
This function L will be precised later. For the time 
being, we use it to define the function : 

S(r,FI Sf L(V(Z,F))  * (35) 

The time derivative of this function along the solu- 
tions of (2)-(34) is : 

Then. using (81 in assumption LS (7) and our dy- 
namic controller (34). we get the following differential 
inequalities system : 

In view of point 1 of assumption LS (7) , Lagrange 
stability would follow if we were able to find bc t ions  
L and U so that S and Fremain bounded. To simpli@ 
the notations, let : 

$T = L' E A  
'PT = LI - T (38) 

y 

By using the positivity of L' and W .  we get from (37) : 

a t  

P = (p^-P*) 
= s  - L'$g(p^-p*)  = s - pTp. 

(39) 
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This is the standard form to apply Parks' Lyapunov 
design [SI. Namely, with a a strictly positive real 
number to be chosen, we define the function : 

(40) 

and we evaluate its time derivative along the solu- 
tions of (39). We get : 

T U 5 (+$3-7 ) )  F .  
Therefore. by choosing : 

we arc guarcnteed that U is negative. This leads us to 
propose the following control v and a corresponding 
control Lyapunov function U : 

I 

and : 
OV 1 
a P  2a U = L(V) - L'(V) - (5- p*) + - [ I F -  p*l12 (44) 

(45) 

+-  p^-p*-aL'(V)- avT/[ . 
2a // aP 

?tvo questions about this proposition : 
1- Is the equation for p^realizable - a time derivative 

is involved in the right hand side of (43) 7 
2- Is U a positive proper function of the state vector 

(2, jj) of the closed loop system ? 
The answer to the first question is simple. A state 
space realization of a system giving p^ is : 

Unfortunately, a difficulty remains since the last 
equation is implicit in F. We shall address this point 
afier the following answer to the second question : 
Since the function L is to be designed as a positive 
proper function and V is positive and satisfies point 1 
of assumption LS (7) , U is a positive proper function 
of (z, jj) if there exists a strictly positive real number 
E < 1 such that : 

(47) 

But, from assumption GC (1 3) , this inequality is sat- 
isfied ifp^is in the set II and : 

(48) 2 
Therefore it is sufficient to choose : 

a 
-LL'(V)27Z ( 1 + v ) 2  5 (1 -E)L(V). 

(49) 

Now, coming back to the problem of implicit defini- 
tion of p? we note that, not only a solution should 

2 
L(V) = 1 + log(l+V) , a < - .  

Y2 

exist, but also, for (47) to hold with this function L 
in (49). this solution p^ should be in II. The second 
equation of (46) is : 

It follows from a standard fixed point argument (see 
Lemma A. 1) that assumption GC (1 3) and : 

imply the existence of a C' function p : R" x II2 + II 
such that, for all ( z ,g  in Iw" x II2, 

(52) 

To use this function p in (461, it remains to guarantee 
that cis in II2. This is achieved by using the standard 
projection trick. 

As a result, we have designed the following adap- 
tive controller : 

(53) 
where the locally Lipschitz continuous function prof : 
II x R' 4 R' is defined by - see [9. Lemma (103)] - 
proj(q,Y) = (54) 

and satisfies for all ( q , p ,  y) E R' x x R' : 

(q  - pIT fioj(q, Y) I ( q  - pIT Y . 

u z > a  = 1 + log(1 + v ( w ( z , g ) )  

(55) 

Moreover, an appropriate Lyapunov function to stu- 
dy the dynamics of the closed loop system should be : 

(56) 

We have : 

Propition 1 Let assumptions 1p (1) , ICs (31 , LS 
(7) and CC (13) hold and a be chosen such that : 

0 < a < rmn(6 L } .  
7' 2r2 

(57) 

Under these conditions. for any initial condition 
(z(o),$(o)) inR" xn,, h e h t s a u n i q u e s o W n  
( z ( t ) ,  3t)) of (2)-(53) which is bounded on [0, +oo). 
Moreom, if assumption AS (1 0) holds. we have also : 

(58) 
t-+m 

Proof of Proposition 1 : 
The closed loop system we consider is : 

lim z ( t )  = t? . 

(59) 
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From our smoothness assumptions on the functions 
a. A. tin and V ,  Lemma A. 1 and [9, Lemma (103)] this 
system has a locally Lipschitz continuous right hand 

side in the open set Iw" x IIz. It follows that, for any 
initial condition ( x ( O ) ,  30)) in this open set and th- 
erefore in particular in R" x no. there exists a unique 
solution ( x ( t ) ,  3t)) defined on a right maximal inter- 
val [O,T). with T may be infinite. Moreover, from 19, 

Lemma (103) point 51, we know that c(t) E II, C II2 
for all t in [O,T). 

Then. we compute the time derivative of the func- 
tion V ( x ( t ) ,  $(t)) defined in (56). With assumption 
LS (7) and (501, we get, with p^ = p ( x ,  8 : 

0 

0 

But, since 3t) is in II, c II,. p i s  in II. And pin II, 
assumptions GC (1 3) and (57) imply : I l f f  < a y  < 6. 

