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ABSTRACT : 

The existence of direct adaptive control schemes for not necessarily 

minimum phase Multiinput-Multioutput systems is stated. This result 

is based on identification of a model with a bilinear structure 

when on line pole placement is to be achieved. We establish global 

boundedness even when the norm of the residuals between the true 

plant and the assumed linear model is bounded from above by the norm 

of the signals. 

I - INTRODUCTION 

Nowadays one of the most important problem of adaptive control theory 

is that of direct adaptive control of non minimum phase systems [4]. 

It may be opposed to indirect adaptive control for which conditionned 

boundedness has been established [I],[II]. This conditionning 

generally requires that the identified model be stabilizable and 

implies constrained identification [12], [13]. We will here see 

that, in direct adaptive control, non linear identification is 

substituted for constrained identification. 

Since both input and output boundedness is required, Two kinds of 

informations about the system are needed. In indirect adaptive 

control they are given by system identification on the one hand 

and feedback computation on the other hand [i] ,... In direct 

adaptive control of minimum phase systems, they are given by 

controller identification on the one hand and knowledge of both 

the minimum phase property and the system interactor on the other 

hand [2],... For direct adaptive control of non minimum phase 

systems, they will be given by both system and controller identi- 

fication which are intmicately connected [3]. As a first consequence, 



354 

there is an increase of the parameter number as one can find as a 

common feature of the works we are aware of [4],[5],[6],[7]. The 

second consequence is a bilinear observation of the parameters in 

the output predictfon error model as shown by AstrSm in [4]. To 

get around this problem Elliott in [5] uses a partial state 

prediction error model which is linear in the parameters. However 

this only yields one piece of information about the system and 

therefore we think that only local stability may be ascertained 

(hence staying in the vicinity of the true system is the second 

piece of information). In [4],[5], the hilinear parameter esti- 

mation problem is solved by relaxation consisting at the first step 

of a classical system identification which is then used at the 

second step to linearize the bilinear observation equation. This 

is in fact very close to an indirect scheme with the problem of 

stabilizability coming in. In [7], an on line criterion minimi- 

zation scheme is proposed but since, in this algorithm, no attention 

is paid to input houndedness, it seems that only local boundedness 

can be ascertained. Nevertheless, in this case and with some 

restrictions, convergence to the global optimum is established. 

We here propose to solve the bilinear estimation problem by consi- 

dering both input and output prediction error models. However our 

result should be considered rather as a theoretical existence result 

than as a practical algorithm, Much more work remain to be done for 

converting our idea into an implementable scheme, Nevertheless our 

framework make it possible to establish global boundedness even when 

the norm of the residuals between the true plant and the assumed 

linear model is bounded from above by the norm of-the signals. In 

this formulation we can imbed such problems as reduced order model, 

neglected weak coupling or time variation effects. 

Section II is devoted to t h e  control law description assuming the 

system is perfectly known. In section III we describe our direct 

adaptive control scheme and using [!0] we give sufficient conditions 

about the estimation scheme in order to get global boundedness. 

Section IV states the existence of a modified stochastic gradient 

procedure which meets these conditions. Section V draws conclusions. 

All proofs are omitted (see [14]). 
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II - LINEAR TIME INVARIANT CONTROL SCHEME 

II.i. Choice of Multiinput-Multioutput system representation : 

Consider a MIMO system, for which, at each stage n we let u be the 
n 

control input vector (in R m) and Yn be the output vector (in R £) 

and we assume that the following controllable representation holds 

for the system : 

There exist relatively right prime polynomial matrices Al(b), hi(h) 

of appropriate dimensions such that : 

Al(b)z n = u n 

Yn : Bl(b)Zn + Wn 

(i) 

where - w is the residue between the true plant and the linear mod'el. 
n 

- z (in R m) is a partial state. 
n 

- b is the backward shift operator, 

bu = (2) n Un-i 
- AI(0) is equal to the identity matrix 

A I ( 0 )  = Z ( 8 )  

By definition this representation is appropriate for control but unfor- 

tunately not for observation. Then let us introduce input and output 

prediction error representations : For any polynomial r(b), one can 

find polynomial matrices C(b), D(b) such that (see [8]) : 

C(b) Al(b) + b D(b) Bl(b) : r(b) I 

Note that : 

(4) 

deg r(b) < Max {deg C(b)+deg Az(b), deg D(b)*deg Bl(b)+l} 

if deg denotes degree, and that if : 

(5) 

r ( o )  = 1 ( 6 )  

Then C(O) is equal to the identity matrix. 

