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Abstract  
We  examine  the  problem of self-tuning  trackers. for  which  the  self- 
tuning  property can be proved. 

1. INTRODUCTION 
Recently an  algorithm  for  minimum  variance  control of 

ARMAX systems  has been  proved to be self-tuning for  the  regula- 
tion problem. see  Becker. Kumar  and  Wei [l]. This is a  central 
question of fundamental  interest  since  it  implies  that  the  adaptive 
controller  can be used as  a mechanism for  tuning  to  the  parameters 
of an optimal  control  law. 

(Recall  that in the regulation problem  one  wants  the  output of 
the  system  to  stay  as  close  as  possible  to  zero.  whereas in the track- 
ing problem  one  wants  to  track  a  given  arbitrary  trajectory. By 
self-tuning it is meant  that  the  adaptive  control law converges to  the 
optimal  control  law).  The  work of [ I ]  above  thus  complements  the 
work of Goodwin, Ramadge  and  Caines [2] who  have  proved  the 
self-optimality of some  adaptive  control  algorithms for minimum 
variance  regulation  and  tracking.  (By self-optimality it is meant  that 
the  cost,  the  time  average of the  square of the  tracking  error, is 
minimal). 

We  resolve in this paper the  more general  problem of self- 
tuning  for  the tracking problem,  which  has  remained open so far.  
For full  details regarding  the  results  presented  here  the  reader is 
referred  to  the  forthcoming  paper [31. 

An important  feature  which  distinguishes  the  tracking  problem 
from  the  regulation  problem is the necessity of knowing  the 
coefficients of the colored  noise  polynomial. see [2.1,4]. 

We  show  how  one  may  estimate  these  unknown  parameters 
and  obtain  self-tuning  for  the  general  tracking  problem.  This is 
done  under  the  natural  assumption  that  the  reference  trajectory is 
sufficiently  rich of appropriate  order. 

Importantly.  we  also  address  the  problem of obtaining  self- 
tuning even  when  the  reference  trajectory is not so rich as to  allow 
one  to identify  all  the coefficients of the colored  noise  polynomial. 
For example. in the  important  class of set-point  problems, the  refer- 
ence trajectory is a  non-zero constant.  which is sufficiently  rich of 
order OM only. 
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So motivated,  we  examine  the  problem of tracking  trajectories 
which  are  generated  by linear models.  We  show  how one may 
adjust  the dimension of the regression  vector to  the  degree of excita- 
tion  present  in  the  reference  trajectory,  and  then  provide  a proof of 
self-tuning of the  resulting  reduced  dimension  adaptive  controllers. 

2. The  Genera l   Tracking   Roblem 
Consider the ARMAX system 

y ( t ) =  t a , y ( t - i ) +   e b , u ( t - i ) +   i c , w ( t - i ) + w ( t )  (1)  

where y .u and w are respectively the  output.  input  and  white noise. 
The  parameters ( a  1, . . , ap , b 1. . . , bq , c . . , c ,  are  unknown. 
The goal is to design  an adaptive  control  law  which  converges  to  a 
controller  minimizing  the  squared  deviation  between  the  output  and 
a given bounded  reference  trajectory ( y '  ( t  1). 

When (9 ( t  )) is a  reference  trajectory with no  special  proper- 
ties.  we  will  use  the  following  adaptive  controller.  Note  the  notation 

I =1 1 =1 , =1 

p v s  := I)uLT ( p ,  s 1). 

e( t  + I )  = e(t  + P#J(~ [ y  ( t  +I )  -9 ( t  + I ) ] ,  77-T 
where p f 0 is an  arbitrary  constant,  and 

I +1 
r ( t  +1) := 1 + Z r # J ( k  M ( k  1 .  

I =o 

The regressor  vector is 

$ ( t ) : = ( y ( t )  . . . .  y ( t - p V s + l ) . u ( t )  , . . ,  u ( t - q + l ) .  

