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Abstract. In this paper the flatness [M. Fliess, J. Lévine, P. Martin, and P. Rouchon, Internat.
J. Control, 61 (1995), pp. 1327–1361, M. Fliess, J. Lévine, P. Martin, and P. Rouchon, IEEE Trans.
Automat. Control, 44 (1999), pp. 922–937] of heavy chain systems, i.e., trolleys carrying a fixed length
heavy chain that may carry a load, is addressed in the partial derivatives equations framework. We
parameterize the system trajectories by the trajectories of its free end and solve the motion planning
problem, namely, steering from one state to another state. When considered as a finite set of
small pendulums, these systems were shown to be flat [R. M. Murray, in Proceedings of the IFAC
World Congress, San Francisco, CA, 1996, pp. 395–400]. Our study is an extension to the infinite
dimensional case.

Under small angle approximations, these heavy chain systems are described by a one-dimensional
(1D) partial differential wave equation. Dealing with this infinite dimensional description, we show
how to get the explicit parameterization of the chain trajectory using (distributed and punctual)
advances and delays of its free end.

This parameterization results from symbolic computations. Replacing the time derivative by
the Laplace variable s yields a second order differential equation in the spatial variable where s is a
parameter. Its fundamental solution is, for each point considered along the chain, an entire function
of s of exponential type. Moreover, for each, we show that, thanks to the Liouville transformation,
this solution satisfies, modulo explicitly computable exponentials of s, the assumptions of the Paley–
Wiener theorem. This solution is, in fact, the transfer function from the flat output (the position of
the free end of the system) to the whole state of the system. Using an inverse Laplace transform, we
end up with an explicit motion planning formula involving both distributed and punctual advances
and delays operators.
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Introduction. The notion of flatness [3, 4] has proven to be relevant in many
problems where motion planning problems have been solved [10, 5]. The existence
of a flat output is the key to explicit formulas that can be implemented as open-
loop controllers. Many systems of engineering interest are flat. So far the dynamics
under consideration have been nonlinear ordinary differential equations, constant of
varying delay equations, or even partial differential equations. In these cases the open-
loop controller expression involved algebraic computations, punctual advances and
delays [11, 6, 12], distributed advance and delay operators [12, 5, 14, 16], composition
of functions [15], etc. In this paper we use both distributed and punctual advances
and delays operators.

The heavy chain systems under consideration in this paper are defined by a trolley
carrying a fixed length heavy chain to which a load may be attached. The dynamics
are studied in a fixed vertical plane. When approximated as a finite set of small
pendulums, such heavy chain systems were shown to be flat (see [13]). Their trajec-
tories can be explicitly parameterized by the trajectories of their free ends. These
parameterizations involve numerous derivatives (twice as many as the number of pen-
dulums). When this number goes to infinity, the derivative order goes to infinity as
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well, yielding series expansions. This makes these relations difficult to handle and to
use in practice.

In order to overcome these difficulties, we consider infinite dimensional descrip-
tions of heavy chain systems. Around the stable vertical steady-state and under the
small angle assumption, the dynamics are described by second order ordinary differ-
ential equations (dynamics of the load at position y(t)) coupled with one-dimensional
(1D) wave equations (dynamics of the chain X(x, t)), where wave speed depends on x,
the spatial variable along the chain length.

This combined ordinary and partial differential equation description turns out to
be a significant shortcut to an explicit motion planning formula. Instead of an infinite
number of derivatives, the explicit parameterization of the trajectories involves a small
number of both distributed and punctual advances and delays. The controllability
of such hybrid systems could be analyzed via Hilbert’s uniqueness method [8, 9], as
done in [7]. The work presented here is also a constructive proof of the controllability
of these systems in the sense that it provides the open-loop control for steering the
system from any given state to any other state. In a real application it should be used
as a feedforward term complemented by a closed-loop controller using the energy
method as proposed in [2].

In the case of a single homogeneous heavy chain as depicted in Figure 1.1 (see
section 1 for details), our explicit parameterization shows that the general solution of

∂

∂x

(
gx

∂X

∂x

)
− ∂2X

∂t2
= 0

is given by the integral

X(x, t) =
1

2π

∫ π

−π

y(t+ 2
√

x/g sin θ) dθ,(0.1)

where t �→ y(t) is any smooth-enough time function: X(0, t) = y(t) corresponds then
to the free end position; the control u(t) = X(L, t) is the trolley position.

