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ABSTRACT 

The  study  of  robust  adaptive  controllers  has  led 
us to  introduce  a  new  modified  least  squares  algorithm. 
It incorporates  a  normalization  signal,  a  covariance 
matrix  regularization, and a  parameter  projection. In 
this paper we  investigate  properties o f  minimum  vari- 
ance  controllers using this  parameter  adaptation. 
First,  we  show  that  for  any  mean  square bounded driving 
noise,  the  input  output  signals  are mean square 
bounded.  Secondly, if the  noise is a moving average 
and its noise model parameters  satisfy  a very strict 
passivity condition,  then  the  controller is asympto- 
tically  optimal.  The  price paid to  remove  the  passi- 
vity condition, in the  first  part, is the  a priori 
knowledge  of  a  compact  set  containing  a  stabilizing 
regulator and the  sign and a lower bound on its leading 
coefficient. 

1. INTRODUCTION 

Research  about  the  behavior o f  adaptive  systems in 
the  presence  of  output  disturbance has led to  two  types 
of  results. 

In [61 , Egardt  studies  the  case of uniformly 
bounded disturbance  with no assumption  about its sta- 
tionarity and autocorrelation.  First, he shows  that 
instability  can  occur  due  to  escape of the  adapted 
parameters.  Second, he establishes  that if the 
adapted  parameters  are bounded then  the  input-output 
signals  are  also  bounded.  This  justifies  introduction, 
in the  adaptation  law,  of  mechanisms  to keep bounded 
parameters: dead zone  when an upper bound of the  dis- 
turbance is known,  projection of the  parameters  into  a 
compact  set  when upper bounds  of  stabilizing  parameters 
are  known. 

In [11, the  case  of  mean  square bounded distur- 
bance is treated. This  type  of  disturbance  leads  to 
use vanishing  adaptation  gain.  This is obtained by 
normalizing  the  input-output  signals and the  error 
signal used in the  adaptation  law by the  norm of  the 
input-output  signals. An assumption  about  the  auto- 
correlation  and  the  stationarity of the  disturbance is 
introduced in a  stochastic  framework:  the  disturbance 
is considered  as  a  moving  average  process,  the  auto- 
correlation  condition is expressed in terms of a very 
strictly  passive  operator. With this  assumption  two 
types o f  results  are  obtained:  the  escape of adapted 
parameters  does  not  occur,  the  minimum  variance  objec- 
tive is achieved.  Nevertheless,  the very strict  passi- 
vity condition is usually  considered  as  restrictive. 
Several propositions have been made to remove  this  con- 
dition  (such  as  filtering  the  error signal r 9 l ) .  They 
generally lead to  loss of the  optimality  property in the 
ideal case (i.e., the VSP condition is satisfied). 
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In this  paper  we will show  that  the  analysis  of 
[61 can be extended  to  the  mean  square  bounded  dis- 
turbance  case. We use an adaptation  law  incorporating 
both normalization  and  projection.  Following  [61,  this 
projection  allows us to  remove  the  autocorrelation- 
stationarity  assumption in the  proof  of  mean  square 
boundedness of the  signals.  Moreover, in the ideal 
case,  we prove that  our  algorithm  achieves  the  minimum 
variance  objective.  To be complete,  let us mention 
that  this  adaptive  controller can be proved robust  to 
a  wide  class of unmodeled effects (see 131).  

To  summarize,  this  paper has three  objectives: 

To  extend  the  result  of  Egardt  to  the  mean  square 
bounded  disturbance  case. 

To prove  the optimal ity of a  robust  adaptive 
control 1 er. 

To  provide  a  theorem,  to be used in place of the 
stochastic key technical lemma of [11. In partic- 
ular, it can be used in the  proof of the  robust- 
ness of stochastic  adaptive  controllers [ 5 1 .  

In Section 2, we  state  the  Problem. In Section 3. 
we  present  our  algorithm  and  establish  one  of its key 
properties. In Section 4, we prove the  mean  square 
boundedness using the  theorem  mentioned  above. In 
Section 5, we  study  the  optimality. In Section 6, we 
give  our  conclusion. 

Idotation: In the  following  the  superscript - means 
random  variable.  This  notation will  be used only  when 
confusion i s  possible. 