Since. p* is in II*, the definition of 6 and this inequ- 

ality implies that p* - a + is in no. Therefore, with 
the expression of $and (551, we get finally : 

OV T 

This implies that U ( x ( t ) , $ ( t ) )  is a non increasing 
time function. Moreover, we have with assumption 
GC (13) : 

U >  ( 1 - Z )  ( l+ log ( l+V) )  

2 1--  ( 1 + l o g ( l + v ) ) + ~ l I c - P * 1 1 2 ~ ~  1 ( "2) 
It follows from (57). Lemma A.l and point 1 of as- 
sumption LS (7) that, for t i n  II2, U is a positive func- 
tion proper in x and e. Therefore. by contradiction T 
is infinite and the solution ( x ( t ) ,  3t)) is bounded on 

Finally, it follows from [14, 5.2.811 and (63) that 
any solution of the autonomous system (59) con- 
verges to the largest invariant set of points ( x ,  9 sat- 

[o, +m). 

isfjdng W (  x , p( x ,g)  = 0. But any bounded solution 
in this invariant set is also a solution of (1 1)-( 12) in 
assumption AS (1 0) with : 

p^(t) = P ( x ( t > , 3 t > >  * (66) 
The conclusion follows readily. 0 

Unfortunately, if, from a theoretical point of view. 
the adaptive controller (53) may be satisfactory. it is 
not yet a practical solution. Its  implementation re- 
quires an explicit expression for the function p. It is 
clear from our examples of section 3 that an analy- 
tical expression for this function is unaccessible in 
general. In a companion paper [lo]. we propose a 
more practical adaptive regulator where the static 
fixed point equation is replaced by a dynamical sys- 
tem with this fixed point as equilibrium. 

6 Conclusion 
Our comer stone in this paper is the growth condi- 
tion GC (13) . It does not involve explicitly the sys- 
tem nonlinearities and is satisfied by a class of sys- 
tems encompassing at least the strict pure feedback 
systems with polynomial growth non linearities and 
parameter vector in a known compact set. a subclass 
of the family of systems considered by Kanellakopou- 
10s. Kokotovic and Morse in [3]. This condition has 
been introduced by Praly et al. in [9, Proposition 
(375)]. They have shown that it is sufficient to ob- 
tain an adaptive controller by an estimation design. 
Their controller contains a least squares algorithm 
and therefore has a vanishing adaptation gain. But 
worse, for the regulation result to hold, the filters 
feeding this algorithm must be initialized to a partic- 
ualr value depending on the state initial condition. 
Here, we have applied a Lyapunov design and ob- 
tained an adaptive regulator with a not necessarily 
vanishing adaptation gain and without requiring a 
specific initialization. 

Our adaptive regulator is of a new type since the 
adapted parameter vector is transformed before be- 
ing used in the control law. This means that it does 
not rely on the so called certainty equivalence princi- 
ple. Unfortunately this transformation is given as 
the solution of a fixed point problem which cannot 
be computed explicitly in general. Nevertheless, we 
have shown in [lo] that a more practical adaptive 
regulator can be obtained where the static fixed point 
equation is replaced by a dynamical system with this 
fixed point as equilibrium. 

Finally, we observe that our adaptive regulator or 
the one considered in 19, Proposition (375)]. when ap- 
plied to strict pure feedback systems with polynomial 
growth non linearities, do not have the drawback of 
having to estimate more than the necessary number 
of parameters on the contrary of [3]. 
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A The f i e d  point p(z, 3 
Lemma kl Let n, s; II be two closed corn subsets 
of R1 such that : 

LetalsoV : P x I I  + R+ beaC2fLUZCtlDnsuch 
that.ford(z,p)inR" xII.wehave: 

Ifa isapostiwrealnwnbersatisji.Jng: 

then, there exists a C' function p : R" x II2 + II 
such that : 

For all ( z , p )  in R" x II. we haw : 
IIf(.,PIQ) - Q l l  I . (72) 

Therefore. from (67) and (69). f(zl  q , p )  is an interior 
point of II for all (2, q , p )  in R" x I I2  x II. Now, with 
assumption (68). we have : 

(73) 

Then. from this inequality, the Mean Value Theorem 
and the convexityof II. we have, for all (2, q )  in R" x 
II, and pi and pa in II. 

Since 11 is a complete metric space. it follows from 
the Contraction Mapping Theorem that (69) implies 
the existence of a unique function p : R" x II, -+ II 
such that : 

(75) p(z, q )  = f(z1 P ( Z ,  q) ,  q )  

Moreover, from (73) and (69). the matrix : 

is non singular for all (z p) in R" x II. I t  follows from 
the Implicit Function Theorem and the uni ueness of 
p that this function p is C' as is V and ap. O Q  0 
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