For the general cases, we show here that relationships similar to (0.1) exist. They
are expressed by (2.2) and (3.2). The structure is similar, but the moving averages
involve weights (i.e., kernels) depending on the mass distribution. More precisely,
given any mass distribution along the chain and any punctual mass at x = 0, we
prove that there is a one-to-one correspondence between the trajectory of the load t �→
y(t) = X(0, t) and the trajectory of the whole system (namely, the cable and the
trolley): t �→ X(x, t) and t �→ u(t) = X(L, t). This correspondence yields the explicit
parameterization of the trajectories: X(x, ·) = Axy, where {Ax} is a set of operators
including time derivations, advances, and delays. In other words, (x, t) �→ (Axy)(t)
verifies the system equations for any smooth function t �→ y(t). For each x, the
operator Ax admits compact support. Thus it is possible to steer the system from
any initial point to any other point in finite time.

This parameterization results from symbolic computations. Replacing the time
derivative by the Laplace variable s yields a second order differential equation in x
with s as a parameter. For each x, its fundamental solution Ax is an entire function of
s of exponential type. Furthermore, for each x we show, thanks to the Liouville trans-
formation, that s �→ Ax(s) satisfies the assumptions of the Paley–Wiener theorem,
modulo explicitly computable exponentials of s.

The paper is organized as follows.
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x=0

x=L

X(x,t)

u(t)=X(L,t)

0

Fig. 1.1. The homogeneous chain without any load.

1. In section 1 we consider the case of a homogeneous chain without any load.
Although it is the easiest case by far, it is explanatory, and it helps in under-
standing the meaning and control interest of our results.

2. In section 2 we address the case of an inhomogeneous chain without any
load. The problem of the singularity at x = 0 of the second order differential
equation receives special treatment. We prove the flatness of this system by
Theorem 1.

3. In section 3 we solve the general problem of an inhomogeneous chain carry-
ing a punctual load. By contrast with the previous case, the corresponding
second order differential is not singular. Flatness of this system is proven by
Theorem 2.

1. The homogeneous chain without any load. The computations are simple
and explicit and summarize the goal of this paper.

Consider a heavy chain in stable position as depicted in Figure 1.1. Under the
small angle approximation it is ruled by the dynamics1


∂

∂x

(
gx

∂X

∂x

)
− ∂2X

∂t2
= 0,

X(L, t) = u(t),

(1.1)

where x ∈ [0, L], t ∈ R, X(x, t)−X(L, t) is the deviation profile, g is the gravitational
acceleration, and the control u is the trolley position.

Thanks to the classical mapping y = 2
√

x
g , we get

y
∂2X

∂y2
(y, t) +

∂X

∂y
(y, t)− y

∂2X

∂t2
(y, t) = 0.

1This model was used in the historical work of D. Bernoulli on a heavy chain system where the
zero-order Bessel functions appear for the first time; see [18, pp. 3–4].
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Use Laplace transform of X with respect to the variable t (denoted by X̂ and with
zero initial conditions, i.e., X(., 0) = 0 and ∂X

∂t (., 0) = 0) to get

y
∂2X̂

∂y2
(y, s) +

∂X̂

∂y
(y, s)− ys2X̂(y, s) = 0.

Less classically, the mapping z = ısy gives

z
∂2X̂

∂z2
(z, s) +

∂X̂

∂z
(z, s) + zX̂(z, s) = 0.(1.2)

This is a Bessel equation. Its solution writes in terms of J0 and Y0 the zero-order

Bessel functions. Using the inverse mapping z = 2ıs
√

x
g , we get

X̂(x, s) = A J0(2ıs
√

x/g) +B Y0(2ıs
√

x/g).

Since we are looking for a bounded solution at x = 0, we have B = 0. Then

X̂(x, s) = J0(2ıs
√

x/g)X̂(0, s),(1.3)

where we can recognize the Clifford function C′ (see [1, p. 358]). Using Poisson’s
integral representation of J0 [1, formula 9.1.18],

J0(z) =
1

2π

∫ π

−π

exp(ız sin θ) dθ,

we have

J0(2ıs
√

x/g) =
1

2π

∫ π

−π

exp(2s
√

x/g sin θ) dθ.

