
Adaptive Control of Feedback Equivalent Systems 

J . - B .  P o m e t *  a n d  L.  P r a l y  t 

A b s t r a c t  We address the problem of sta- 
bilizing a nonlinear system depending on 
some unknown parameters in suck a way 
that M1 the systems obtained by varying 
these parameters are equivalent to one sys- 
tem, supposed to be state-feedback stabi- 
lizable. The description of the adaptation 
iaws make use of passivity. We consider 
both the "general" case, and the case where 
some "matching assumptions" hold. 

1 I n t r o d u c t i o n  

We consider a family of nonlinear affine-in- 
the-control systems, indexed by a parame- 
ter vector p: 

P = (Pl  . . .  P l )  T e R I  . (1)  

The system Sp corresponding to a given 
value of p is described by : 

Sp : ~ = f ( p , x )  + g(p,x) u (2) 
m 

f(p, x) + x (3) 
k = l  

where the state x lives in an n-dimensioned 
C ~ manifold M "  and is completely mea- 
sured, 

u = ( u , , . . . ,  u,~) (4) 

is in tZ "~, and f and the gk's are k n o w n  
smooth vector fields smoothly depending 
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on the parameter  p; g is the matr ix  field 
defined by (3). 

One part icular  p* in Ill  will be called 
the "true value of the parameter  p", and 
our problem is to stabilize the system gp,, 
p* being unknown. This will be done by 
means of a dynamic controller, i.e. of a sys- 
tem with a certain state, to be determined, 
input x, and output  u : 

State: x 
U ~ ~.~p. X 

State: to determine 

u Adaptive Controlier Ix  

Fig. 1 : Closed-loop system 

The state  of the overall closed-loop system 
is composed of x and the dynamic variables 
(or the state)  of the controller. By "stabi- 
lize Sv." we then mean that  both x and 
the dynamic variables of the adaptive con- 
troller must  be bounded, and x must  tend 
to a certain point 0 of M" ,  for all the so- 
lutions of the closed loop system (global 
properties),  or only for some (local prop- 
erties). By "p* being unknown", we mean  
that  the adaptive controller must  not de- 
pend on, or use the value of, p*. 

This general problem, as well as the 
distinction between global and local re- 
sults, is extensively discussed in [10], [8J, 
or [11], where a complete bibliography may  
be found. The  present paper  is specifically 
devoted to the case when all the systems 
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@ are equivalent to one another by state 
feedabck and diffeomorphism. 

In section 2, we state precisely our as- 
sumptions about the systems Sp. In sec- 
tion 3, we describe some general adaptation 
schemes. Section 4 presents some adap- 
tive controllers designed for the general 
case where no more assumption is satis- 
fied. Section 5 is devoted to the case where 
some "matching assumption" is satisfied 
and presents some modified controllers. Fi- 
nally, in section 6 we give some geometric 
conditions allowing to construct a diffeo- 
morphism meeting this "matching assump- 
tion". 

is such that 

rankg(p,  x)Z(p, x) = r = k g ( p ,  x) 
(7) 

2. There is a sys tem 

= i ( = )  + (s)  

independant  of p such that~ for any p, 

= (9) 

u = c~(p,x) q- fl(p,x) w (10) 

transforms (2) into 

= f (~)  + O(~)w (11) 

2 A s s u m p t i o n s  

L i n e a r  P a r a m e t r i s a t i o n  (LP)  a s s u m p -  
t ion:  The fields f and g in (2) depend lin- 
early in the parameter  p : 

I 

f ( p , x )  -= a~ + ~--~piai(x) (5) 
i = l  

1 

 k(p, x) = + b (x) , (6) 
i=1  

where the ai's and the b~ 's are smooth vec- 
tor fields 5ndependant  of  p). 

Numerous practical examples, as position 
control of a DC-motor [6] or control of bio- 
chemical processes [4] satisfy this linear de- 
pendance on the parameters. All the exist- 
ing schemes for adaptive nonlinear control 
require linear parametrization. 

