
Copyright © IFAC Robust Adaptive Control, 
Newcastle, Australia, 1988 

Oscillatory Behaviour and Fixes in Adaptive Linear Control: 
A Worked Example 

L. PRALY 
CAI. Ecole des Mines, Fontainebleau, France 

Modern adaptive linear controllers guarentee solution boundedness under more realistic assumptions. 
But "bounded" does not mean "stable" or "satisfactory". Typically, in non ideal conditions, one 
may observe unacceptable oscillatory solutions. This paper is devoted to the study of a simple 
adaptive proprotional controller in feedback with a disturbed first order linear system. We explain 
the mechanism creating these oscillations and we analyze how fi..'Ces - dead zone, persistent excitation 
or internal model- deal with this problem. We establish the necessary knowledge required by each of 
these fi..'Ces to be efficient. We precise the type of convergence. We estimate asymptotic performance 
criteria - mean value, mean square value and sup value. This analysis is done by exhibiting critical 
elements - equilibrium points or periodic solutions - proving (or conjecturing) their attractiveness. 

1 INTRODUCTION 

Modern adaptive linear controllers guarentee solution bound
edness under more realistic assumptions. In this paper we 
are interested in the simplest controller, namely the follow
ing adaptive proportionnal controller intended to regulate 
the plant output y around zero: 
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(1) 

Applying Theorem 2 of (Praly [1986]), it provides solution 
boundedness when placed in feedback with any plant whose 
input-output signals satisfy for example: 

A(q)y(k) = B(q)u(k -1) + d(k) (2) 

where d is any bounded sequence, A and B are proper ratio
nal fractions in the forward shift operator q, with A monic 
and: 
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We even know that the mean square value of !L is bounded 
s 

by a constant times sup{ld(k)I}. Unfortunately, neither 
k 

boundedness nor this mean square performance give any 
information on stability or convergence. Indeed, if the plant 
satisfies: 

y(k + 1) = ay(k) + u(k) + d (4) 

with d a constant disturbance and a smaller than Ba +R-1, 
the solutions exhibit more or less rapidly the oscillatory 
behavior depicted on Figure 1. We could call this phe
nomenum self-oscillations to emphasize that they are not 
induced by a forcing term but simply generated by the au
tonomous nonlinear system (1),(4). 
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These self-oscillations have been described by Egardt 
[1979J and Anderson [1985J and received an heuristic expla
nation by Macchi and Jaidanne [1986J. Praly and Espaiia 
[1987J have given a theoretical support to this explanation. 

In this paper, we briefly review the explanation of this 
behavior (Section 2) and we study how fixes such as per
sistent excitation (Section 3), dead zone (Section 4) and 
internal model (Section 5) handle this problem. Being in
terested in regulation of y around zero, we evaluate perfor
mance with the following criteria: 

la = I;~~:f EY(k)1 (5) 

1 T 
12 li~-.:~p T E ly(kW (6) 

loo limsup ly(k)1 
T~oo 

(7) 

Would a be known, the best (while preserving stability) 
proportional linear controller would give: 

(8) 

To allow theoretical arguments to be developped with
out too much complexity, we restrict ourselves with simpler 
systems. It is however important to mention that our con
clusions confirm observations from real life experiments, at 
least in their qualitative view point. 

2 ADAPTIVE P CONTROLLER 

To understand the self-oscillations observed for the solu
tions of (1),(4), we simplify this system by looking at it 
through a window. We see on Figure 1 that B - a evolves 
around 1, y remains of the order of d and therefore S2 re-

d2(1 + (1 + a)2) 
mains of the order of . This motivates the 

.\(1- J.l2) 
choice of the following window: 
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Restricted to W, the system (1),(4) is , with 'I' = (} - a: 

y(k + 1) 

<p(k+1) 

-<p(k)y(k) + d ) 

(
k) + y(k) (d - <p(k)y(k)) 

'I' 1 + y(k)2 

(10) 

where we omit the equation in s since it has no influence 
on the remaining part of the system and its solutions are 
easily obtained from those of (10). Notice that there is 
no approximation but simply a clipping procedure and the 
"clipped" controller is nothing but the proportional adap
tive controller described by Goodwin and Sin [1984] . 

We can assume d to be positive (if not transform d in 
-d and y(k) in -y(k)) . All our simulation results will be 
presented for d = 0.1. 