In terms of Laplace transforms, this last expression is a combination of delay operators.
Turning (1.3) back into the time-domain, we get

X(x, t) =
1

2π

∫ π

−π

y(t+ 2
√

x/g sin θ) dθ(1.4)

with y(t) = X(0, t).
Relation (1.4) means that there is a one-to-one correspondence between the

(smooth) solutions of (1.1) and the (smooth) functions t �→ y(t). For each solu-
tion of (1.1), set y(t) = X(0, t). For each function t �→ y(t), set X by (1.4) and u
as

u(t) =
1

2π

∫ π

−π

y(t+ 2
√

L/g sin θ) dθ(1.5)

to obtain a solution of (1.1).
Finding t �→ u(t), steering the system from the steady-state X ≡ 0 at t = 0 to

the other one X ≡ D at t = T becomes obvious. Our analysis shows that T must be
larger than 2∆, where ∆ = 2

√
L/g is the travelling time of a wave between x = L

and x = 0. It consists only in finding t �→ y(t) that is equal to 0 for t ≤ ∆ and to D
for t > T −∆ and in computing u via (1.5).
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Fig. 1.2. Steering from 0 to 3L/2 in finite time T = 4∆. Regularly time-spaced positions of the
heavy chain system are represented. The Matlab simulation code can be obtained from the second
author via email.

0
0

yu

Fig. 1.3. The steering control, trolley position u, and the “flat output,” the free end y.

Figure 1.2 illustrates computations based on (1.4) with

y(t) =



0 if t < ∆,

3L
2

(
t−∆
T−2∆

)2 (
3− 2

(
t−∆
T−2∆

))
if ∆ ≤ t ≤ T −∆,

3L
2 if t > T −∆,

where the chosen transfer time T equals 4∆. For t ≤ 0 the chain is vertical at position
0. For t ≥ T the chain is vertical at position D = 3L/2.

Plots of Figure 1.3 show the control [0, T ]  t �→ u(t) required for such motion.
Notice that the support of u̇ is [0, T ], while the support of ẏ is [∆, T − ∆]. To be
consistent with the small angle approximation, the horizontal acceleration of the end
point ÿ must be much smaller than g. In our computations the maximum of |ÿ| is
chosen rather large, 9g/16. This is just for tutorial reasons. In practice, a reasonable
transition time is T = 5∆ yielding |ÿ| ≤ g/4.

2. The inhomogeneous (i.e., variable section) chain without any load.
Formula (1.4) can be extended to a heavy chain with variable section and carrying
no load (see Figure 2.1). Such an extension deserves special consideration because of
the singularity of the partial differential system at x = 0.
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Such a system is governed by the equations


∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g

∂2X

∂t2
= 0,

X(L, t) = u(t),

(2.1)

where x ∈ [0, L], t ∈ R, and u is the control. The tension of the chain is τ(x) with
τ(0) = 0 and τ(x) = gx+O(x2), while τ ′(x)/g > 0 is the mass distribution along the
chain. Furthermore, we assume that there exists a > 0 such that τ(x) ≥ ax ≥ 0.

Theorem 1. Consider (2.1) with [O,L]  x �→ τ(x) a smooth increasing function
with τ(0) = 0 and τ ′ > 0. There is a one-to-one correspondence between the solutions
[0, L]×R  (x, t) �→ (X(x, t), u(t)) that are C3 in t and the C3 functions R  t �→ y(t)
via the formulas

X(x, t) =
L1/4√g

2π3/2(τ(x)τ ′(x))1/4

√
G(2

√
τ(x)/g)

∫ π

−π

y
(
t+KG(2

√
τ(x)/g) sin θ

)
dθ

+
1

(τ(x)τ ′(x)/g)1/4

∫ 2
√

τ(x)
ag

−2
√

τ(x)
ag

K(G(2
√

τ(x)/g), ξ) ẏ (t+ ξ) dξ,

u(t) =X(L, t)

(2.2)

with

y(t) = X(0, t),

where the constant K and the functions G and K are defined by the function τ via
formulas (2.15) and (2.29).

The proof of this result is organized as follows.

1. A simple time-scaling simplifies the system. We shift from X to Y.
2. Symbolic computations where time derivatives are replaced by the Laplace

variable s are performed.
3. The solution Y (x, s) is factorized as Y (x, s) = Y (0, s)A(x, s). A partial dif-

ferential system is derived for A(x, s).
4. A Liouville transformation is performed.
5. In these new coordinates the preceding transformed equation is compared to

an equation that we have already solved in section 1, namely, the equation
of a single homogeneous chain. We denote by D(x, s) the difference between
these two solutions.

6. D(x, s) is proven to be an entire function of s and of exponential type.
7. A careful study of the Volterra equation satisfied by D(x, s) shows that, for

each x, the restriction to D(x, s)/s to the imaginary axis is in L2.
8. Thanks to the Paley–Wiener theorem, we prove that, for each x,D(x, s)/s can

be represented as a compact sum (discrete and continuous) of exponentials
in s.

9. Gathering all the terms of A(x, s), we get an expression involving the Bessel
function J0 (the solution for a homogeneous chain) and exponentials in s
multiplied by s. This gives (2.2).
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X(x,t)

x=L

x=0

u(t)=X(L,t)

Fig. 2.1. The inhomogeneous chain without any load.