2 .  PROBLEM  STATEMENT 

Consider  the  adaptive control of a  linear  time 
invariant  finite  dimensional  single-input,  single- 
output  plant  having  autoregressive  representation  of 
the  form 

A(q-l)y(t) = q-dB(q-l)u(t) t x(t) ( 2 . 1 )  

where y(t),  u(t),  x(t) denote th output  input, and 
disturbance,  respectively. A(q- f ) ,  B(q-'] are  scalar 
polynomials in the  unit  delay  operator q- 

A(q-') = :talq-lt t a  q -nA 
nA 

( 2 . 2 )  

q  represents  a pure time delay. The  sequence x(t) 
will be taken  to be a  stochastic  process  defined  on  a 
probability  space (n,F,P) such  that 
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Classical analysis  of  stochastic  recursion  schemes 
(such  as  those  of [l]), consider x(t) as  a  moving 
average of a  martingale  difference  sequence w(t). 
This  case will  be considered in Section 5. For the 
time  being, no assumption  about  the  stationarity and 
autocorrelation  of x(t)  is needed. 

Our  objective is to find a control law  which  sta- 
bilizes the  system and aims  to  asymptotically  minimize 
the variance  of y(t)-y"(t), where  ym(t) is a bounded 
deterministic  desired  output  sequence. 

If the polynomials A(q-l), E(q-l) were known and 
if x(t) were  a  finite  moving  average  process, it  is 
well-known [ 2 1  that  our  objective would be achieved 
using a  linear  time  invariant control law  of the type 

s(q-l)u(t) +Nq-l)y(t) = C ( q  )Y (t+d) -1 rn 
( 2 . 5 )  

where S(q-l),  R(q-l), C(q-') are  polynomials in  q-' 
with  degree  ns, n , nc,  respectively, and C(q-l)  is 
monic. In the  foylowlng  we will denote s the  vector in 
Rn (n = n ~ + n ~ + n ~ + 2 )  of their  coefficients 

5 = ( s o  , ..., sns  r . . .  rnR-  c1 . . .  -cnC) I . (2.6) 
0 

The  following assumptic'ns will  be made  about  the 
system (2.1) : 

Al.  The  delay  d is known. 

A2. B(q-') has all its zeros inside the  open unit 
disk. 

(unknown)  polynomials S,(q-y), R,(q-l) satisfying 
A3.  Integers ns, nR  are  known s ch that  there  exist 

E(q-') = S,(q-')A(q-l) +q-dR,(q-l)B(q-l). (2.7) 

In the  following, 5, will  be the  vector  obtained  from 
S,(q-l),  R,.(q-I),  C,(q-l) = 1. We also  define Q,(q-1) 
as  the  following polynomial (see (2.7)) 

A4. A  vector 5~ in Rn and a  scalar K are  known  such 
that 

(5 C - s , ) ' ( ~ ~ - E , )  5 K.  ( 2 . 9 )  

A5.  A  scalar y o  is known  such  that 

s 2 y o  
0, 

(2.10) 

where so  is the  first  component  of E,, i.e.,  the 
leading  toefficient o f  S,(q-l). 

Comment:  Assumption  A2 is necessary  because  our 
control objective  considers  the  minimization  of  a  cost 
function  only  involving y(t), not u(t). 

Assumption  A3 is satisfied if an upper bound of 
the order  of  the  plant is known. 

Assumption A4 means  that  the  stabilizing  con- 
troller  defined by A3 has finite  gains and an upper 
bound (may be large) is known. 

Assumption  A5 is more  restrictive. It refers  to 
the usual assumption  about the sign of the  leading 
coefficient  of  the plant. It allows  bypassing  the 
problem o f  singularity in the  transformation: 
adapted  parameters + controller parameters. 