Now, let us look at Figure 2, the phase portrait of (10) 
when d is zero (i. e. the ideal case) and showing only one 
point out of two. Two important facts to be noticed: 
• So = {('I', y) 1 y = O} is a set of equilibrium points and 
therefore an invariant set. It is exponentially attractive 
for 1'1'1 smaller than and away from 1 and exponentially 
repulsive for 1'1'1 larger than and away from 1. In more 
rigorous terms, this set is locally normally hyperbolic (see 
Hirsch et al. [1976]) . 
• The solutions make "U-turn" around either (1, 0) or (-1,0): 

- We first observe an escape from the repulsive part of 
the invariant set So with an exponential growth of the y

component. 
- Secondly, as the y-component becomes larger, the <p-com

ponent is more exponentially contracted, forcing it to enter 
the domain { 1'1'1 < I} . 
- Finally, the solution being in the attract ion domain of the 
attractive part of So, it runs exponentially fast to it and 
freezes there, since no motion is allowed on this set. 

To go to the case d non zero, we remark: 
• A typical property of normally hyperbolic invariant sets 
is the permanence of their existence and their normal hy
perbolicity property in presence of small perturbations (see 
Hirsch et al. [1976] for an example of a rigorous statement 
of such a property) . 
• Forlargey(k) the map (<p(k),y(k)) --+ (<p(k+1),y(k+l)) 
is nearly unaffected by d. 

For d small enough, Espana and Praly [1988] (see also 
Praly, Espana [1987]) have established the existence of in
variant sets Sdr and Sda, defined at least for 1'1'1 away from 
1 and on {I<p 1 > I} and {I<p 1 < I} respectively, close to 
So. As So, Sdr is repulsive and Sda is attractive. As a 
consequence, the solutions escape from Sdr' But, since this 
escape is only possible by an increase of ly(k)l, the second 
remark above tells us that the solutions behave as for the 
unperturbed case and enter the domain { 1'1'1 < I}, where 
they are attracted to Sda' Moreover, Sdr and Sda are graphs 
of functions Mdr and Mda , respectively: 

and, for some TJ depending on d, 

:2 [Mda(<p) - 1 ~ '1' ) is bounded on {I'l'l < 1- TJ} 

It follows that the motion on Sda can be approximated, up 
to a term of order d4 , as follows: 

y(k + 1) 

<p(k + 1) 

-<p(k)y(k) + d ) 
1 (12) 

<p(k) + d
2 

(1 + <p(k))2 + O(d
4

) 

This implies that the solutions, when they remain in the 
neighborhoud of Sda , have their <p-component strictly, though 
slowly, increasing. This explains why they have to leave the 
set {I'l'l < 1}. 

Besides the torsion of the solutions around the point 
(-1,0) where So was not hyperbolic, the main difference 
between the ideal case and this case "small non-zero d" is 
this slow drift which completes into "circles" the fast "U
turns" around (1,0) of the unperturbed case (see Figure 
3). A "U-turn" corresponds to a burst in Figure 1 while 
the slow drift corresponds to a quiet period. 

To complete this analysis we have to notice the existence 
of two period 2 solutions: 

y=Oord, '1'=1 (13) 

For these limit solutions, we have the following values for 
the criteria mentionned in the Introduction: 

d d2 

la = 2' ' 12 = "2 ' l oo = d (14) 

These solutions are not exponentially attractive but a Hopf 
bifurcation analysis leads us to think that they are attrac
tive, at least for d small enough. On the other hand, Praly 
and Espana [1987] have established that the solutions, lying 
in the set Sd., go to infinity and therefore leave the window 
W. 

From this, we conjecture: 
• The above values of the criteria hold for all but solutions 
entering Sdr. 
• The self-oscillations of Figure 1 are only transitory to
wards a period 2 oscillatory behavior. However, they do 
not disappear exponentially fast. 

This analysis leads us to propose to classify the remedies 
to the self-oscillations into two classes: 
• Those - dead-zone or persistent excitation - which pre
vent the drift stage by creating exponentially stable limit 
solutions. 
• Those - internal model- trying to reduce the y-component 
of the limit solutions lying in a neighborhoud of the bound
ary of the y-stability domain {I'l'l = I}. 