Proof. Simple change of coordinates Let2 Y (x, t) = X (τ(x)/g, t).

2One may easily show the following result: if Y satisfies

∂

∂x

(
xτ ′ ◦ τ−1(gx)

∂Y

∂x

)
− ∂2Y

∂t2
= 0,(2.3)

then X(x, t) = Y (τ(x)/g, t) satisfies

∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g

∂2X

∂t2
= 0.(2.4)

To show this, denote ◦ the composition operator with respect to the first variable. ThusX = Y ◦(τ/g).
Then

∂

∂x

(
τ
∂X

∂x

)
=

∂

∂x

(
ττ ′/g

∂Y

∂x
◦ (τ/g)

)
.(2.5)

On the other hand, a factorization of (2.3) gives

∂2Y

∂t2
=

∂

∂x

((
τ/gτ ′

∂Y

∂x
◦ (τ/g)

)
◦ τ−1(gx)

)
=

∂

∂x

(
τ−1(gx)

) ∂

∂x

(
ττ ′/g

∂Y

∂x
◦ (τ/g)

)
◦ τ−1(gx).

So by using (2.5)

∂

∂x

(
τ−1(gx)

) ∂

∂x

(
τ
∂X

∂x

)
◦ τ−1(gx) =

∂2Y

∂t2
.

Yet
∂

∂x

(
τ−1(gx)

)
=

g

τ ′ ◦ τ−1(gx)
,

so

∂

∂x

(
τ
∂X

∂x

)
◦ τ−1(gx) =

1

g
τ ′ ◦ τ−1(gx)

∂2Y

∂t2
,

or, equivalently,

∂

∂x

(
τ
∂X

∂x

)
=

τ ′

g

∂2Y

∂t2
◦ (τ/g) = τ ′

g

∂2X

∂t2
,

which gives the conclusion.
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Now (2.1) gives

∂

∂x

(
τ1(x)

∂Y

∂x

)
− ∂2Y

∂t2
= 0,(2.6)

where τ1(x) = xτ ′(τ−1(gx)).
Symbolic computations. Replacing the time derivation by s gives

∂

∂x

(
τ1(x)

∂Y

∂x

)
− s2Y = 0.(2.7)

Factorization. It is very easy to check that Y (x, s) = Y (0, s)A(x, s) is the solution
of (2.7), provided that A(x, s) is solution of the following partial differential system:


∂

∂x

(
τ1(x)

∂A

∂x

)
− s2A = 0,

A(0, s) = 1.

(2.8)

Existence of a solution. System (2.8) admits a smooth solution that is an entire
function of exponential type in s. This solution reads

A(x, s) =
∑
i≥0

s2i

i!
fi(x),(2.9)

where 


f0 = 1,

fi(x) =

∫ x

0

1

τ1(l)

∫ l

0

ifi−1(s)ds dl.
(2.10)

It is very easy to check that, formally,
∑

i≥0
s2i

i! fi(x) is solution of (2.8): since

∂

∂x

(
τ1(x)

∂

∂x
fi(x)

)
= ifi−1(x),

we can write 


∂

∂x


τ1(x)

∂

∂x

∑
i≥0

s2i

i!
fi(x)


 = s2

∑
i≥0

s2i

i!
fi(x),

∑
i≥0

s2i

i!
fi(0) = f0(0) = 1.

(2.11)

Now let us address the convergence by proving that for all i

|fi(x)| ≤ 1

i!

(x

a

)i

.(2.12)

Suppose that (2.12) is true for a given i. (It is obviously the case for i = 0.) Let us
inductively prove that it is also true for i+ 1. From (2.10) we get

|fi+1(x)| ≤
∫ x

0

li+1

τ1(l)aii!
dl.
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Yet τ ′ ≥ a, so τ1(x) ≥ ax ≥ 0, and then

|fi+1(x)| ≤
∫ x

0

li

ai+1i!
dl

≤ 1

(i+ 1)!

(x

a

)i+1

,

which is (2.12) at rank i+ 1.

