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Abstract. We propose an adaptive controller to globally stabilize a compact set for a planar 
system depending linearly on unknown parameters. Global rectifiability of the control vector 
field is assumed. 
Our approach is based on the Control Lyapunov Function and Lyapunov design technique. 
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1 Introduction 

Important results about the stabilization of planar sys
tems are now available. In particular, Dayawansa and 
Martin [4] have established a necessary and sufficient con
dition for stabilization by a continuous feedback. In pa
rallel, the theory of adaptive control of linearly paramete
rized systems has made some progress. In this paper we 
combine these two fields. 

We are interested in globally stabilizing a planar sys
tem depending linearly on some unknown parameters by 
a continuous feedback law. 

In a first part, we deal with this problem in the case 
of a known system. Following the so called Control Lya
punov Function approach, as introduced by Artstein [2] 
and Sontag [12], we propose a control law which solves 
our problem. Moreover, we obtain an explicit expression 
for a Lyapunov function of the closed-loop system. 

In the second part, dealing with the unknown para
meter case, we apply the Lyapunov design as introduced 
by Parks [9]. Using a certainty equivalence modification 
similar to this proposed by Kanellakopoulos [6], we obtain 
a stabilizing adaptive controller. 

2 Stabilization without 
parametric uncertainties 

We consider the affine nonlinear system in R2: 

:i: = f(x) + g(x)u (1) 

where the state vector x is in R2, u is a scalar input, f 
and g are at least C 2 vector-fields. 

Definition 1 
V from R2 to R+ is said to be a Control Lyapunov Func
tion, denoted elf, if the following properties are satisfied: 
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1. V(x) ...... 00 iJJ 11 xii ...... +00 . This implies that the 
preimage by V of a compact set is also a compact 
set. 

2. V is at leas t Cl and V(x) is zero iJJ x is ze ro. 

3. Denoting L, V(x) the Lie derivative of V with res

pect to f , 

LgV(x)=O implies L,V(x) < Oorx = O (2) 

Notations: 
We denote 

. d 
V(x) = dtV(<1>,(x)) I,=o (3) 

where <1>,( x) is the flow of the vector-field f + gu starting 
from x at time t = O. 

Our problem is to design a (as smooth as possible) 
control law making a (as small as possible) neighborhood 
of the origin globally attractive. The following important 
result due to Sontag [12], precising this of Artstein [2], 
tells us that it is sufficient to find a cIf: 

Theorem 1 (12} 
If there exists a elf V for system (1), then the control 

law: 

is Co on R2 - {O} and makes V(x) strictly negative for all 
non zero x . Therefore the origin is globally stabilized. 

R emark : 
u can be guaranteed to be at least continuous at the origin 
if the elf V satisfies the so called "small control property", 
namely: (see [2,12]) 



V E > 0, 36 > 0 such that for all x, 11 x 11 < E, x # 0, 
there exists u, 11 u 11 < E, satisfying: 

(5) 

To obtain a cif for system (1), we follow the approach 
proposed by d'Andrea and Praly [1] and assume: 

HI: 
There exist a global C 2 diffeomorphism 
(XI(XI,X2),X2(XI,X2)) and a function vo(xd such that: 

1. (1) can be rewritten: 

{
Xl = <Pl(XI, X2) 
X2 = <P2(XI, X2) + u 

(6) 

o 2m-l 
2. vo(O) is zero and Vo and ~oo are CO on R, for a 

Xl 
strictly positive integer m. 

3. We have for all non zero Xl : 

(7) 

Remarks: 
1. Property (7) is known to be a necessary condition for 
the asymptotic stabilizability of the origin for system (6), 
see [3,4,1]. 

2. To illustrate assumption HI we consider the non C l _ 

stabilizable system studied by Kawski [7]: 

(8) 

The global diffeomorphism is trivially the Identity and we 
may choose: 

(9) 

to meet (7). Then point 2. in HI is satisfied with m 
larger or equal to 2. 