3.  AN ADAPTIVE  CONTROLLER 

In order to achieve  our control objective  we will 
consider an adaptive  minimum  variance  controller based 
on a  least  squares  estimation  incorporating parameter 
projection,  covariance  matrix  regularization, and 
signal normalization. 

in ]Rn 
As usual,  let $(t), :(t) be the  following vectors 

?(t) = (so(t) . . . (t) ro(t 
snS 

- c,(t). 9 9-c 
nC 

;(t) = (u(t) . . . u(t-ns)y(t) 
. . . :( ttd-nC) ) T , 

with y(t) 

The  algor 

e 

i 

. . .  r  (t) 
nR 

t) IT  

. y(t-nR)ij(t+d-l) 

as (a posteriori predicted output) 

y(t) = k'(t) z(t-d). 

thm is: a priori prediction error 
T 

T 

t) = y(t) - s(t-d)  t(t-d) 

usual update: 

g(t) = 1/1+ &t-d)TF(t-d)i 

6'(t) = €(t-d) + g(t)F(t-d); 

F'(t) = F(t-d) - g(t)F(t-d)i 

matrix  regularization: 

(t-d) 

(t-d)e(t) 

(t-d)z(t-d)TF(t-d) 

F(t) = (1 - >~o/;.,l)F'(t) + >.oI, 0 < t.o 5 '.l 

leading  coefficient  regularization: 

s"(t) = s'(t) +Max(O, oo-Sh(t))F  l(t)/Fll(t). 

- 
projection  into the sphere SC, K i ' ; .  /I 1 '.o 

control law 

y (t+d) = :(t)  q(t) M T (3.11) 

where F.l(t)  is the  first  column  of F(t),  Fll(t)  is 
the  first  component  of F.l(t);  c(t-d),  e(t) are  nor- 
malized signals  as  defined  below. In the  following, 
we call adaptation  law  equations (3.5) to (3.10). 

The  properties of this  adaptive  controller  are 
discussed in  131. Let us mention here the  presence  of 
d distinct  interleaved  algorithms  since E(t) is updated 
in terms of e(t-d). Though mean square  boundedness  can 
be proven without  this  multiple  recursion,  this will 
highly simplify  the  notations.  Moreover,  we will need 
it in the  study of optimality in Section 5. 

Normalization  Procedure:  Before  entering  the  adapta- 
tion  law,  the  signals  are  normalized  as  follows:  let 
c(t)  be the  output  of  a  first  order  filter  with 
;(t-d)T;(t-d) as  input  or  more  precisely, 

; ( t ) = p ~ . ( t - l ) + m a x ( l l : ( t - d ) ~ l  , z ) ,  ; > O .  (3.12) 2 

A  sequence v( t) is normalized  as 
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i(t) = c(t)-'v(t). (3.13) 

I n  the  following,  we  denote ( y )  the normalized signals. 

Usually 'LI is chosen  smaller than 1 (see [31). 
However,  here,  the  presence of only mean square 
bounded disturbances  leads to take pJ. As a  conse- 
quence the adaptation gain decreases to zero.  This 
also  allows us to  solve  the  minimization problem of  the 
control objective. 

The  interest  of  the  modifications  we have intro- 
duced in our  algorithm is demonstrated by the following 
property. 

Property  of  the  Adaptation Law: Let G be the inter- 
section of the closed  sphere  with  center e r  and radius 
K and the closed half space s > u . Let e-be any 
vector in E .  Depending on 8,Ow-e @define .,(t) as  the 
"fixed  prediction"  error given by this  parameter  vector 
(note that pit)  is built from 3(t) and not e. There- 
fore u,(t) is not  exactly  a prediction error); 

ue(t) = y(t) - sTq(t-d).  (3.14) 

Note that (with (2.1),(2.7),(2.8)): 

3 = 8, = > m e  (t) = Q,(q  )X(t). -1 (3.15) 
y* 

We have 

Property 3: Whatever p(t) may 
leads to  the  following inequal 

V,(t) 5 V,(t-d) + I,(t) - g( 2 

with 

V,(t) = (e(t)-a)TF(t)-1(3(t 

Proof: See [41, for example. 

i 

t 

be,  the  adaptation  law 
ty : 

) W 2  (3.15) 

- e ) .  (3.16) 

This property allows us to  relate  the mean square 
(adaptive)  a priori error  to the minimum  mean  square 
(fixed)  "prediction" error. 

Theorem 3: There  exists  a  positive  constant V such 
that  for any (q,k)€N2 

(3.17) 

Proof:  Straightforward  from  Property 3. Noting that 
v,lt) is uniformly bounded independently  of ~ € 3  and 
that g(t) 5 l/(l+xl). 