Together with (I), (4) yields : 

r(b)Zn = C(b)Un + D(b)Yn- I - D(b)Wn_ 1 (7) 
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r(b)Un+ 1 = Al(b)(C(b)Un+ 1 + D(b)y n) - Al(b)D(b)w n (8) 

= + D(b)y n 1 ) + (r(b)I-bBl(b)D(b))w (91 r(b)Yn Bl(b)(C(b)Un - n 

And if we let : 

r(b) = i + br'(b) (i01 

At(b) = I + b Ai(b) (11) 

C(b) z I + b C'(b) (12) 

this yields : 

r'(b)u =C'(b)Un+D(b)Yn+Ai(b)(Un+C'(b)u n l+D(b)Yn_l)-Al(b)D(b)w n - n 
(13) 

Yn+r'(b)Yn_l=B1(b)(Un+C'(b)un_l+D(b)Yn_l)+(r(b)I-bBl(h)D(b))Wn 

Equations (19) may be considered as an observable form of the basic 

model as stated by the following theorem. 

Theorem : For any sequence u n ~ let Yn be given as follows : 

Yn = B(b)Un - A'(b)Yn-i (i~) 

Then if the following relations also hold : 

r'(b)u n = C'(b)Un+D(b)Yn+A~(b)(Un+C'(b)Un_l+D(b)Yn_l ) 

(15 

yn+r'(b)Yn_l = Bl(b)(Un+C'(b)Un_l+D(b)Yn_ I) 

we have : 

(I+bC' (bl)(I+bA~(b))+bD(b)Bl(b) : (l+br'(b))I (16 

(I+bA'(b))Bl(b) = B(b)(I+bAi(b)) (17 

Note that (17) establishes the connection one has between observable 

and controllable representations (see [911, and That in this implicit 

model, The prediction errors ape bilinear in the entries of Al(b) . 

Bl(b), C(b) and D(bl. 
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II.2. Control law description : 

Let us formally in%roduce the following control law which may be seen 

as a partial state model reference control : 

p(b)C(h)Un+ 1 + p(b)D(b)y n = r(b)Z(b)y: + p(b)F(b)e n (18) 

where p(b), E(b), F(b) are respectively a polynomial and polynomial 

matrices, Yn* is an output reference signal, ~nd en is the output 

prediction error as given by (9) : 

e = r(b)y n - Bl(b)(C(b)u n + D(b)Yn_ I) (19) 

= (r(b)I - bBl(b) D(b))w n (20) 

The closed loop behaviour is obtained from (8) ,(g) as follows : 

: [+Ai(b)E(b)r(b)Y~-I 

P(b)r(b)Un [+AI(b)[F(b)(r(b)I_bBI(b)D(b))_D(h)]Wn 

~ +Bl(b)E(b)r(b)Y~ 1 
= n- 

P(b)r(b)Yn [+(i+bBl(b)F(b))(r(b)i_bBl(b)D(b))p(b)Wn 

(2i) 

( 2 2 )  

Hence if r(b) and p(b) are stable polynomials, the closed loop 

system will be stable and its boundedness will only depend on the 

characteristics of w and y*. 
n n 

Moreover following [3], we verify that with appropriate choice of 

p(b), r(b), E(b), F(b) we can exhaustively describe the set of tracking 

and regulation transfer functions the plant can assume by linear 

closed loop control while meeting constraint of robust internal 

stability. Hence the control design may be reduced to finding stable 

polynomials p(b)~ r(b) and polynomial matrices E(b), F(b) such that 

the closed loop transfer functions are as "best" as possible. 

Simply to get the "best" asymptotic behaviour, i% is sufficient to 

take : 

where BI(1) + 

E(b) = E = Bl(1)+ p(1) 

F(b) = F : -Bl(1) + 

is a pseudo inverse for Bl(1). 

( 2 3 )  

(24) 
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III - A DIRECT ADAPTIVE CONTROL SCHEME 

III.i. Description of the scheme : 

In order to be able to use the partial state model reference design 

procedure described in the previous section, the matrices Al(b) 

and Bl(b) must he known. The following algorithm will work even if 

the model parameters are not known : 

At each sampling time n, we proceed in two steps : 

1 - Identification of both model and controller matrices using 

prediction errors representation (13). This gives time varying 

polynomial matrices Ain(b) , Bin(b) , Cn(b) , Dn(b). 

2 - Computation of the control signal using (18). 