With HI , we can propose the following elf: 

Lemma 1 
Under assumption HI, the function V defined by: 

X~m 2m-l 2m - 1 2m xf 
V = - - X2VO(XI) + --vo(xd + - (10) 

2m 2m 2 

is a cif for system (1). Moreover if: 

vo(xd = 0 ==> Xl = 0 (11) 

the following control law is Co on R2 - {O} and makes V 
strictly decreasing: 

where c is a strictly positive constant and R( Vo, X2) is the 
polynomial defined by: 
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Proof: 
First, by writing: 

1+' 2m I 2rn - 1 1 lm=T Vo = Vo (l4) 

we notice that, Vo being Co and v~m-l being Cl, v~m is 
Cl and we have: 

2m - 1 ov~m ov~m- l 
--- -- = Vo ---

2m 0Xl 0Xl 
(15) 

It follows that V is Cl . 

Second, defining 

(16) 

we rewrite V in: 

(17) 

where 

F(X) = 1 - 2mX2m- l + (2m - I)X2m (18) 

F is continuous and positive since the derivative of F 
changes sign only at X = 1 where F is zero. Since both 
xf and X22mF(X) are positive, if V(Xl,X2) is bounded, 
the same holds for xf and X2 2m F(X). On the other hand, 
since Vo is continuous , VO(Xl) is bounded. F being conti
nuous and F(O) equal to 1, this implies that X2 is bounded. 
Hence V(x) --> 00 iff 11 x 11 --> + 00 and V(x) is zero iff x is 
zero. 

Finally, we compute: 

(19) 

2m - 1 being odd, Lg V(XI' X2) is zero iff 

(20) 

In this case we have with (15): 

(21) 

Consequently, assumption (7) implies that (2) is satisfied 
for system (1). 
Hence V is a elf. 

Applying u given by (12) to system (1) with V given by 
(10), we obtain: 

V = -c (X~m-l - VO(XI)2m- I)2 + XI <PI(Xh vo(xd) (22) 

which is strictly negative except at the origin. Moreover, 
<PI being Cl, u is Co, except possibly when R(VO,X2) is 
zero. With assumption (11), this is possible only at the 
origin. 0 

Remarks: 
1. Applying this Lemma to system (8), assumption (ll) 
is satisfied and therefore (12) is a well defined stabilizing 
control law. It is continuous at the origin only for m = 2. 

2. The fact that u is only CO and not locally Lipschitz 
may lead to uniqueness problems. As shown by Kawski 
[7], this difficulty can be rounded in some cases. 

3. Assumption (ll) is not needed when m = 1 in Hl. 
The case when 0 is an isolated zero of Vo and Vo is Cl 
except may be at 0 can also be handled. 



Under assumption HI, with Lemma 1 and Theorem 
1, we can obtain a control law which is Co except may 
be at the origin. It follows that at least any prespecified 
compact set containing the origin as an interior point can 
be made globally attractive. Namely, assumption HI is 
sufficient for practical stability of the origin. To precisely 
state this result, we notice, with the definition of a elf, 
that: 

K, = {z / V(z) :S E} (23) 

defines, with E in ]0, +00[, an imbedded family of compact 
sets containing the origin as an interior point. Moreover 
these compact sets are connected for all sufficiently small 
E. 

Theorem 2 
Let us choose a strictly positive E. Under assumption HI, 
the control law given by (4 ) (or (12) if (11) is met} is 
CO on R2 - {O} and makes Max(V(z) - E, 0) a strictly 
decreasing function of time, as long as it is not zero and 
therefore globally .ItabilizeJ K, . Moreover, if the control 
law is continuous at 0, E can be chosen equal to zero. 

Proof: 
With V given by Lemma 1, let V be: 

V(z) = Max{V(z) - E,O} (24) 

Let ..p be a Coo function equal to 1 outside the compact 
set K, and belonging to [0,1] inside K,. Let Ul be the 
control law given by (4) (or (12) if (ll) is met) and U2 be 
any Co function on K,. We consider the control law: 

(25) 

U is Co and along the solution of (1) in closed-loop with 
(25) we have: 

o (26) 

3 Stabilization with parametric un
certainties 

We consider now a family of systems: 

with 

:i: = f(x,p) + ug(x,p) 

{ 
f(x,p) = fo(z) + F(z)p 
g(x,p) = go(z) + G(x)p 

(27) 

(28) 

indexed by the parameter vector p in Rn. The following 
properties are assumed: 

H2: 
For any x, go( z) is not zero and each column of the G( x) 
matrix is colinear to go( x). 