F e e d b a c k  a n d  D i f f e o m o r p h i s m  Equ i -  
va l ence  ( F D E )  a s s u m p t i o n :  There ex- 
ists three smooth maps, o~ f rom R z x M ~ to 
I t ' ,  t3 f rom R '  • M ~ to Mm• and ~o 
f rom R l x M ~ to M ~ such that 

Loca l  S t ab i l i z ab i l i t y  o f  t h e  T r a n s -  
f o r m e d  S y s t e m  ( S T S ( ~ 2 )  ) a s s u m p -  
t i on  : There ezist k n o w n  f l tnctions Vnom 
and U, of class (at  least) C I and C 2 respec- 
tively, f rom a neighborhood ~ of  0 in M ~ 
to R "~ and to l:t respectively, such that: 

1. U(~) is n o n n v a t i v e  , and zero i f  and 
only i f  ~ is zero, and for  any I (  > O, 

{ ~ / Y(~)  < I ;  } (12) 

is a bounded subset of  M ' L  

2. For all ~ in M ~, we have: 

U~=~(() : L~U(() <_ -cU(() (13) 

where c is a strictly positive constant 
and ~ denotes the "nominal  trans- 
formed closed loop field": 

~(~) ~- f(~) q- f(~)Vnom(~) (14) 

Globa l  S t ab i l i zab i l i t y  o f  t h e  T r a n s -  
1. For each p, ~o(p,.) is a di f feomorphism f o r m e d  S y s t e m  (global  S T S )  a s s u m p -  

on M '~, and the "matrix field" 13(p, .) Lion : The same as STS(~2), with ~2 = M ~. 
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For the sake of simplicity, we suppose that  
~, a and fl are defined globally in assump- 
tion FDE. If they were defined only for p in 
a certain domain, but  for any x, we could 
modify our algorithms, adding a projection 
to maintain the estimates of the parameter  
in this domain (see [10] or [11]). If they 
were defined locally with respect to x too, 
only local results could be obtained. 

The most  touched-on situation, in the 
present l i t terarure is concerned with fully 
state-feedback linearisable systems. As- 
sumption FDE includes it as a particular 
case and is clearly more general. For lin- 
earisable systems, STS is satisfied too, V~om 
being a stabilizing linear feedback. 

Notice that  with assumptions FDE and 
STS, defining U,om by : 

Unom(P, X) : O~(p, X)+]~(p ,  X)Vnom(qO(p, X)), 
(:5) 

for any p the feedback u = U,om(P, X) sta- 
bilises Sp. In particular,  u = U.om(P*, X) 
stabilises Sp,. This is not however a so- 
lution to our problem, because p* is un- 
known, and the controller must not depend 
on its value. 

3 A d a p t a t i o n  l a w s  

From the f and g in (2) and (3), we define 
a new family (S'p.q), in which, for any p and 
q, the system S'p,q is : 

S;.q : ic = I(P, z) + g(p, Z)Ul + g(q, z)u2 
(16) 

R e m a r k  1 : In general, q = (qa,...  ,qt) 
will have the same dimension as p, but 
we may  omit  the qi's such that the b ki's 
(see (6)) are identically zero, i.e. such 
that  g(q,x) does not depend on ql In 
particular,  if g does not depend at all on 
the parameters ,  q may be dropped in the 
parametr iza t ion  (16). This is also the case 
if for some reason w2 is identically zero. II 

Setting 

u = ul + u2 , (17) 

the family (@) is imbedded in the family 
(S~,q) in an obvious way :  

sp - s L (is) 

We may consider that  the system @, to 
be controlled is just $~,.q,, with q* = p*. 
In the following, it will often be convenient 
to write p* and q*, keeping in mind that  
q* : p*. 

The controls ul and u2 will be computed 
thanks to some "estimates" of the parame-  
ters : Ul will depend on/5, and u2 on/5 and 
~, some "estimates" of p* and q*. 

The adapta t ion is the par t  of the con- 
troller which gives these estimates t5 and ~. 
The  following remarks are some guides to 
design the adaptat ion.  

Considering W, c~ and/3 given by assump- 
tion FDE, if we define ~ and wl by 

= (i9) 
U 1 = Or(/5, Z) -1- fl(/5, X) W 1 , (20)  

we have, from assumptions FDE and LP, 

= / ( ( )  +9( ( )Wl  + A(/5,x,wl)(p* - /5)  

+3-; ( /5 ,  + 

with 

A(p , x ,u )  = 

. . . ,  x) a'(x) + kbi(x) , 
k----1 

(22) 
where the u~'s are the functions of/5, x and 
wl given by (20). 

