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Abstract 

This paper presents an adaptive controller for nonlinear 
linearly parametrized systems. The new features intro- 
duced in the design are: 
- The estimation of the parameter performed on the scalar 
Lyapunov equation instead of the n-dimensionnal equation 
of the system itself. It allows us to  tolerate non-Lipschitz 
uncertainties, especially when the stabilizing laws are not 
feedback linearisation+linear control. 
- The double estimation: one estimate is used for the sta- 
bilizing control, the other for cancelling the perturbation 
terms introduced by the adaptation, if possible. We pro- 
pose this as a solution to the implicit definition of the con- 
troller which arises when trying to do this cancellation. 

1 Problem Statement 

We consider the following family of systems, indexed by p :  

i. = a'(.) + b'(z)u + c p ;  (U;(.) + b ' ( z ) u )  (S,) 

where I lives in an n-dimensional C" manifold M ,  U is 
in R", the u"s (resp. 6"s) are known C2 vector (resp. 
matrix) fields and the parameter vector 

1 

i= 1 

(1) 
T P = (P1 ... PI) 

belongs to R'. Since the S, systems may not make sense 
for some p ,  we restrict p to lie in a known open set n of 

Our problem is to design a controller to stabilize the zero 
solution of the particular S, system obtained for p = p*, 
p* being unknown in II. 

Several answers have already been proposed in the lit- 
terature. In [lo], [4] and (111 the problem is particularized 
to specific systems: robot arms and a continuous stirred 
tank reactor. More general purpose but feedback lineariz- 
able systems are considered in [13], [ 8 ] ,  [3] and [2]. Finally 
Sastry and Isidori [9] study the case of exponentially mini- 
mum phase systems with globally Lipschitz nonlinearities. 
Here the S, systems are specified by the following assump- 
tion: 

R' . 

Uniform Stabilizability (US) assumption: There ez- 
is2 known U,, later  called the "nominal control field", and 
V, a C' and a C2 funct ion respectively, f r o m  II x M t o  
R"' and to  R respectively, such that: 

1. For all p in II, V ( p ,  x) i s  positive f o r  all x in M and 
zero if and only if z is zero. 

2. For any  real number I< and any compact subset 6 of 
II, the set:  

is a compact subset s tr ic t ly  contained in M .  

3. For all ( p ,  z)  in II x M ,  we have: 

L(P,Z)V(P3 2) 5 --c V(Pl.) (2) 

where c is  a strictly positive constant and s denotes 
the "nominal closed loop field": 

i = l  

Besides (91 where the function V is (implicitely) assumed 
to be only partially known, assumption US is required in 
all the references quoted above, V being a quadratic func- 
tion of the linearising coordinates. 

Clearly assumption US implies the stabilization problem 
would be solved for each S, system if its parameter vector 
p were known. Therefore the actual problem concerns the 
possibility of making the noi.rinal control U, adaptive. Our 
solution is to design a dynamic controller: 

p = dynamic function of (ti, 2 )  1 (4) U =  U n ( p , z )  + U 
such that, for any initial condition (p(O),x(O)) in II x M, 
the corresponding solution remains in a compact subset of 
II x M and its z-component tends to zero as time t tends 
to infinity. 

To illustrate our topic in this paper, we will work out 
the following example on R x R3: 

-1 = 1 2  + pt: 
;L2 = 23 
2 3  = U 

(5) 

Following the Lyapunov design proposed in [7], assump- 
tion US is met with: 

un(p,x) = - a3€3 - (01 + a2 + 2 p t i )  (€3 - a 2 ~ 2  - <:"-') 
- [ 2 p  ( € 2  + w:) + (2k - 1 ) ~ : ~ - ~ ]  ( ~ 2  - a l < l )  

(7) 

where k and j are strictly positive integers and [ = 
(€1, (2, €3) is given by the following pdependant diffeo- 
morphism 'p: 
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zq = (Lbluv,. . . , LbIuv) (15) 

and the scalar function A on II x II x R' x M x R" by: 
1 2  + a1 2 1  + P I ?  
23 + 02 (e2 + UlE1 + PZf) E = cp(P,.) = i" + (a1 + 2pz1)(rz + pcf) + c y  

d V  
a P  

Notice that if k = j = 1, U, is a linearizing feedback. A ( p , q , 6 , r , v )  = Lg(q ,z )uv(P14  + - ( P , 2 ) 6  . (16) 
We make the following additional assumption on the 

parameter set II. 