3 PERSISTENT EXCITATION 

The structural instability of the system (10) for d = 0 can 
be conjectured from the existence of the continuous set of 
equilibrium points So. As proposed by Anderson [1982], for 
example, we can try to change this situation by isolating an 
exponentially stable limit solution. In such a circumstance, 
as a particular case of hyperbolic set, this limit solution and 
its stability property are preserved under perturbation. In 
practice, this may be realized by introducing a dither r. 
For our study, we consider the case: 

(15) 

with r a complex number and n, N integers. This dither is 
introduced in the control law by transforming the propor
tional into a dead-beat controller: 

u(k) = -e(k)y(k) + r(k) 

In this case, (10) becomes: 

y(k + 1) 

<p(k+l) 

-<p(k)y(k) + d + r(k) 
<p(k) + y(k) (d - <p(k)y(k)) 

1 + y(k)2 

(16) 

) (17) 
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For d small enough, the only periodic solutions which re

main bounded as d goes to zero, with I~I remaining fixed 

are (see Praly , Pomet [1987]): 

• If d2 < Irl2 (see Figure 4), a single period N 
1+~{z} 

solution, approximated by: 

'P( k) 'P* + O(d2
) 

y(k) 1 : 'P* + ~ t : 'P* zk } + O(J2) 

where 'P*, lying in JO, 1[, is the unique solution of: 

'P* (1 + 'P*)2 

(18) 

(19) 

(20) 

It is exponentially stable, with the following characteristic 
multipliers: 

*N 2 2N ( J2(1 - 'P*)2) (2) 
'P + 0(1) , 1 - d (1 + 'P*)3 1 + 'P*2I r I2(1 + 'P*)2 + 0 d 

For this solution our performance criteria are: 

(21) 

(22) 

(23) 

• If d2 > 1 j~2{Z} (see Figure 5), a period N unstable 

solution satysfying (18)-(20), with 'P* lying in Jl, 00[, and a 
pair of even period (N or 2N) solutions given by: 

'P(k)=1+0(d2) (24) 

y(k) = ~+~{~}± (_I)k d2 _ Irl2 +O(d2)(25) 
2 z+1 2 1+~{z} 

These solutions have of the same characteristics as the pe
riod two solutions of the unmodified case. In particular, it 
seems from simulations that they are foci and at least one 
of them is (weakly) attractive. They lie in a neighborhoud 
of the boundary of the y-stability domain {'P = I} and 
consequently we have an oscillatory transient. 

We conclude that, to eliminate the self-oscillations by 
using a dither ~{rzk}, rand z should satisfy: 

d2 < Irl2 
1+~{z} 

(26) 

This shows that to be efficient an upperbound on d has to 
be known. On the other hand, as far as our performance 
criteria are concerned, 'P* should be as large as possible and 

therefore IrI2{} should be closer to J2. But in this case 
1 + ~ z 

the attractiveness is weaker and the transient longer. In 
any case, when compared with the unmodified controller, 
persistent excitation replaces self-oscillations by forced os
cillations. This gives a faster transient towards worse per
formance criteria. 

4 DEAD-ZONE 

In Section 2, we mentionned that, when compared with the 
case d = 0, the self-oscillations result from a slow drift of 
the 'P-component, observed when the solution is in the set 
{I'PI < I}. Hence, freezing the parameter when it starts 

drifting should solve our problem. 
How can we get the information that the slow drift has 
started? 
We noticed that the drift takes place when the solution lies 
in a neighborhoud of the set Sd.' Moreover, this set can be 
approximated, for d small enough, by the graph: 

d 
y =--

1+'P 
(27) 

Consequently, a necessary condition for the drift to take 
place is that the y-component be of the order of the dis
turbance d, i. e. small. Therefore we can think of using a 
dead-zone technique for realizing our freezing process. Sev
eral types of dead-zone algorithms have been proposed in 
the litterature (Egardt [1979], Praly, Redjah [1982]). Here, 
we choose the simplest to analyse. Restricted to the win
dow W of Section 2, this gives: 

1 
'P(k) + y(k)y(k + 1) 

'P(k+l)= l+y(k)2 

'P(k) 

if ly(k+l)I>5 
(28) 

if ly(k+l)I::;5 

with 5 a positive real number to be determined. This dead
zone makes the closed-loop system to switch between two 
systems: 
• the system (10) studied in Section 2, 
• the following, made of a family of linear systems indexed 
in 'P: 

y(k + 1) = -'Py(k) + d } 

'P(k + 1) = 'P 

Its only limit sets are: 