The  adaptat ion will be based on linear 
estimation, and must  rely on an "observa- 
tion equation",  i.e. an equation, satisfied 
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by the signals present in the system, which 
is linear with respect to (p*, q*). If h is 
any function of 4, we may choose as an ob- 
servation equation the one describing the 
evolution of h(~(t)), namely:  

Oh 
--}- ~-(~)A(~, x, Wl) (p* - ~) 

Oh , c  &o , ^, + g (~  ~ G ~ P  ~ ) g ( q * , ~ ) ~  

Oh. 0~o 
+ ~ ( ~ ) ~ p  (/~, x)D. (23)  

To stress the fact that this equation is lin- 
ear with respect to p* and q*, we may 
rewrite it as : 

�9 ( , . )  z(h,~,~,~,~,~)  = z ( ~ , ~ , { , ~ , u )  r 

(24) 
w h e r e  

Z = 
Oh 

Oh 
+ -~(~)A(p,  x, w~)~ 

Oh O~v 
- 

k = l  

Oh. Oto x "  
- ~-(~)~p(16, )/~, (25) 

and the matrix field Z is naturally defined 
from (23), (24), and (25). 

Then, a general, and implementable, 
gradient-type adaptation algorithm is 

(D <) ) = -ZTe  (26) 

where the filtered equation error e is of the 
same dimension as h, and is given as the 
output of a "strictly passive" filter : 

p* z [(~) - (~.)] strictly 
passive 

filter 

C 

Fig. 2 : The filtered equation error 

such that e may be computed from avail- 
able signals (e is defined by fig. 2 but can- 
not be obtained this way, since p* and q* 
are not available). 

The ideas of hyperstability and passsiv- 
ity were introduced in adaptive control in 
[7], and one may find in [8] what we pre- 
cisely mean here by "stricly passive". 

A possible choice of the filter in fig. 2 is : 

+ r e  = Z[  q. ] (27) 

where v is a positive function of the avail  
able signals. Using (25). e may then be 
obtained by : 

~ = - r e + ( J ~ - z ) + Z ( / 3 )  (28) 

e = q - h(~) . (29) 

(28)-(29) only makes use of available sig- 
nals (from (25), h -  z only depends on 
controls and state variables), and gives 
an r which, from (24) and (25), satisfies 
(27). This adaptation scheme is the one de- 
scribed in [11] (with S~,q here instead of G 
there). We then have the following prop- 
erty : 

L e m m a  1 ( [ l i  D No matter what the con- 
trol laws U 1 and u2, or the smooth function 
h are, for any x(t) solution of the con- 
trolled system (ul,u2)-$~,,~,, and any so- 
lution of (26)-(27), defined on [0,T) (0 < 
T < +oo), we h~ve, for all t in [0, T), 

/0 , _ (, .) , ~ rll~N ~ ) + ~lbft)ll + 
$ 0  1 2 -< ~ ( , l o l ) -  (~:)~ + ~]I4o)II 

(30) 
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The various adaptation schemes we will 
use in the two following sections a r e  ob- 
tained by precising the choice of both the 
function h and the filter in figure 2. This 
filter may be different from (27). 

4 A d a p t i v e  C o n t r o l  i n  

t h e  G e n e r a l  C a s e  

Here, we make no more structural assump- 
tion besides LP, FDE and STS, and do not 
use the control u2; ul is given by (32) : 

u2 -~ 0 ,  (31) 

= u~ = Uno~(p,z) . (32) 

To describe completely the adaptive con- 
troller, we have to define the adaptation, 
i.e. how/3 in (32) is obtained. The adap- 
tation scheme (section 3) will contain no 
(the term depending on q in (16) being now 
identically zero, we just omit q, see remark 
1). We propose two choices for the function 
h, with corresponding choices of the filter 
of figure 2, both  of the type (27). 

1. A first possible choice is to take for h 
some coordinates on M ~ and to define the 
filter (fig. 2) by (27), with no ~ and q*, and 
r a constant real positive number. We only 
mention the results obtained when the sys- 
tems are fully feedback linearizable, and we 
choose for h some coordinates in which (11) 
and $ are linear (~ = $(~) implies ]~ = Ah 
with A a Hurwitz matrix). Then, the adap- 
tive controller (26).(60)-(28)-(29) for feed- 
back linearisable systems is similar to those 
described in [3], though the point of view 
is different there. We have the following 
results for these controllers (see [3] or [8]): 
I f  FDE and LP are satisfied, and STS  is 
satisfied locally, i.e. STS(~)  is satisfied for 
some ~, then any solution of the closed- 
loop system (figure I) such that 4 0 )  and 
Ko)  are closed enough to zero and p(O) is 

close enough to p* is bounded and such that 
x(t) goes to zero. 
As a global result, we have (from [8]), 
I f  FDE and LP are satisfied, and STS  is 
satisfied globaIIyaIly, an d  if  in a d d i t i o n  
all the vector fields are globally Lipschitz, 
then any solution of the closed-loop system 
is bounded and such that x(t) goes to zero. 