Imbedded Convex Sets (ICs) assumption: There ez -  
(144 may also be seen as an observation equation for the 
(p* p*T)T vector: 

ists a known C' funct ion P f rom II to  R such that: I -* \ 

the sets:  

{PIP(P)  F XI 1 0 5  5 1 

are conuez and contained in n,  
the row vector g(p) i s  non zero for all p such that 
P ( p )  i s  in [0, I], 

the parameter  vector p* of the particular sys tem to be 
actually controlled satisfies: 

z ( t )  = (ZP(t) Zq(t)) (;*) (17) 

Measuring x and computing p ,  4, U and U ,  Z, and Z, are 
available on-line. However, defined by: 

(18) 
d V .  
a P  

z = v - LaO+bOuv - -6 

cannot be available, V being unmeasurable. This difficulty 
can be rounded by integration. This leads to the following 
dynamic controller (see Pomet's dissertation [6] for more 
details), where q is the additional dynamic variable intro- 
duced for this integration: 

For our example (5), since II = R, this function P may be 

2 An Adaptive Controller 

k = ProJ [ P  2; ( P I  I)  PI I) - V ) ]  

n" = Proj [ q  , ZT ( P ,  2, U) ( v ( P ,  I) - 'I)] 
9 = f (V(P, I) - 'I) + L,(g.t)V(P, I) + A(P, @,P,Z,  U) (21) 

(19) 

(20) 

(22) 
(23) 

chosen indentically zero. 

U = % ( P ,  x) + v Let p be a C' time function to be precised later. Given a 
control law U and a solution I of the closed loop system U- 

S,+, with assumption US, we may define the time function: 
= Iv(P*c) - VI" (l + Z ~ Z T  + ZqZT)ma 

where the initial conditions are: 

ml and m2 are two positive real numbers, Proj is the fol- 
lowing locally Lipschitz continuous function: = L J ( ~ F ) V @ ~  2) -k L ~ ~ + , z ) ( u - ~ ~ ( ~ , = ) ) v ( P ,  x) (11) 

z p  = (La'+b'u,V,. . . Y  Lal+b'u, v )  (I2) 
When compared to the nominal caSe as defined by assump- 
tion US, we see that fi not being constant equal to p*,  ere- 
ates two disturbances: the a v P  ternl and what is usually 
called the equation error: Zp(p* - @). The second term in 
the first line of (11) is not zero if ,  as originally proposed 
by Middleton and Goodwin [4], we augment the nominal 

and U is computed to make A(p, q,p,  I, U), defined in (16), 
non positive if possible (see (14)). Notice that the V func- 
tion given by assumption us is explicitely used in the con- 
troller. A different choice of V would give a different con- 
troller. 

equation would have 
been: 

If we had not introduced q ,  the 

control un: 

u = u  n + v  
If one of the hi's, i = 1,. . . , I is not zero, 2, depends on 
U. Since, in general, U depends on p ,  equation (26) defines 
p only implicitly and an extra assumption may be needed 
for the controller to be well defined (assumption I in [3), 

to try to counteract these disturbances. As it will be ex- 
plained later, it is then appropriate to introduce a second 
C' time function i in II and to rewrite (1 1) in: 

V = L ( l j , t ) V ( P , t )  + A ( P , i , ~ $ c , v )  (14) assumption A 4  in [2], no assumption thanks to filtering 
in [4]). In our case p ,  q and i are defined explicitely. 
Note that q could be reduced to incorporate only those 
parameters corresponding to the non zero bi's. 