Comment: From a technical point of view this  theorem 
shows  that  the  adapta ion law may De considered  as an 
operator: p(t)+e(t) h for  which (3.17) provides a 
bound on the  average value of its instantaneous gain 
E(t)2. This property will  be used in the  next  section 
to establish mean square  boundedness by a small gain 
theorem. 

From a practical point of view  this  theorem  seems 
to  indicate  that  the  minimization involved in our 
control objective could be realized.  However, uo(t) 
is not  truly  a prediction error. In Section 5 w6 will 
need to  introduce  assumptions  about  the  autocorrelation 
and  stationarity  of x(t)  in order  to  complete  the proof 
of  optimality. 

4. MEAN SQUARES  BOUNDEDNESS  ANALYSIS 

Using the  adaptive  controller (3.2)-(3.11) for the 
plant  described by (Z.l), we  can  write  the  signals 

included in q(t) in terms of e(t),  x(t), ym(t) only 

y(t) = P"''t) +e(t)  (4.1) 

(4.2) $(t) = ym(t) + (e'(t)-e(t-d))  p(t-d) T 

= ym(t) t g(t)i(t-d)F(t-d)o(t-d)e(t) (4.3) 

B(q-l)u(t-d) = A(q-l)ym(t) t A(q-l)e(t) - x(t). (4.4) 

Let qr(t)  in Rn-' be equal to q(t) without its com- 
ponent u(t): 

Fr(t) = (u(t-1) . . .  u(t-ns)y(t) . .  . y(t-nR) 
j(ttd-1) . . . $(t+d-nC)) T . (4.5) 

We have the  following  property. 

Lemma  4.1:  Provided  assumption  A2  holds,  there  exists 
a  finite  positive  constant y1 such that 

T z brT Itr T- 1 
t=d't-d,t-d ' '1 t=l c (y"(t)'t  e(t)'t  x(t)'). (4.6) 

- Proof: It follows  the  line  of  the proof of Lemma 11.3.1 
of [ l l ,  noticing  that 

(4.7) 

Now if we  write  the control law  (3.11)  explicitly in 
terms of u(t) with er(t) defined  as $r(t), we have 

u(t) = (-er(tfsr(t)  +ym(t+d))/so(t). (4.8) 

But  since s (t) 2 5 , we have established  the  following 
theorem  (review  deyinition (3.12) of p(t)). 

Theorem 4: There  exists  a  constant Y such  that 

With  Theorems  3 and 4, we  are now in position 
to  establish the mean square  boundedness  of  the  signals. 
Following the discussion of the  previous  section,  we 
consider  the  boundedness problem as  shown in Fig. 1. 
The property of the  operator H: E(t) +o(t) is given by 
inequality (4.9). It i s  strictly causal with z -gain 
vT at time  T. In order  to use a small gain the;rem we 
need theinstantaneous gain e(t) to tend to  zero. In 
fact  we have: 

Lemma 4.2:  Provided x(t) is almost  surely mean square 
bounded(assumpti0n (2.4)), there  exists-positive 
random  variables  almost  surely  finite L,u such  that: 
Fur any E > O ,  if 

t/p(t) < E Vt~[q+l,q+k], q z  1 (4.10) 

then 

Proof:  Let us take e =  e, in Theorem 3.  We have 

(4.11) 

(4 .12)  

But  since x(t) is a.s.  mean  square bounded and Q,(q-') 
is a  polynomial,  there  exists an a.s.  finite  random 
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variable Z such  that 

(4.13) 
It follows  that,  with 
variable 

b15 an a.s. finite  random 

The  conclusion  follows  from Lemma A.l in the Appendix, 
noticing  with  (4.10)  that 

'1: ( t )  2 5 E - (&t, (4.14) "* 6, 

i(T) _<6l5[T+-(T0)(~ T- 1 
0 

Now using property  3  with ; = E,, we have 
This lemma shows th;t the mean square  value  of 

the instantaneous gain e(t) on any time interval 
tends to zero  as  the length of this interval tends to 
infinity. This  property is sufficient  to prove our 
main  theorem. 