2. Another possible choice for h is the real 
positive function U given by assumption 
STS. The filter of figure 2 is again of the 
type (27), and we altogether obtain the fol- 
lowing controller, which is the one we pre- 
sented in [11] or [10], particularized to the 
case of feedback equivalent systems : 

A d a p t i v e  C o n t r o l l e r  ACI(U) : 

U ---- Unom(P, 2:) (33)  

" e Z(~5, x, Unom(/~, x)) T (34) 
OU 

= - r e + 5-;(~(~, x)) ~(~(p, x)) 

+ w(~ ,  ~).~ (35) 

where 

e = q - U(cp(5, x)) (36) 

r - 1 + IIZIlllWII (37) 
OU 0~o ~p, xi~38 w ( p , x ) -  ~ ( ~ ( p , ~ ) ) ~  ~ ) 

Z(p,x ,u)  = (z l (p ,x ,u) , . . .  

. . . ,  z'(p, x, u)) (39) 

z~(p,z,u) = OU O~ 
57(~(p, ~ ) ) ~  (>, x) 

[a'(x) + ~__l ukb~(x)t40) 

Notice that q is the state of the small sys- 
tem necessary to realize (27) using only 
available signals. 

T h e o r e m  1 ([11]) 
I f  assumptions LP and FDE hold, and as- 
sumption STS  holds locally, there exists an 
open neighborhood of (p*,O,O) such that 
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any solution (~,x ,~)  with initial condi- 
tion (i5(0), x(0), 7/(0)) in this neighborhood, 
exists on [0, oo), remains in a compact 
set and its (x,~)-component tends to zero. 
In addition, the point (p*,O,O) is a (non 
asymptotically) stable equilibrium point. 

T h e o r e m  2 ( [ i i ] )  I [  assump- 
tions LP and FDE hold, and assumption 
S T S  holds globally, and if in addition there 
exists a C o function d on II such that for 
all (p, x) in II x M,  with Z defined in (39), 

IIZ(p,=)ll ~ (p ,x )  (41) 
< d(p) (1 + V(p, x) ~) , 

then all the solutions are defined on [0, (x)), 
remain in a compact set and their (x ,q)-  
component goes to zero. 

This algorithm therefore either gives on- 
ly local results or requires the bound (41) 
on the growth of the different vector fields. 
This was also the case for the first al- 
gor i thm (h = some coordinates), but,  as 
stressed in [11] or [10], if the systems are 
such that  $ is not Lipschitz in the coordi- 
nates h, we cannot guarantee global stabil- 
ity in the previous algorithm whereas we 
can here. 

5 A d a p t i v e  c o n t r o l  w i t h  

m a t c h i n g  a s s u m p t i o n s  

We call matching assumptions the fact that  
FDE holds with the following restriction on 
the dependance on p of ~ : 

A s s u m p t i o n  F D E M 2 :  Assumption FDE 
is satisfied, and ~o has the property that 
there exists a smooth map v2 : 

(p ,q ,~ ,x )  ~ v2(p,q,p,x)  E R ~ (42) 

meeting, Ior any (p, q,b, ~), 

x)v2(p,q,[o,x)+-fi-j(p,x)[o = 0 

(43) 

We will use here/~ to compute ul with 
(see (15)) : 

Ul = Unom(P, X) , (44)  

and the estimate ~ of q* to compute u2 by : 

u~ = v2(p,~,/~,~) . (45) 

We then have 

= ,~(~) -]- A ( p ,  x,  u . . . .  (]), x ) )  (p* -- p)  

+ A2(15, x, v2(i5, ~,p, x)) (p* - ~X46) 

with A2 the row vector defined by 

~ ( p ,  x) [g(ql, x) - g(q~, x)] ~ 

= A~(p, ~, u~) (q~ - q~) (47) 

We will again use the adapta t ion  
schemes proposed in section 3 to obtain 
(#, ~). We propose three different choices : 