H3: 
There exist a convex subset 71" of Rn and a family of 
global C 2 diffeomorphisms (Xl (z), X2( x, p)) and functions 
VO(Xl,P) such that: 

1. (27) can be rewritten: 

x= cP(X,p,u) (29) 

with 

(30) 
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OVo 8v~m-l 0 
2. vo(O,p) is zero and Vo, - and --- are C on 

op 0Xl 
R x 71", for some strictly postive integer m. 

3. We have for all p in 71" and all non zero Xl: 

4. There exists a scalar Cl function II on Rn, such that: 
1.1 ll(7I") contains the set [0,1] . 
1.2 For each Cl in [0,1]' the set: 

(32) 

is convex and 

oll 
ll(p) = Cl ==} op (p) f. 0 (33) 

1.3 The set 71" is exactly 71"1. 

5. Finally either m above is 1 or else: 

(34) 

Remarks: 
1. (30) implies for all p in 71" : 

(35) 

Since from H2 the span of 9 does not depend on p, the 
assumption: 

is not too restrictive. 

8Xl = 0 
op 

2. For all p, q in 71" and x in R2, we have: 

(36) 

(37) 

This follows from H2 which implies the existence of a 
scalar function >.( x, p, q) to satisfy: 

g(x,q) = >.(x,p,q)g(x,p) (38) 

and from (30) which implies: 

(39) 

Hence, g( x, p) is not zero and therefore the same is for >. 
and 

( 40) 

3. The II function will be used only to construct a smooth 
projection of vector fields on the set 71". Other construction 
and associated assumption are possible. 

4. If m is not 1, assumption (34) can be relaxed if 0 is an 
isolated zero of Vo and Vo is Cl except may be at O. 

5. Applying Theorem 2, we know a control law, denoted 
hereafter u(X,p) (adding the p dependance), making V 2 

strictly decreasing along the solutions of (29) with: 

V(X,p) = Max{V(x,p) - E, O} (41) 

and V given in (10). Moreover E can be chosen 0 if u has 
a continuous extension at X = o. 

The system to be controlled is supposed to be one of 
the family (27), namely the one obtained by taking p = pO. 



p' is unknown and our objective is to design a control law 
guaranteeing the same properties as the ones given by the 
control law of Section 2 for p' known. 

To design this control law, with the diffeomorphism 
given in H3 , we define a new set of coordinates 

(42) 

where p is a time function interpreted as an estimate of 
p'. In these new coordinates, (27) becomes: 

. 8x . 
X = 4>(X,p,u) + Zp(x , p,u)(p' - p) + 8p(x,P)P (43) 

with Zp(x , p,u) a 2 x n matrix satisfying: 

Zp(p' - p) = ( LF(P' - P}X, , ) (44) 
L F(p'- p}+uG(p> - P}X2) 

(43) appears as system (29)(for which we have the control 
law u)perturbed by (p' - p) and p terms. 

To counteract these perturbations , and particularly the p 
terms, we use an auxiliary control v, namely we take: 

u = u + v (45) 

Then, as will be clear later, it is appropriate to rewrite 
(43) in: 

(46) 

where we have introduced another p' estimate denoted ij 
and used (45). 4>E denotes: 

(47) 

and Z q( x , p, v) is a 2 x n matrix satisfying: 

Zq(p' - ij) = ( L 0 , ) 
V G( p'-q)X2 

(48) 

To determine v and how p and ij are updated, we consider 
the scalar function W(x, p, ij): 

(49) 

It is defined on R2 x 7r X 7r where it satisfies: 

W(x,p,ij) -> 00 iff 11 (x , p, ij) 11 -> +00 (50) 

Its time variation along (46) is: 

We notice: 
1. with (35) and (40) that, for all p and ij in 7r, we have: 

8' 
8~ g(ij,x) = (0, >.(x,p,ij)) f 0 (52) 

2. With (36) we get: 

8V 8X 8V 8X2 
8X 8p = 8X2 8p 

(53) 
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3. Finally, from (10) and (13) we obtain: 

8V _ 8V (2m - 1) v~m-2 8vo 

8p 8X2 R(VO(Xl,p), X2) 8p (54) 

where, thanks to (34), the right hand side term is conti
nuous . 