Main Thecrem:  Subject to assumptions A1 to A5, the 
adaptive  controller (3.2)-(3.11) in closed loop with 
the systetn (2.1)  with  assumption  (2.4)  leads  to  mean 
square bounded signals in the  following  sense: 

with V(t) a  uniformly bounded sequence.  Then  from (4.14), 
Lemmas  A.1, A.2  of the  Appendix,  we  know  that  there 
exists an a.s.  finite  random  variable A, such that 

(4.28) 

(4.15) Hence 
T 

sup 1 t u(tf < ts: 
T  T  t=l 

a.s.  (4.16) (4.29) 

The  definitions of To, a ,  6 lead to  the  conclusion 
F(T)/T 5 I?,(l+,tM6). (4.30) 

ables such that 

(4.17) 

a.s. (4.18) 

(To,T1] such  that 

, To/;(to) > (4.19) 

Proof: Let E,  be random vari 
- .  

2 = 1 - . ; E . *  

a < ; < 1  

Let us consider  a  time interval 

Vt  E(To,T1]: t/c(t) 5 

5. ASYCIPTOTIC OPTIMALITY 

In order  to  study  optimality  of  our  adaptive 
scheme,  let us be more specific about  the  type of 
allowed  disturbances. 

A6. We assume  that  there  exists an exponentially  stable 
monic polynomial C,(q-l) with  degree 5 nc such that 

T  nay be infinite.  Outside such types  of  intervals 
(4.15),(4.16) are  satisfied. 

Since x(t)  is a.s. mean square bounded and ym(t) 
is bounde!, there  exists an a.s.  finite  random 
variable M1 such  that  (from  Theorem 4) where w(t)  is a  stochastic  process  adapted  to  the 

'asing  sub-sigma  algebras of F sequence of incre 
( F  , t E N )  genera 
inhluding  time  t. (4.20) ed by the  observations up to and 

Moreover,  we  assume  that 

= 0  a.s. (5.2) 

= w  a.s.  (5.3) 

a.s.  (5.4) 

L 

From the definition of $*, it follows  that 

e(t) = (5,-s(t-d))  ;(t-d) t (t). (4.21) T 
d *  

Since j(t) is uniformly bounded and - F  (t) is a.s. mean 
square  bounded,  there  exist  a  constant* M2 and an a.s. 
random  variable M3 such  that From (5.1),(5.4) it follows  that  (2.4) is satis- 

fied.  Hence,  from  our main theorem, the signals  are 
mean square  bounded. 

mum variance  (which  could be achieved if A(q-l),  B(q- i- ) ,  
C,(q-l) were  known)  canlbe  computed  as  follows:  let 
St(q-l),  R+(q-l), Q,(q- ) (with  degree  d-1) be the 
unique  solution of 

Following  [11,  for  example,  we  know  that  the  min 

C,(q-')B(q-') = S,(q-')A(q-') + q-dRt(q-l)B(q-l) (5.5) 

Q,(q-') = S,(q-')/B(q-'). (5.6) 

We denote a, the  vector  obtained  from S+(q-')?  R+(q-'), 
C,(q-l) as in (2.6) and -+(t) the following signal 

~+(t) = Q,(q-l)w(t). ( 5 . 7 )  

This  yields  with f?, = il + M3 
(4.23) 

Let us now use the  Bellman-Gronwell lemma 

Since ltx sexpx, we  have, using Lemma 4.2: 
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The  minimum  variance is then the variance  of .,it) 

v2 = E(i:,(t+d?/Ft) = w 2 d-1 c qti. 2 
i =O (5 

We have the  following  theorem 

Theorem  5:  Subject  to  assumptions A1 to  A6, if m- 4 )  is very strictly passive and if 8+ sat 
fies 

e t  EO. (5. 

then  the  contro 
the  system (2.1 
and 

.8) 

is- 

9) 

ller (3.2)-(3.11)  in closed loop with 
) leads  to  mean  square bounded signals 

(t)-ym(t))2!Ft-d] = v 2 a.s. (5.10) 

i.e.,  the  conditional  tracking  error  variance is 
asymptotically  optimal. 

Proof:  Following  [11, and with  the help of  Theorem 4, 
it i s  sufficient  to prove that 

1 '  lim 7 z (e(t) - .,(t)) < a a.s. (5.11) 2 
T-tw t=l 

Since  then  the  stochastic key technical Lemma  8.5.3  of 
i l l  can be used. 