+ z, ( P ,  e)) (P* - P )  + 2, ( P ,  e, U) (P* - 4)  
where we have defined the row vector 2, by: 
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For our example (5), with no b; term, the adaptive con- 
troller is: 

P = zp (V(P, 2) - 9 )  (27) 
(28) ti = IV(P, 2 )  - 91”’ ( V ( P ,  .) - 9 )  (1 + 2,”)” 

+ ( 3  (a2 €12 + 2t1 ( E 2  - + (a1 + 2Ph) E : ]  1 
x zp ( V h  z) - 7) 

and, with (o given in (8), we compute: 

( E 1  1 € 2  9 € 3 F  = (o(PlZ> (31) 
The possibility of making A non positive is related to 

the sign of gp when Lg,V is zero. In general, we cannot 
expect any relation between these two quantities. However 
the following theorem established in [6] gives conditions 
implying a relation: 
Let the usual f (and similarly g )  be defined by: 

1 

~ ( P , z )  = ~ ~ ( 2 )  + C P i a ’ ( z )  ( 32) 
i=l 

we have: 

Theorem 1 (Pomet[G]) Assume  g ( p , z )  has rank m on  
n x M and for  each fired p ,  Range{g(p, 2)) is an inuolutive 
distribution on  M .  Under this condition, the following two 
propositions are equivalent: 

I -  Range{g (p , z ) }  does not depend on  p and, f o r  all  i in  
(1, . . . ,  I} ,  we have on  Il x M :  

(33) 
af - E span  (9 9 [f191} api 

2- For all (p0 , zo )  in II x M ,  there exist a neighborhood 
N ( p 0 , x o )  and C’ functions a, /3 and yo, respectively, from 
N ( p o , t o )  t o  R“, GL(Rm) and M ,  respectively, such that: 
0 {or each p ,  cp i s  a diffeomorphism, 

} (34) 
f(Po, cp(P, .I) = L~(P,=)tg(~,z)~(P,=)~(P, z) 
S(PO,yo(P, .>> = & w ) O ( p , z ) d P ,  z) 

- (P,z)  E Range {&p,z)P(p,z)P(P9 4 1  
0 For each i in (1,. . . , I} ,  we have on N ( p o ,  zo): 

(35) 
d(P 
8Pi 

What is meant by (34) is that, by pdependant diffee 
morphism ( y o )  and regular feedback transformation (a ,  p ) ,  
each Sp system can be transformed into one particular of 
them, Sp, here. A straightforward consequence of this 
strong property is that U, can be modified so that the V 
function of assumption US can be chosen to satisfy: 

where U is nothing but: 

and the modified U? is: 

In this circumstance, A in (16) can be written: 

But, the distribution Range{g(p, r ) }  having constant rank 
and being independant of p (as assumed in Theorem l), 
with (35),  there exists a C’ function v such that, for all 
( p ,  z) in N(po,zo), all q in II and 6 in R’, (see[6]) 

To summarize, we have: 

Property 1 (Pomet[G]) If assumption US holds and 
there exists a a neighborhood of (p*,O) in Il x M such 
that, on  this neighborhood: 
I -  g (p ,  z) has rank m and Range{g(p, z)} i s  an  involutive 
distribution o n  M for each p and does not depend on  p .  

Then there exist a neighborhood of (p*,p*,O,O) and a C’ 
function u ( p ,  q ,  6 ,  I ) ,  defined on  this neighborhood, such 
that, m a y  be by modifying U, and V ,  A ( p , q , 6 , r , u ) ,  de- 
fined in (16), is zero. 

For our example, assumption 1 of this Property is sat- 
isfied but assumption 2 is not. Also it turns out that A 
in (30) cannot be guarenteed not pmitive since there is no 
reason for the expession 

to be negative when (3 is zero. Nevertheless, assumption 
2 is not necessary in general. In [l], we have shown that, 
for some planar systems, A can be made zero though this 
assumption fails. 