Let us make these steps more explicit, 

III.2. Identification step : 

, ~ denote the output and input signals respectively when Let ~n n 

filtered by the polynomial p(b) : 

~n = p(b)y n (25 

= p(b)u n (26 n 

Let 8 be a block matrix defined as follows : 
n 

Nd Nc) 
e t = (D ° ... D C 1 ... C 
n n n n n 

(27 

where - D i (resp. C i) 
n n 

- N d ( r e s p .  N ) 
c 

(reap. C(h)). 

are mx£ (resp. mxm) scalar matrices. 

is the maximal assumed degree of D(b) 

Let Cn be the vector 

t = ( --t --t --t --t 

n Yn-i "'" Yn-I-N d Un_ I ... u ) n-N c 

Let A i (resp. B i) be mxm (resp. £xm) scalar matrices and n n 

(28 
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N a (resp. N b) be the maximal assumed degree of Ai(h) (resp. Bl(b)). 

Then we can rewrite observation equations (13) in the following way : 

N h 

~n + r'(b)~n-1 : [ Bn(Ot¢ '+~ ") + ey (29) 
i=o n n-l n-l n 

N 
t a _ u 

: (~n~n+ I + Z A (e ~n_i+Un_i ) + e (30) 
i:o n 

where gY (resp. u), a vector in R £ (resp. Rm)~ is the filtered 
n 

residue of our time varying linear model. 

This identification step consists in defining new matrices 8 n , 

A i B i given all past and present observations. As mentionned 
n ' n 

earlier, this is a bilinear filtering problem. 

Let us here just give a full list of sufficient conditions this 

filter would have to meet in order to get global boundedness (in 

section IV we describe such a filter). 

Let be the following block matrix : 
n 

N BNb) 
~n = (A~ ... A a B o ,.. 

n n n 
(31) 

and let 
n 

be the following vector : 

~t = (-t -t -t ~t -N ) 
n Yn "'" Yn-I-Nd-N Un "'" n-N c 

(32) 

where : 

N = Max {N a , N h} (38) 

Definition : a sequence {v } of positive real numbers is said to 
n 

have the property of mean n - smallness relatively to {s n} iff : 

3(Z,K) such that : 

Vk, Vq such that : Vn 6 [q*l, q+k]-- s n 

i q+k 
then : ~ I v n < n 

n=q*l 

Our set of assuptions is : 

x (34) 

HI1 : }{On{{ < M i , {{¢n{{ < M 2 (35) 
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HI2 : There exists a sequence 

that : 

s of positive real numbers such 
n 

~ s + Max {s,ll ~nll } + S Max {s, U en" } ~ Sn n-i (36 )  

where s,S are strictly positive constants~ and : 

O~ ~ <I (ST) 

and such that : 

II 6Ynll +11 ~nll 
(i) ~ v < 1 

s 
n 

{,, u,,} 
(ii) - has the property of mean ~l smallness 

n 
relatively to {s n} 

F ~ 
(iii) tllen-en_lll~ has the property of mean n2 smallness 

relatively to {s n} 

( 38 )  

Remark : Since the norm used in (38) has not been defined, using norm 

equivalence, this inequality has to be considered as follows : 

For any norm, there exists an imposed constant such That (38) holds 

with this constant instead of I. 

III.3. Control step : 

Given polynomials p(b),r(b) and the time varying matrices 8n" @n" 

first we compute En(b), Fn(b) (see discussion in Section If) such 

that : 

HCI : En(b), Fn(b) are polynomial matrices whose coefficients are 

locally bounded functions of en ' ~n and whose degrees are 

bounded from above. 

Then the next stage control Un+ 1 is given by 

Un+ I : En(b) r(b)y~ ~ Fn(b ) eY _ e t 
n n Cn+l 

N -i 
P 

Un+l : - Z Pi+l u + n-i n+i 
i=o 

(39} 

(#o) 
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where 

N 

P b i p(b) = i + X 
i:l 

III.4. Behavioural Theorem : 

Pi (41) 

if : HI1, HCI hold 

is bounded Yn 

p(b) and r(b) are stable polynomials 

deg r(b) ~ Max {N a , N b} + Min {N d , N c} + 1 

Then there exist strictly positive n I , ~2 

then : 

(i) Un ' Yn are bounded 

(it) if moreover, we have 

(42) 

such that if HI2 holds 

HI3 : lira U 8n-en_iI1 : O 
n -~ 

HC2 : lira llEn(b)-En_l(b)ll : O 

lim llFn(b)-Fn_l(b)II : O 
n ~  

Then we asymptotically meet (92), namely 

lim llr(b)(?n-hln(b)En(b)Yn-i ~ ) - (IebBln(b)Fn(b))~[ll,, : 0 (43) 