52. 
d 

{('P,y)ly= 1+'P and I'PI < I} 

52C {('P, y) I 'P = I} 

52r 

d 
{('P,y)ly= 1+'P and I'PI > I} 

(29) 

(30) 

(31) 

(32) 

52. and 52r are sets of equilibrium points, attractive and 
repulsive respectively. S2C is a set of period 2 solutions. 
For this system, the performance criteria depend on 'P and 
make sense only for I'PI < 1: 

d J2 d 
la 1 + 'P 12 = (1 + 'P)2 , loo = 1 + 'P (33) 

In the set {I'PI < I}, both (10) and (29) are mak
ing the solutions to converge close to S2a' And, since for 
('P(k),y(k)) in S2a, (10) makes 'P(k) strictly increasing, we 
guess that for the dead-zone to be of any interest, the in
tersection: 52. n {( 'P, y) I Iyl ::; 5} must be non empty 
(see Figure 6). Praly [1988J has established that for d small 

d 
enough and 5 < 2' there exists 17, 0 < 17 < 1, for which no 

solution of the closed-loop system with dead-zone satisfies 
for all k: 

1'P(k)1 ::; 1- 17 (34) 

Also, to prevent the solutions of (10) from (when looked at 
one point out of two) "circling" around (1, d), which lies in 
S2C' this point should belong to the dead-zone {( 'P, y) Ilyl ::; 
5} (notice that the other point (1,0) is always in this dead
zone). Indeed Praly [1988J has proved that there is no so
lution leaving the set {I'P I ::; I} if and only if 5 2: d. 

We conclude that 5 should be chosen larger than d for 
the dead-zone modification to eliminate the self-oscillations. 
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In this case, from our knowlege on the systems(10) and 
(29), we can guess that the dead-zone has made the points 
of Sza n {(rp, y) IIYI :::; 8} exponentially stable equilibria 
(see Figure 7). 

This leads us to conjecture an exponential convergence 
to one of the following values for the performance criteria: 

~<la<8 2 - -
d2 d 
- < h < 82 

, -2 :::; loo :::; 8 4 - -

except for solutions with initial value satisfying: 

<prO) = 1 , d - 8 :::; y(O) :::; 8 

(35) 

(36) 

Consequently, compared with the unmodified controller, we 
have a faster convergence to, depending on the initial condi
tions, possibly better, possibly worse performance criteria. 

5 INTERNAL MODEL 

From linear time invariant systems theory, the internal mo
del principle tells us that the disturbance model should be 
introduced in the controller. In Section 2 we remarked that, 
for d small enough and after a finite time, the solutions in 
{i<p1 < I} have increments for their rp-component which can 

be approximated by d2 
(1 +~(k))2· It follows that the Y

subsytem looks like a slowly time varying linear system as 
soon as <p( k) is far away from -1. Therefore, we may hope 
the internal model principle to be applicable in our case, at 
least locally. As proposed by Elliott and Goodwin [1984]), 
we modify· our adaptive controller in: 

s(ky 

81(k) 

8(k + 1) 

uj(k) 

p.2s(k -I? + U,(k)2:Y(k)2 

8 k Yj(k) y(k + 1) 
( ) + max{l , s(k)2} + Yj(k)2 

8a + min {I, 19dk~-9.1} (81(k) - 8a ) 

-8(k)Yj(k) + (Yj(k + 1) - y(k + 1)) 

with the subscript 1 for a sequence v standing for: 

(37) 

(38) 

where F, a polynomial in the unit delay operator, is sup
posed to be the annihilator of the disturbance. Since the 
closed-loop system order is increased by the degree of the 
polynomial F, simplicity imposes the choice: 

(39) 

Practically, this makes sense only for 1 = ±1. Other values 
of 1 will give us more insight on the effect of introducing 
this polynomial. 