In the case where the S,, systems are feedback lineariz- 
able, the assumptions in Property 1 (more precisely in 
proposition 1 of Theorem 1) have been introduced by 
Kanellakopoulos e t  al. [3] and called extended matching 
condition. These authors have established these assump- 
tions are sufficient for solving in U the equation (see also 
assumption A4 in [2]): 

where (o is a pdependant diffeomorphism associated with 
the feedback linearization. We know with [6] these as- 
sumptions are also necessary for the existence of a p 
dependant diffeomorphism such that, locally, (42) can be 
solved and (34) holds. 
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3 The Stabilization P r o p e r t y  

Applying our adaptive controller to the S,+ system leads 
to an autonomous non linear locally Lipschitz continuous 
system living in M x XI x II x R whose solutions (z ,$ ,q,q)  
are locally well defined and unique. We have: 

Theorem 2 Assume assuptions US and ICs are satisfied. 

1- If there exists a globally defined locally C' function 
v ( p , q , 6 , z )  such that A defined in  (16) is not positive (see 
Properly l ) ,  then, choosing m2 = 0 i n  the controller, all 
the solutions are defined on [ 0 ,  oo), remain an a compact 
set and their x-component tends to zero as t tends to  in- 
finity. 

2- If we cannot choose v as specified i n  point 1 above, we 
take it identically zem (hence no q). If there ezist a CO 
function d on II and positive constants U and r such that: 

0 f o r  all ( p , z )  in  n x M ,  with Z ,  defined in (12): 

(44) 

all the solutions are defined on [ 0 ,  m), remain in  a com- 
pact set and their z-component tends l o  zero as t tends to 
infinity. 

3- If the assumptions of points 1 and 2 above are not salis- 
fied, but v is chosen to  be zero or to be any locally Lipschitz 
continuous funct ion of ( p ,  q ,  q, x )  such that, with (19), 

then there ezists an open neighborhood of (O,p*)  such that, 
for  any initial condition (x (O) ,p(O))  in  this neigborhood, 
the corresponding ( x , p ,  g, q) solution exists on [0 , CO), re- 
mains in a compact set and its x-component tends to zero 
as t tends to  infinity. 

For our example, we have already mentioned that point 
1 of this Theorem does not apply. But we may look for IC 
and j to meet point 2 assumptions. With Z ,  given in (29) 
and V given in (7), we obtain: 

k = j = 1 (feedback linearization) ' - 4 7  = 5 ,  U = 2 No 
k = 3 , j = 2  *r = k, u = Yes 

Hence point 2 of Theorem 2 applies if the nominal control 
law is appropriately chosen. It turns out that feedback 
linearization does not give a robust enough global stabi- 
lization for this purpoee. 

Proof of Theorem 2 

Let ( x , p ,  q ,  9) be a solution whose maximal interval of def- 
inition upperbound is T. First we notice that, thanks to 
the Proj function and the choice of p(0) and i ( 0 )  in (24), 
we have: 

P ( @ ( t ) )  I 1 1 P ( i ( t ) )  5 1 t J t  E [ O ,  T ) .  (48) 

Hence p and q remain in II and even in a closed subset of 
n. 
Step 1: p ,  q and V - q are bounded: 
Let the scalar e be defined by: 

e = V(p,z)  - 9 (49) 

e is a C' time function defined on [0 , T). From (14) and 
(21), it satisfies: 

i + r e  = (z,  z,) ($If) 
Notice also that (19) and (20) can be written: 

j = Proj (P, Z T e )  
b = Proj (4 ,  Z T e )  

Now, we consider the comparison function: 

(52) 
1 

w ( e , P , q )  = 5 (e' + llP* - Pl12 + llP* - Cl12) 

Along the solutions of (50)-(51) for any t in [0 ,  T ) ,  we 
have: 

W = -re2 (53) 
Z T e  - Proj ( p ,  zT 

+ ((P* - dT (P* - m ( z;e - proj ( q ,  z$j) 
From definition (25) of Proj and assumption ICs, we have: 

(P* - fiYProj(p, Y) L (P* - P Y Y  (54) 

W 5 - r e 2  V t  E [ o , T )  (55) 

llP* - P(t)ll2 + llP* - 4(t)1I2 + e2 I F W ) ,  +N2 (56) 

(57) 

Hence: 