IV - A DEAD ZONE STOCHASTIC GRADIENT ESTIMATION ALGORITHM 

IV.l. Estimation algorithm : 

The aim of this section is essentially to show that algorithms 

meeting assumptions HI1, HI2 do exist. For that, let us assume that 

mepresentatlon (13) hold, with w n characterized as follows : 

Let Cn(On , ~n ) be the identification error vector as defined by 

(29), (30) we assume the following : 
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HP : There exists unknown matrices O*, ~* such that 

en(O*'~*) ]{ 
v n Vn, Sn 

~V< 1 

where - {Sn},{v n} are sequences of known strictly positive real 

numbers such that {v } has the property of mean ~ - smallness 
n 

relatively to {s } and {s } meets (38). 
n n 

- an upperbound X 2 of tOO*It 2 +li~*ll 2 is known. 

- upper bounds of N a , N b , N c , N d are known. 

(44) 

Note that the existence of 0*, 9" implicitely yields a relation such 

(4) and therefore implies a consistent choice of degrees of AI(h), 

Bl(b), C(b), D(b), r(b). In peculiar since Al(b) may be improper and 

Bl(b), D(b) singular, a confident choice which also meets (42) is : 

deg r(b) ~ N c (45) 

The assumption here is very mild and allows to deal with such problems 

as reduced ordem model, neglected weak coupling, non linearities or 

time variation effects (see [ll]). 

Let Jn(@,~) be a least square criterion with forgetting factor defined 

as follows : 

J (O ~) = Z U i (46) 
n ' i=l s" 

l 

A classical estimation procedure lies in minimizing Jn(O,~). 

Unfortunately, this criterion is not convex and HI2 (iii) does not 

hold. Therefore we propose the following procedure : 

Let On,#n he recursively defined as follows : 

(8n,¢ n) 6 Arg Min ll@-8n_ 1 
g,¢EX n 

2 
II 

where Xn is the set of matrices O,~ such that : 

Cl : II Oil 2+11,tI 2< x 2 

c2 : Jn (@'~) ~ Jn 
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c3 : lle-eill 2 ~ llei+l-eill 2 Vi 6 [n-I, n-2]. 

where - I is a fixed integer 

_ ~ < l-__/V (48) 
I*V 

- Jn : ~ Jn-1 + Vn ' Jo : 0 (49) 

The introduction of C2 makes the algorithm look like a stochastic 

gradient algorithm, while CI, C3 force the new estimation to lie 

outside a time varying dead zone : 

We have the following property : 

IV.2. Identification theorem : 

8n,~ n are well defined and for any n, we have 

i )  I1~11 2+11~11 2 < X 2 

en(Gn'~n) I+V < 1 
it) ~n ~ 2 

has the property of mean ql smallness 

relatively to {s n} , where nl is any 

and { en(Gn'~n) 

< 1} 
number such that : 

n I > 

and n has been introduced in HP. 

(so) 

iii) For any n 2 , there exists an integer I such that {liSn-@n_lll } 

has the property of mean n2 smallness relatively to {s n} 

IV.3. Discussion : 

We have stated the existence of identification algorithms which meet 

conditions HI with very mild assumption about the plant. 

Nevertheless a direct implementation of those algorithms may be very 

difficult. On the contrary, indirect schemes work out decomposed 

implementation. This decomposition consists at the first step in a 

linear model estimation and at the second step in the controller 

computation (see [i]). However this computation may be untractable 
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without any explicit coordination betweun these two steps, coordina- 

tion which is implicit in direct schemes. 

V - CONCLUSION 

An adaptive direct control scheme is presented in this paper. It is 

obtained with a pole placement as underlying design method. The 

characteristics of this technique are : 

- estimation of more parameters than those required for control, 

- an estimated model which is bilinear in the parameters and may be 

seen as both input and output prediction errors model. 

Looking at the underlying time varying control scheme we give a full 

list of sufficient conditions the estimation algorithm must meet in 

order to get global boundedness. Then we show how a modified stochastic 

gradient procedure can meet these conditions even when the norm of the 

residuals between the true plant and the assumed linear model is 

bounded from above by the norm of the signals. 

Nevertheless our statement should be considered rather as a theoretical 

existence result than as a practical algorithm. In peculiar we have 

considered only the boundedness problem. Much more work remain to be 

done for converting our idea into an implementable scheme with both 

boundedness and "good" behaviour properties. An interesting opening 

may be found in the methods described in [7] but modified so as to 

include sufficient properties we have exhibited here for ~lobal 

boundedness. 
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