-y* (t  + l ) ,  . . ,-p ( t  -s +l)Y . 
The  control  input is then chosen as. 

where 

(al(t  1, . . .ap 4 s  ( t  ).bl(t 1. . . .B, ( t  1, (4) 

yo(t 1. . . .ys ( t  ) Y  := e(? 1 
Note that ( 3 )  can equivalently be written  as 

C#J ( t  )e(? = 0 ( 5 )  

Motivarion  for  adaptive controller 

rewrite  the  system (1) as. 
To  understand  the  motivation behind this  adaptive  controller. 
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y ( t + I ) - r * ( t + l ) = [ ~ a , y ( t + l - i ) +  k b , u ( t + l - i )  
8 = I  I =1 

+ ~ c , w ( t + I - - i ) - p y * ( t + 1 ) 1 + w ( t + l )  
8 =1 

Provided one could  observe  the  past of w ( . at each time t , then an 
optimal  control u ( t  ) could be chosen so that  the  term in [ . . 1 on the 
right  hand  side  above is zero, i. e. 

I + ~ c , w ( t + l - - i ) - p ( t + 1 ) 1 .  
i =1 

This  would  result in ensuring  that y ( t  +1) - y* ( t  +1) = w ( t  +l), 
which is clearly  the  best possible tracking  error.  However.  the 
sequence w ( . is not observed. So let  us consider  replacing w ( t  by 
y ( t  ) - 9 ( t  ), which is what we  hope it  would be. a t  least  asymp- 
totically.  This  gives  the  implementable  control  law, 

- ~ c , r * ( t + l - i ) - y * ( t + l ) I .  
' =1 

It  can  be shown  that  this  control  law is actually  optimal  with 
respect  to  the long run  average of the  square of the  tracking  error; 
for  more  details, see Kumar and Varaiya 141. Let  us  accordingly 
define, 

8" := ( a l t c , .  . . . ~ ~ q ~ + ~ ~ \ / ~ , b 1 . .  . . I , c ~ .  . . , cSY ( 6 )  

(where.  for  convenience.  we  set c, := 0 for i > s and al := 0 for 
i > p in (6 ) ) .  Note that  under optimal control. the  system (1) can be 
represented  as 

y ( t + 1 ) - p ( ( t + 1 ) = # J ( t ) P   + w ( t t I ) ,  

while  the  optimal  control  law can be written  as one which chooses 
u ( t  1 to  satisfy. 

r#J(t 18" = 0 .  

The  motivation behind our  adaptive  control  law is clear.  We 
are  trying  to  estimate 8" when  the  system is being optimally con- 
trolled. 
Remark : 
The ( p  Vs +q +I)-th component of 8" is 1. and hence is a known 
quantity.  However.  the  estimator ignores this  knowledge and  esti- 
mates  it  anyway  by yo(t  1. Hence  the dimension of the  parameter 
estimator in this  adaptive  controller is one  larger than  that of 
Goodwin,  Ramadge  and Caines [2]. 

3. Assumptions 
Define the  polynomials 

A ( z ) : = I  - 
i = I  

B ( z ) : =   i b , z i - l  
i = I  

I 

C ( z ) : =  1 + C C 2 Z '  
I =I 

We make  the  following  assumptions on the  system. 
All  the  roots of B ( z  and C ( z  are  strictly  outside  the  unit 
circle. 

Re[C(eiW)-$] > 0 for 0 6 o < 2a 
b l  # O  

z - l [ C ( z )  - A  ( z ) ]  and B ( z )  are  polynomials of degrees 
respectively  equal to (pVs  -1) and (q-1). which h a w  np r n m -  
mon  factors. 

{ w  ( t  1) is a sequence of scalar  random  variables on a  probabil- 
ity space {a  , F , P ), whose  distributions  are  all  mutually 
absolutely  continuous  with respect to Lebesgue measure. 
Let Fl := cr{w ( I ) ,  . . .w ( t  )) be the  sub-a-algebra of F gen- 
erated  by ( w  (1). . . ,w ( t  )\. We  assume  that  there  are a2 > 0 
and 6 > 0 such  that 

E [ w  (t 1 I F1-,]  = 0 a.5. 