With the choice of q(0 )  and q(0)  in (24), we have estab- 
lished: 

1' ~ ( t ) ~ l + ~  dt 5 F(t;(O), ~ ( 0 ) ) ~  

with: 

and F, to play a key role in the following, is defined by: 

F(P(o) , . (o) )2  = 2 llP* - P(0)1l2 + V(t;(Oh 4w (59) 

In particular, this proves that t; and q remain in a compact 
subset of II. And, V being positive, q is also lower bounded 
on [0,  T): 

v( t )  2 -W@L 4 0 ) )  (60) 
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Step 2: To conclude the proof, we only have to show that 
V is bounded and z tends to zero. We will use the follow- 

Gronwall inequalities: 

But, by definition of Proj, we have with (58): 

ing straightforward consequence of Holder and Bellman - IIProJ(@, ZTe)ll 5 llzpll le1 (71) 

5 p p l l l - *  E (72) 
Also p* being bounded from Step 1 and the d function 
in assumptions (43), (44) being continuous, there exists a 
constant I< depending only on F(p(O),  ~ ( 0 ) )  such that: 

Lemma Let 
and satisfying: 

be a '' l ime  funct ion def ined  O n  [O ' *) 

U I - c u  + (1 + U ( t ) )  Cfi(t), U ( 0 )  = 0 
I (61) ?j _< -c'I + KSup{l, VO}K'-*sup{l, V+*)}& 

where c is a strictly positive constant and (f,) is a finite 

(62) 

+C& + Ii-=kup{ 1, v ' 3 ,  P + l  (73) 
fami ly  of posit ive t ime  functions such that: With our choice of ml,  m2 in (46), Lemma 1 applies and 

the proof is completed as in Point 1 above. 

Point 3: A is upperbounded by gp. (65) becomes: 
L T f . ( t ) * *  dt = Si < +OO, k j  2 1 

Under  this assumption, U(2)  satisfies with G a continuous 

(74) 
function and G(0, k )  = 0: 

u(t) 5 G(Si,k.i) V t  E [ O ,  T )  (63) 

f3V 
i 5 - c 7 +  ( ~ ~ ~ ~ ~ 1 l ~ P ) 1 1 + ~ ) ~  

+(1+ zpz; + Z,ZT)* E m 1 + l  Moreover, i f T  is infinite then: 

(64) 
Then let p be a strictly positive real number and C be the 
compact neighborhood of (O,p* ,p* ,O)  in M x II x II x R 
defined by: 

limsupU(2) 5 0 
1-a0 

NOW with (21), (58) and assumption US, we have: 

tj I - c ' ~ + A ( f i , q , ~ , z , v ) + ( c + r ) ~  

with r given by (23) 

V ( k  2 )  L P ,  IIP* - Pll L P 3 llP* - i l l  L P Y llrlll 5 P (75) 
(65) All the function in the closed loop system being continu- 

ous, let K ( p )  be a constant such that for all (z,p,q,q) in 

Point 1: A is non positive and m2 is zero. It follows that: 

(66) tj  5 - c 7 + C E + E m ' + 1  

Lemma 1 applies and therefore 7 is upperbounded on 
[0, T ) .  With the bounds obtained in Step 1, we have es- 
tablished for t in [0 , T ) :  

V ( @ ( t ) , Z ( t ) )  L F(P(O), 40)) +G ( F ( P ( 0 ) 1 4 0 ) ) ,  m1))(67) 

But p(t) remaining in a compact subset of Il, the V prop- 
erties given in assumption US imply that z ( t )  belongs to 
a compact set strictly contained in M for t in [0 , T ) .  To 
summarize, we know now that the solution under consid- 
eration remains in a compact subset of M x Il x Il x R. 
This implies: 

T = +CQ 

Therefore we know also from Lemrna 1: 
(68) 

limsupq(2) 5 0 
1-+m 

Moreover, from Step 1, e is bounded and belongs to 
Lml+' ( 0 ,  +m)). From (50) and boundedness of 2, and 
Z,, i is bounded. This implies that e goes to zero as time 
goes to infinity. Consequently V also goes to zero. The 
properties of V imply finally that 2 goes to zero. 