In order to establish (5.11) let us introduce  the 
following  notations 

From 

Now s 
of (3 

V" 

i 

b(t) = (a+-e'(t))Tq(t-d) (5.12) 

n(t) = Y(t) - a t ) .  (5.13) 

3.3), (3.5), (3.6), (3.14) we have 

n(t) = g(t)e(t) (5.14) 

i: (t) = 7(t) -b(t). (5.15) 
ex 

nce 6, EN:, we  can use property  3 (with the help 
5)) to  write 

(t) 5 V, (t-d) + b(t)' - 2rl(t)6(t) 
"t ut 

- i(t-d)TF(t-d)$(t-d)!(t)2. (5.16) 

Then  the proof follows  exactly  the  lines of [71 and 
[81. Moreover,  the  difficulty in the proof of [81 (see 
Ex. 11.13 o f  [ll) does  not  exist in our  case  since  we 
know  that V,+(t) is uniformly bounded and that  the 
signals  are a.s. mean  square  bounded. 

6. CONCLUSION 

We have investigated  properties  of  a  minimum 
variance  controller  for  which  the  adaptation  law  incor- 
porates a signal normalization,  a  covariance  matrix 
regularization, and a  parameter  projection.  Our 
assumptions  are:  the  plant is minimum  phase, an upper 
bound of its order and its delay  are  known, and we 
KnOW a  compact  set  containing  a  stabilizing  regulator 
and the  sign and a  lower bound of its leading  coef- 
ficient. We have established  that  even in the  presence 
of mean  square bounded disturbance,  the  input-output 
signals  are  mean  square  bounded.  Moreover, if the 
noise is a  finite  moving  average process such  that its 
coloring  filter  satisfies  a very strict  passivity  con- 
dition,  then  our  controller is asymptotically  optimal. 
In the  derivation of  our  results,  we have proved the 

following lemma (compare  with Lemma 8.5.3  of [ll). 

Lemma 6: Let p(t),  e(t), .(t) be sequences  such  that 
T-1 2 
t=l 

o(T) 5 KITt c e(t) 

e(tl2 - .(t)2 5 (V(t-l))-V(t))G(t) 

E s(t) -< K2. 2 

If V(t) a  uniformly bounded sequence,  then p(T)/T is 
uniformly bounded. This  lemma  seems  to be a key 
technical lemma in the  study of stochastic  adaptive 
controllers in nonideal cases  (see [51 for example). 

t=l 

1. 

2. 

3. 

4. 

5. 

6. 
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APPENDIX 

Lemma A.l: Let v(t)  be a  sequence of positive real 
numbers  such  that 

1 E v(t) 5 v.  (A.1) 
T t=l 

Then  for  any q?  1,  k? 0, we have: 

i i )  'Ik &(q+k) 1-a , 0 5 a < 1. (A.3) 
t=q+l ta 
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Proof:  Let s(t) be defined  as  the  sum - 
. T  

we have 

v(t) = ts(t; - (t-l)s(t-1). 
Hence 

i j )  q’k 5 (qtk)’-’s(q+k) - ql-’S(q) 
t=qt1  tQ 

t qrk (t-1)(---)s(t-1). 1 1 
t=+1 (t-1)” t” 

Lemma  A.2:  Let v(t) be a  sequence o f  positive real 
numbers bounded by V .  For any a ,  0 5  3 < 1 ,  there  exists 
a  constant C such that: V(q,k) (A.4) 

t=qYt1 q’k t’(v(t-d)-v(t))  C(qtk)”.  (A.11) 
(A.5) 

Proof: ( I n  the case  d=l  to simplify notations.) We 
have 

(A.6) ‘ik t”(v(t-1)-v(t)) = -(q+k)”v(q+k) 
t=qtl 

( A . 7 )  t q%(q) t t;?;l( (tt1)“-t”)v(t). ( A .  12) 

Then  the  conclusion  follows  with  the  same  arguments  as 
those of  the  proof  of  Lemma  A.l. 

aut f r om the  mean  value  theorem and the  mono- 
tonicity  of t“-l we have 

t”- (t-h)’ -< &(t-h)’-’, h > 0 (A. 9 )  

This  yields 

(t-h)((t-h)-” - t-”) 5 ah t-&. (A. 10) 

The  conclusion  follows  taking  the  continuous 
summation. 

Figure 1 
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