1. First, as in section 4, we may  chose 
for h some coordinates on M" ,  using the 
filter (27) with r some positive constant.  
AgMn, we only mention the results ob- 
talned if the systems are fully feedback lin- 
earizable and the coordinates h are these 
in which ~ is linear. Thee adapt ive con- 
troller is given by (17)-(44)-(45)-(26)-(28)- 
(29). The same controllers are described in 
[3], but without the reparametr isa t ion (and 
consequently with # in place of ~), and un- 
der an assumption different from FDEM2, 
see remark 2 below�9 We have the following 
result : 
I f  FDEM2 and LP are satisfied, and S T S  
is satisfied globally (resp. STS(~2) is sat- 
isfied for some ~), then any solution of 
the closed-loop system (resp. any such that 
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q 

where 

z(0)  a~d 7(0)  a~e closed enoueh to ~e~o and 
/5(0) is close enough to p*) is bounded and 
such that x(t)  goes to zero. 

Notice that,  unlike in the situation of the 
preceeding section, we need no additionnal 
assumption like global Lipschitzness to get 
global stability. This would not be the case 
if the vector field h was not linear in the 
coordinates h (see [8]). This is one of the 
reasons to prefer the following choice of h. 

2. Another choice for h is h = U, the filter 
being given by (27) with r equal to 1. The 
expression of Z is then 

Z(/5, q, b, x) = ( Z I  Y ) ,  (48) 

with, A2 being defined by (47), 

Y(/5, x, v2(/5, p, q, x)) (49) 
0~ ,  ^, 

= -~ztp x)A2(/5, z,v2@,/5,~,z)). 

This vields the following controller : 
A d a p t i v e  Con t ro l l e r  .AC~(U) : 

= U.om(/5,~) + ,~( /5 , /5 ,0 ,~)(50)  

p = - -  (~ Z ( /5 ,  X, Unoitl(/5 , X ) )  ( 5 1 )  

= - eY( /5 ,~ , , : ( / 5 ,b ,O ,~ ) )"  (52) 

OU~ s ~  = - ~  + -~;( ).~( ) (53) 
u q  

e = U - U(~),  (54) 

and Z and Y are given by (39)-(40) and 
(49)-(47). 

and the following result : 

T h e o r e m  3 I f  FDEM2, LP and STS 
(resp. STS(f~) for a certain neighborhood 
ft of(O, O) in R z x M  '~) hold, then all the so- 
lutions (/5(t), ~(t), ~(t), x(t)) of the closed. 
lOOp system Sp.-~Ctl(U ) (resp. the solu- 
tions with initial conditions in a certain 
neighborhood o f ( / , / ,  O, 0)) are defined on 
[0, oe), remain in a compact set and their 
(x, U)-component goes to zero�9 In addition, 

(p*,p*, O, O) is a (non assymptoticaIly) sta- 
ble equilibrium point of this dynamical sys- 
tem. 

Here, we get a global result as soon as 
assumption STS is global, without a re- 
striction like (41) (but under assumption 
FDEM2, which is stronger than FDE). Yet, 
STS being globally satisfied is very restric- 
tive. If it is satisfied only locally,  AC'I(U ) 
gives a good beheviour for only some so- 
lutions : f has to start close to 0, which 
is natural, but (/5, q) also has to start close 
to (p*, q*), which is more unconvenient. We 
will modify ACI(U ) to get a better local re- 
sult. Suppose that STS(f~) is satisfied for 
a certain f/, and Uo is a positive number 
such that 

u ( ~ )  < Uo ~ ~ ~ a .  (55) 

We then define the following modified algo- 
r i thm which is defined only for U(~) smaller 
than [To : 
A d a p t i v e  Con t ro l l e r  .AC~'(U, [70) : 
The same as .AC'I(U), but U is replaced 
by 

UoU 
uo - u (s6) 

in (53) and in the definition of Z and Y. 
We have the following result : 

T h e o r e m  4 I f  FDEM2, LP and STS(~) 
hold, and Uo is chosen according to (55), 
the solutions @(t), ~(t),~(t), =(t))  of the 
closed.loop system S,.-.aCi(U, Uo) such 
that U(~(0)) < Uo are defined on [0, oz), 
remain in a compact 3et and their (x,7])- 
component goes to zero, U(~) remaining 
smaller than Uo. In addition, (p*,p*, O, O) 
is a (non assymptotically) stable equilib- 
rium point of this dynamical system. 