Restricted to the window: 

{ I 
d(I-I)-(8-a)y,} 

(Y,YI , s,8)s:::;I,18-8a +Yj l+yJ I:::;R 

the closed-loop system is, omitting the s-equation: 

y(k + 1) 

y,(k + 1) 

<p(k + 1) 

-<p(k)Yj(k) + d(l - I) ) 

-<p(k)y,(k) - Iy(k) + d(l- I) (40) 
<p(k) + d(l- f)Yj(k) 

1 + Yj(k)2 

This system is very similar to (10), replacing d by d(1 - I), 
y by y, and adding the component y. We (briefly) follow 
the same steps as in Section 2: 

• For 1 = 1 (see Figure 8), {(rp, Yj, y) I Yj = Y = O} is a 
set of equilibrium points which is exponentially attractive 
for <p in ] - 1, H and away from the boundary values and 
exponentially repulsive for <p outside this set, away from its 
boundary values. Elliott and Goodwin [1984] have estab
lished that performance criteria are zero. 
• For 1 =I- 1 (see Figure 9) , as for (10), we predict a phase 
portrait very similar to the case 1 = 1, except for a slow 
drift of the solutions when their rp-component lies in the 
stability set of the linear (Yj, y)-subsystem, i. e. l<p in ]-
1, 1-1<p1[. Applying the results ofPraly [1987], for ~(1-1)2 
small enough, there exist "I and a locally attractive locally 
invariant set defined as 

{( rp, YI, y) I Yj = L j( <p), Y = L( <p), f<p E]1 - "I, -1 + "I - 1<p1 [} 

where the functions L j and L are such that 

I d(l - 1)2 I I d(1 - I) I 
L,(<p) - 1 + <p(1 - I) + L(<p) - 1 + <p(1 - I) 

divided by ~(1 - 1)2, is bounded on {<p 1/<p E]-1 + "I, 1 -
"I - 1<p1 [}. The same type of results for l<p outside] -
1 - "I, 1 + "I -1<p1 [ should hold with locally repulsive locally 
invariant sets, depending on how many poles of the linear 
(Yj, y)-subsystem are outside the unit circle. As for the case 
1 = 1, we may expect the solutions to be rejected by these 
latter invariant sets. This implies a stronger contraction of 
their rp-component which makes them enter the set {<pI/<p E 
]-1+"1, 1-T}-I<pI[}. They are later attracted to the former 
invariant set where their rp-component start moving as: 

~(1 - 1)3 4 
<p(k+1) = <p(k) + (1+<p(1-1))2 + O(~(1-1) )(41) 

The increments being strictly non zero, this forces the so
lutions to reenter the domain where they are again rejected 
by the repulsive invariant sets. Consequently, at least a self
oscillatory transient of the same type as for the unmodified 
controller can be predicted. 

For d small enough, the only periodic solutions which 
remain bounded as d(1 - I) goes to zero with 1 fixed, are 
obtained as follows: 
• For 1 < -t or 1 < I , they have period N, with N =I- 2, 
if and only if the following complex number: 

1+i~ 
21 z = (42) 

is an Nth root of unity. In this case, they can be approxi
mated by 

<p(k) -7 + O(d2(1 - I?) 

Yj(k) d/(l - 1)2 + ~ {bzk} + O( d2(1 _ 1)2) 
21 -1 

y(k) dl(1 - I) + ~ { ~zk} + O(d2(1 _ 1)2) 
21 -1 z - 1 

where b is a complex number whose modulus satisfies: 

IW = 2d
2 pU - 1J3 
(21 - 1)2 

For these solutions, the performance criteria are: 

(43) 

(44) 

(45) 

(46) 
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• For -~ < f < 1, they have period 2 and can be approxi
mated by: 

<p(k) = 1 ~ f + O(d2(1 - 1)2) (50) 

yj(k) = 1 + f (1 _ f ± (_l)k I1=f2\+O(d(l- 1))(51) 
d(l - I) 2 V' - r) 

t k
) ) = ~(l+f±(-l)kl1=f2\ +O(d(l-l)) (52) d1-f 2 V'-J) 

For these solutions, the performance criteria are: 

la 

These solutions have of the same characteristics as the 
period two solutions of the unmodified case. They lie in a 
neighborhoud of the boundary ofthe linear (y" y )-su bsystem 
stability domain. 

We conclude that to eliminate the self-oscillations a per
fect model of the disturbance must be known. If such a 
condition is not met, we conjecture the existence of self
oscillations similar to those of the unmodified case. And 
for the performance criteria, Figure 10 gives a comparison 
of the value of 12 given by (48) for f < - ~ or 1 < f and by 
(54) for -~ < f < 1, on the one hand, and what we have 
obtained by simulations, on the other hand. We see that, 
for a range of values of f around the optimal f = 1, per
formance is improved compared with the unmodified case 
(f = 0). 
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