E [w 2(t  ) I Fl = a2 a.s 

s u p E [ I w ( t  1 F,-,]<+m a.s 
I 

Ile(o)ll > o 
{p ( t  1) is bounded 

4. Resul t s   for   the  General Tracking  Problem 
The  following  self-optimality  and  self-tuning  results can be 

proved for  the  above  adaptive  controller for general tracking. 

Theorem 
Self-optimliry  property 

Convergence Property 
Suppose  that lp ( t  )) is strongly sufficiently rich of order (s t q  ), i.e. 
for  the choice of 1 := (s t q )  there  exists an n and  an > 0 such 
that 

I +n 
(9 ( k  -l), . . .r* (k -1 ) Y ( j +  (k - 1 ) .  . . .r* ( k  -1 1) 3 €11 

1 =I +1 

for all t large enough. 

(Here I ,  here is the lxl identity  matrix).  Then, 

lim O(t ) = .$'e. a s .  
I 

for  some a s .  finite nonzero scalar  random  variable e. 
Strong  consistency  property 
Under  the  above  excitation  condition, 

limT(a1(t )-yl(t  1,.  . .ap ( t  b y p  ( t  ) , p l ( t  1%.  , .p, ( t  ) , y l ( t  1.. . .ys ( t  1) 1 
1 Yo t 

= (a 1, . . .ap ,b 1, . . .b, ,C 1. . . .c, a s .  (with y ,  ( t  ) := 0 for i > s ) 

5. The Linear Model  Following  Problem 
In many  practical  situations,  the  reference  trajectory is gen- 

erated.  at  least  asymptotically,  as  the  output of a  homogeneous 
linear  model.  Suppose  that  there is a sequence {y, ( t  )) such  that 

I 
y , ( t ) =  C h , y r n ( t - - i )  ( 7 )  

i = I  

and  the  trajectory  to be tracked r* ( t  ) is asymptotically close to 
y, ( t  in that 
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Without loss o'f generality  we c2n make  the  following  two  assump- 
tions: 
(i)  There is no lower  order  difference  equation satisfied  by 

{ ym ( t  11. 
1 

(ii)  The  roots of H ( z  ) := 1 - ch, z ,  are  exactly on the  unit  circle 

and  there  are  no  repeated  roots. 
, = 1  

The  condition  (i)  is  without loss of generality since we could  other- 
wise always  write y,n ( t  ) as  the  solution of a  homogeneous 
difference  equation  where all the modes are  excited  by  the  initial 
conditions. Regarding (ii)  note  first  that since we  intend  to  work 
only  with bounded {)* ( t  1). and since all  the modes of H ( z  are 
excited,  we  have  to  assume  that H ( z )  has  roots on or  outside  the 
unit  circle,  and  also  that  those  roots  which  are on the  unit  circle  are 
not  repeated.  Second, since we  are  only  interested in the asymptotic 
behavior of {y* ( t  ) I ,  we can eliminate  all  the  modes  corresponding  to 
roots of H ( z  which  are  strictly  outside  the  unit  circle since they 
decay  geometrically to 0. This  leaves us  with  only  unrepeated 
modes  on the  unit  circle. (As an  example,  note  that  a constant refer- 
ence trajectory,  which is important  for  the set-pint  problem, 
satisfies (1 - z ( t  1 = O 1. 

It is worth noting that  (i)  and  (ii)  together  imply  that 

y,,? (f ) = d ,, + d l(- ly + c d i  sin ( w ,  I + 6 ,  

Sote  that  the degree of H ( z  ) is 1 : it is also  the degree of sufficient 
richness of )* ( t  1. We  will reduce the dimension of the  parameter 
estimator  by (s +1-1 ) components  by  using  the  following  regressor 
vector in place of (2-4). 