Sketch  of  p r o o f  : We only state the proof 
of theorem 3; the proof of theorem 4 goes 
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the same way, replacing U by (56) and con- 
sidering that (56) is infinite when U is Uo. 

Consider a solution of the closed-loop 
system. Lemma 1 (30) implies that i5 and 
e = 9 - U are bounded on [0, T), the right 
maximal interval of definition of the solu- 
tion, and that the time-ruction e(t) is in 
L2([0, T)). In addition, from (53), (13) and 
(54), we have : 

i1 < - c q  + ( l + e )  e , (57) 

which, together with e being L 2, implies 
that q is bounded too. This implies that 
the solution itself is bounded on [0, T) and 
therefore that T = +oo. Then (57) and 
(30) applied for T = +oo give e and 7, and 
therefore U, going to zero. [] 

3. A third choice for h in the algorithm of 
section 3 is 

: . ( 5 8 )  

In this case, we chose as a passive filter (fig. 
2) the following, with state X on M = : 

= a(X) Z [(~) ~* _ _ 
o u ,  ,T  ( 5 9 )  

e = - -s  �9 

From assumption STS, this filter is (see [8]) 
"strictly passive with respect to U". Now, 
from (46), a particular solution (for X) of 
the first equation in (59) is precisely ~ (no- 
tice tllat this would be faulse without as- 
sumption FDEM2, (42) and (45)). This 
means that  we may compute e by 

OU ~ -~ (60) 
e = - o f  ( ) . 

Doing so~ we obtain the following 

A d a p t i v e  C o n t r o l l e r  AC'=(U) : 

U = Unom(~ ,X ) -J- I ] 2 ( ~ , ~ , ~ , X ) ( 6 1 )  

v = - ( 6 2 )  
1, 
q = - Y ( ! 5 ,  x, v2(~ ,} ,~ , z ) )  r (63) 

This controller is the same as these 
described in [5], except that the double 
parametrization is not used there (replace 
by/3 and (62)-(63) by/~ = - Z  r - y r .  The 
approach to the synthesi presented here is 
however different : the authors design the 
adaptation, and the control u2, to make the 
positive function 

1-Iq* - Oil (64) y(~) + �89 + = 

d e c r e a s e   ong t h e  s o l u t i o n s  ( i n  f a c t ,  U ( 4 )  

is a quadratic function of { and the third 
term is absent there). The authors en- 
counter the problem about implicit defini- 
tion of i3 which we mention in remark 2. 
We can, as for AC'I, modify it AC~ into 
i 

AC,,i.rr - . i A d a p t i v e  C o n t r o l l e r  : ~ ,  Uo) : 
t The same as .AC:(U), but U is replaced 

by 
UoU 

< - u ( 6 5 )  

in the definition of Z and Y. 

T h e o r e m  5 The adaptive con- 
trollers .aC'=(U) and .4Ci(U , Uo) have the 
,~aTrl, e pTOperl~ie8 (z8 ,~Ctx(~) r) agl, d ~ C l ( U  , Uo) 

given by theorema 3 and 4, replacing (x, 7) 
by x. 

See [8] for a proof using hyperstability. A 
direct Lyapunov argument, using the func- 
tion (64) is also described there. It is sim- 
ilar to a proof given in [5]. 
R e m a r k  2 : Our al.gorithms are 
exlicitely defined, i.e. give u,/3, q (and 7}) as 
explicit functions of the state variables x, 
15, ~ (and 7). Let us check this for .AC'I(U ) 
(or .AC'{(U)) : since ~ stands for qa(/5, x), 
and considering (54),/3 and r~ are given by 
(51) and (53) as functions of/~, 7, and x; 
then (52) gives ~ as a function of x, /3, 0 
and 7. For .AC'2(U ) (or AC~'(U)), the same 
holds, without 7. 

This would not have been the case if we 
had not used the two estimates/5 and 4 for 



816 

p*. In fact, using only /3, we would have 
defined u2, instead of (45), by 

u2 = v2(/~,#,p,x). (66) 

Using then the same adaptation law as 
above, but without overpaxametrization 
would give, for .AC':(U), instead of (61)- 
(52), 

u = U.om(16, x) + v2(15,/3,15, x) (67) 

p --- - Z (p ,x ,u )  T (68) 

which no longer gives explicitly u and 15, 
because ~ depends on Z which depends on 
u which depends on ) .  Indeed, (67)-(68) 
g.ive an algebraic equation in (for example) 
/3, which may fail to have a solution. This 
problem of implicit definition had been first 
mentionned, in the context of feedback lin- 
earisation, in [5]�9 The overpaxametrisation 
(16) is the only way we presently know to 
solve this problem. 