Point 2: U is zero, there is no q. (65) becomes: 

C ,  we have: 

K 2 (1 + zpz - pT + z - qz - *T)* (77) 

We get: 

7j 5 - c 9  + I< ( E +  E m ' + 1 )  

With (57), IIijlder and Bellman-Gronwall inequalities yield 
for all t in [0 , T ) ,  with F given in (59): 

(79) 

Hence, with (49) and (56), the solution under considera- 
tion remains in C and T is infinite if its initial condition 
satisfies: 

which is always possible since F is zero at  (O,p*,p*,O). 
0 The proof is continued as in Point 1 above. 

Comments 

1- In  this proof, we see that, in any case, V ( p * , z )  can be 
bounded by a function of 2 :lp* - p(O) l[ '  + V ( l ; ( 0 ) , ~ ( 0 ) ) ~ .  
Hence if assumption US were satisfied only locally in 2 ,  

say on the compact subset of M :  
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Theorem 2 would still hold provided 2 l[p* - p(0)Il’ + 
V(p(O), ~(0) ) ’  is small enough. Another possibility to 
deal with a local asumption US is to replace, in the con- 
troller, V ( p ,  z) by a function of V ( p ,  z) which is infinite 
for V = Vo, say: 

Our controller guarentees the boundedness of the function 
it actually incorporates provided this function meets the 
properties inovoked in assumption US. Therefore, any so- 
lution with: 

V(P(O),z(O)) < vo (83) 

remains in the above compact set. Similarly, would U, be 
smooth only on II x M - (0) (see [12]), we would replace 
V by, say, Sup{V - E ,  0}2 with E some strictly positive 
constant (see [I]). 

2- Assumptions (43) and (44) describes the behavior of the 
norm of the regressor vector 2, and the psensitivity as 
V goes to infinity. A key point of our controller stands in 
incorporating this information: ml and m2 given by (46) 
are used in $. For our example, we have seen that, to get 
global stabilization, U, ,has to be chosen with k = 3 and 
j = 2. But accordingly p has to be computed with ml and 
m2 satisfying: 

4 Discussion 

To conclude this paper, we compare our algorithm to those 
previously proposed in the litterature. Our criterion is: 
global stabilization. The objective being to evaluate if 
globalness, holding in the known parameter case, is pre- 
served or lost when adaptation is introduced. 

The first point to be mentioned is that our algorithm 
is of an equation error type. Nam and Arapostathis [8] 
and Bastin and Campion [2] have proposed algorithms of 
the same type. But, their equation error is directly ob- 
tained from the S, equation or its form tranformed by 
a pdependant diffeomorphism associated with feedback 
linearization. Our equation error is obtained from the 
Lyapunov equation. Though algorithms in [8] and [2] are 
presented only for feedback linearization, they can be ex- 
tended to the assumption US case (see [SI). But applying 
this controller to our example, there is actually no proof 
of global stabilization whatever k and j are chosen if A in 
(30) cannot be guarenteed not positive. This follows from 
the fact that robustifying the controller by increasing I C ,  j 
leads to  non globally Lipschitz nominal closed loop system 

Opposed to the equation error design is the Lyapunov 
design as introduced by Parks [5]. It has been used by 
Talor et al. [13] and extended by Kanellakopoulos et al. 
[3] in the case of feedback linearizable systems. Again, ex- 
tension to the assumption US case can be done (neglect- 
ing the % term). The difference is that we can always 
guarentee boundedness of the parameter vector p in our 

(see [SI). 

algorithm whereas we do not know how to do so in the 
Lyapunov design if A cannot be made non positive. 

A last design which can be compared to ours is proposed 
by Sastry and Isidori [9] in the case of no zero dynamics. 
The algorithm is based on an equation error from the S,* 
equation transformed by the diffeomorphism cp(p*, z) as- 
sociated with the output linearization. There is no A term 
in this case but global stabilization is established only for 
a globally Lipschitz regressor vector. This assumption is 
not met in our example. 
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