_ 8V . 
Knowing from Theorem 2 that V 8X 4>E is negative, W 

will be negative if we choose p, § and v as follows: 

T 8VT -
Zp 8X V + ~p (55) 

T 8V T 
-

Zq 8X V + ~q (56) 

v = 
1 [(2m - 1)v~m- 2 8vo _ 8 X2] ~ (57) 

>.(x,p, ij) R(VO(Xl , P) , X2) 8p 8p p 

where ~p and ~q are introduced to constrain p and ij to 
remain in 7r and must satisfy: 

(58) 

To define this ~ vector field, we use the II function of 
assumption H3. Let 'P be a non decreasing Coo function 
satisfying: 

{ 

= 0 if y :S: 0 
'P(y) = > 0 if 0 < y < 1 

= 1 if 1 :S: y 

We define (and similarly for ~q) : 

{ 
a~ ZT av

T 
V} 8I1T 

~p = -'P(II(p)) Max 0, ap IIWil2 8p 

(59) 

(60) 

Then ~p(x, p, ij) is at least Co on R2 x 7r X 7r and satisfies 
(58) if: 

II(p') :s: 0 (61 ) 

We have established: 

Theorem. 3 
Under assumption H3, if the system to be controlled sat
isfies (61), the adaptive controller defined by (45), (55), 
(56) and (57) with u and V given by Theorem 2 is well 
defined and: 
1. any solution with initial condition in R2 x 7r X 7r exists 
and remains in this set. 
2. For all positive constant c, a solution whose initial 
condition satisfies: 

ptO) E 7r ij(O) E 7r 

V(x(0),p(0))2+ 11 ptO) - p' 11 2 + 11 ij(O) - p' 11 2 :s: c 
(62) 

is bounded and converges to the compact ut: 

Moreover if u(x,p) given by Theorem 2 is continuous at 
(0, p) for all p in 7r , then, by choosing t = 0, the x
component of the solution goes to the origin. 



Proof: 
Existence of solutions with initial condition in R2 x 11" X 11" 

follows from: 
1. the continuity on this set of the right hand side of the 
ordinary differential equation which defines them. 
2. The property 

Il(p) = 1 ==? 
all . 
-p-<O op -

which yields: 

and similarly for q. 

Moreover, by construction, we have: 

. - av 
w ::; V aX ifJB 

(63) 

(64) 

(65) 

With Theorem 2, it follows that W is strictly decreasing as 
long as if is not zero. Hence any solution satisfying (62) is 
bounded. The conclusion follows from the same argument 
as those invoked in Lasalle Theorem [5, Theorem X.1.3]. 
o 

Comments: 
1. The method we have used to derive the adaptive con
troller has been introduced by Parks [9] and is known as 
Lyapunov design. 

2. The idea of counteracting the effects of p by introducing 
an auxiliary control v is not new. It has been used by 
Middleton and Goodwin [8], Pomet and Praly [H] and 
more recently by Kanellakopoulos et al. [6]. This leads 
to an implicit equation in v, which is not always solvable. 
According to Pomet [10], in [6] the diffeomorphism in H3 

(with may be aa~l oF 0) is chosen for ifJB in (46) to be 

independent of p. Then v is computed to cancel the p term 

in this equation. A necessary and sufficient condition for 
this to be possible is: H2 and for all x, p 

F(x) E Span {g(x,p) , [j,g ](x,p)} (66) 

In our result, this latter condition is not necessary. This 
follows from the fact that v is computed to make vir (in
stead of ~) independent of p as proposed in [8] and [H ]. 

3. To understand why we have introduced q, let us re
derive the computation without it. (46) becomes: 

_ aX., 
X = + ifJB(X,p) + opp + v (67) 

+ Zp(x,p,u + v)(p· - p) 

and (55) remains unchanged. But now, Zp depends on v 
and consequently with (55), (57) is an implicit equation 
in v. Its solvability requires an extra-assumption [6]. 
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