Notice however that it may just not oc- 
cui, for instance if g does not depend on 
p at all, because then Z does not depend 
on u (this was pointed out in [5]), but we 
saw (remark 1) that in this case, we may 
drop all q in our repaxametrization, which 
is therefore ineffective; indeed, v2 in (43) 
does not depend on q in this case, and 
is not needed in our algorithms (if we keep 
it, we jnst get ~ = 0). Also, in [3], an as- 
sumption ("strong feedback lineaxisation") 
is made that allows to avoid this problem. 
In these cases, since (43) is only used for 
p = q, FDEM2 can be replaced by the ap- 
paxently weaker assumption FDEM1 (see 
section 6). II 

6 G e o m e t r i c  C o n d i t i o n s  

We give here some geometric conditions for 
assumption FDEM2. allowing to build the 
diffeomorphism ~ locally around a certain 
(p,~). 

Let, for any p, ~p be the distribution 
spanned by the control vector fields of Sp : 

~p(x) = rangeg(p, x ) ,  (69) 

~p be the distribution made of the vector 
fields in ~p whose Lie bracket with any vec- 
tor field in ~p is in ~v, and Z;p be the dis- 
tribution made of the vector fields in ~v 
whose Lie bracke~ with the drift vector field 
f (p ,  .) of the system Sp are in ~v. 

~:p = { x  e G~/[x,G~] c G~} (70) 
s = { X  E ]Cp/[X, f(p,.)] E gp}(71) 

P r o p o s i t i o n  1 Suppose that the dimen- 
zion of Gp(x) and Z.p( 4 are constant 
(around (p, 2))  and that ~p(x) is involutive. 

Then, there exists locally, around (fi,'2), 
some 9, a and/3 satisfying FDEM2 if and 
only if 

1. Gv(x) doe~ not depend on p, 

2. for i = 1 , . . . , l ,  we have, locally 
around (p, ~ ), 

ai �9 ~, + [f(P, ') ,  ~,l (72) 

P r o p o s i t i o n  2 Suppose tha~ the dimen- 
sion of ~ , (z)  and Z . & )  are constant 
(around (p, e))  and that for any p, the dis- 
tribution Gp(x) is involutive. 

Then, there exists locally, around (fi,~), 
some ~o, a and fl satisfying FDEM2 if and 
only if, for i = 1 , . . . , l ,  we have, locally 
around (p, ~), 

a i �9 Gp + I f (p , . ) ,  /Cp] (73) 

The proof of proposition 1 may be found 
in [8], and the proof of proposition 2 in the 
forthcoming [9]�9 Some more general prop- 
erties, including global results, as well as 
a more extensive discussion may also be 
found in these references. Proposit ion 1 
and 2 axe only concerned with local exis- 
tence of the diffeomorphism ~o, whereas our 
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assumption FDE needs a global definition. 
In fact, if the conditions of our propositions 
are satisfied everywhere, building ~o locally 
may (or may not !) result in a global defi- 
nition of qo. See also the comment after as- 
sumptions FDE and STS for the case where 

(and a and fl) are defined only for p in 
a certain domain, but for all x. 

In remark 2, we saw that using a dou- 
ble adaptation prevents the problem of im- 
plicit definition of the controller from oc- 
curing, but requires assumption FDEM2 
instead of the weaker FDEM1 : 

A s s u m p t i o n  F D E M I :  FDE is ~ati~fied, 
and ~ has the property that there exists a 
smooth map ~ meeting, for any (p,p,x), 

Ocp~ , 0~o. , 
_-)g(p, x)0 (p,p, x) + N ( p  x)p = o 

(74) 
This is the assumption required in [5] ("ex- 

tended matching assumption") for linearis- 
able systems (though written a bit differ- 
ently). 

Clearly, if FDEM1 is satisfied and the 
control distribution ~p does not depend on 
p, FDEM2 is satisfied too. But (see [8]), 
if Up is involutive, FDEM1 implies that 
~p does not depend on p. Therefore, we 
could substitute FDEM1 to FDEM2 in our 
proposition 1. Indeed, the conditions given 
in [5] for the "extended matching condi- 
tion" (equivalent to FDEM1) are exactly 
conditions 1 and 2 of proposition 1. 
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