@(t ) := (y ( 2  1, . . ,y ( t  - p v s  +l) ,u  ( t  1, . .u ( 2  -4 +l), 

-)* ( 2  +l), . .-y* ( 2  +2-1 )Y , 

0(t  ) := (a l ( [  1. . . ,ap ,*  ( t  ) ,Pl(t  1. . , .P, ( t  1, (9) 

Y o ( t  1. . . .y,-l(t ) I r  . 
and 

- x y ,  ( t  1)" ( t  -i +1)1 . 
8 =o 

or  equivalently  by ( 5 ) .  

Motivation  for  adaptive  controller. 
The idea underlying  the  above  adaptive  control  law is as  fol- 

lows. If the  parameters  were  known  the  minimum  variance  adap- 
tive  control  law  would  be, 

I 

- )* ( t  +1) - c c ,  y* (t  -i +1)1 , 
t =1 

see [4] for  details. Note that  the  only  terms  featuring y* which  are 
important  to the above  control  law  are 

4" ( t  +1) + cy* ( t  -i +1) = C ( z  )y* ( t  +1) So the  control  law  only 

requires  knowledge of C ( z  )y* ( t  1. Let G ( z  := cg, z '  and 

F ( z  := f , z ' be polynomials  satisfying : 

, =1 
i -1 

2 =o 
I -1 

, =n 
C ( z ) = F ( z ) H ( z ) + G ( z )  

The  polynomials G ( z  ) and F ( z  are  the  remainder  and  quotient 
respectively  when  the  polynomial C ( z  is divided  by  the  polyno- 

C ( z  I)* ( t  1 = [F ( z  1H ( z  1 + G ( z  )ly* ( t  
mial H ( z  1. Note that  asymptotically  at  least  we  have  the  equality 

F ( z  ) H ( z  )y(t ) + G ( z  1)" ( t  ) = G (7 'I* ( t  ). since by ( 7 . 8 ) .  
I /  ( z  ),* ( t  = 0 h u L d s  asympmttcaily. k ., c find  That we  only need 
knowledge of G ( z  )y" ( t  ) in order  to  implement  the  true  minimum 
variance  control  law. Define 

- 

8" : = ( a l + C l , .  . . ~ , . ~ + c , . , . b l , .  . . , b , , g o . g l , .  . . g / - l )T  . 
and  we  can  interpret  the  parameter  estimate ( 9 )  as  trying  to  estimate 
it  by @(t 1. 
Remarks : 
(i)  The  adaptive  controller need not be provided  with  the precise 

information  about  what  the  polynomial H ( z  is. It  only  needs 
knowledge of the degree of H ( z  ). 

(ii)  Note  that if 1 b s +1  then no savings in dimensionality  can be 
achieved  by  using this special control  law  over  the  one given 
for  the general  case.  and so one should use that  control  law. 
The special control  law is only designed for use  when  there is 
insufficient excitation. 

6. Results for  the  Linear  Model  Following  Problem 

We can  obtain  the  following  results  regarding  self-optimality 
and  self-tuning. 
Theorem 
Self-optimlity property 

Convergence  Property 

lim O(t ) = 66. Q.S 
i 

for some a s .  finite  nonzero  scalar  random  variable 6. 
Self-tuning property 

setting Q~ := 0 for i > p and c,  := 0 for i > s . 

7. Concluding  Remarks 
Among the  outstanding problems still  left  unresolved  are  the 

following: 

(i) 

(ii) 

1. 

2. 

3. 

4. 

Does the  least  squares based parameter  estimation  algorithm 
also  self-tune ? This is of importance because the  rate of con- 
vergence of least  squares based algorithms  has been  observed to 
be superior  to  the  type of parameter  estimation  algorithm con- 
sidered  here. 
What  robustness  properties  do  these  types of self-tuning  adap- 
tive  control  laws possess? 
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