So, gathering (2.9) and (2.12) and using 1
(i!)2 ≤ 22i

(2i)! , we get

A(x, s) ≤
∑
i≥0

s2ixi

(i!)2ai
≤
∑
i≥0

s2i22ixi

(2i)!ai
≤ exp

(
2s

√
x

a

)
.(2.13)

This proves that, for each x, s �→ A(x, s) is an entire function of s of exponential type.
Liouville transformation. The Liouville transformation

(x,A) �→ (z, u)

(see, e.g., [19, p. 110]) turns equations of the form

d

dx

(
p(x)

dA

dx

)
+ (λr(x)− q(x))A = 0

with p(x) > 0 into

d2u

dz2
+ (ρ2 − h(z))u = 0,

where ρ is depending only on λ and can be considered as a parameter.
Here

p(x) = τ1(x), λ = −s2, r(x) = 1, q(x) = 0, x ∈ [0, L],

and the transformation is defined for each x > 0. Nevertheless, it can be extended to
x = 0 because around 0, τ1(x) ≈ gx with g > 0. It turns (2.8) into

d2u

dz2
−K2s2u = h̄(z)u(2.14)

with

z =
1

K

∫ x

0

√
1

τ1
≡ G(2

√
x), K =

1

π

∫ L

0

√
1

τ1
,(2.15)

u(z, s) = (τ1(x))
1/4

A(x, s),(2.16)

h̄(z) =
F ′′(z)
F (z)

with F (z) ≡ (τ1(x))
1/4

.(2.17)

Notice that since τ1(x) ≥ ax with a > 0,
∫ x

0
1/τ1 is a smooth function of

√
x, and

thus G is well defined and invertible. Similar arguments imply that h̄ is, in fact, a
function of z2. Thus h̄(z) = h(z2), and we have the following Laurent series around
0:

h̄(z) = h(z2) =
−1
4z2

+O(1).
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Comparison to a simpler solution. We know from [1, formula 9.1.49, p. 362] that

u0(z, s) = (Lg)1/4
√

z

π
J0(iKsz)(2.18)

satisfies

d2u0

dz2
−K2s2u0 =

(−1
4z2

)
u0.(2.19)

According to the Laurent series of h̄, we compare the solutions of (2.14), namely,
u(z, s), and (2.19), namely, u0(z, s). Let D(z, s) = u(z, s)− u0(z, s). We deduce from
(2.14) and (2.19) that

d2D

dz2
−K2s2D =

(
h(z2) +

1

4z2

)
u0 + h(z2)D.(2.20)

Since z = G(2
√
x) with G smooth and invertible, we have from (2.9) and (2.16)

u(z, s) = (Lg)1/4
√

z

π
+O(z5/2).

Then it is easy to check that for each s, D is a C1 function of z around 0 withD(0, s) =
0 and D′(0, s) = 0. Equation (2.20) can be turned into the following integral equation
(see [19, p. 111]):

D(z, s) =
1

Ks

∫ z

0

sinh(Ks(z − t))

(
h(z2) +

1

4t2

)
u0(t, s)dt

+
1

Ks

∫ z

0

sinh(Ks(z − t))h(t2)D(t, s)dt.

(2.21)

Proving that C  s �→ D(z, s) is an entire function of exponential type. We al-
ready know that A(x, s) and thus u(z, s) (by (2.16)) are entire functions of exponential
type in s. On the other hand, for each z, s �→ u0(z, s) is also an entire function of s
of exponential type as J0 is. This gives the conclusion.

Proving that iR  s �→ D(z, s)/s belongs to L2. For each z, we need only an
estimation of D(z, iw) as w tends to ∞. For the sake of simplicity, we consider here
w �→ D(z, iw) for w > 0 large enough. The case w < 0 is similar. Classically (see, for
instance, [19, p. 112]), let M(z, w) = sup0≤ζ≤z |D(ζ, iw)|. Using (2.21), we will get
an estimation of M(z, w). This gives

KwM(z, w) ≤ I1(z, w) + I2(z, w)(2.22)

with

I1(z, w) =

∫ z

0

∣∣∣∣h(t2) + 1

4t2

∣∣∣∣ |u0(t, iw)| dt,

I2(z, w) =

∫ z

0

∣∣h(t2)∣∣ |D(t, iw)| dt.

We know that

0 ≤ z ≤ π, |u0(t, iw)| ≤ (Lg)1/4
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since J0 is bounded by 1 on the real axis. We know also that h(t2)+1/4t2 is bounded
on [0, π]. Thus the integral I1 is bounded by a constant K1 > 0, independent of
z ∈ [0, π] and w,

I1(z, w) ≤ K1.(2.23)

Next, to majorate I2 we split it into

I2(z, w) =

∫ γ/w

0

∣∣h(t2)∣∣ |D(t, iw)| dt︸ ︷︷ ︸
I′
2(z,w)

+

∫ z

γ/w

∣∣h(t2)∣∣ |D(t, iw)| dt︸ ︷︷ ︸
I′′
2 (z,w)

,

where γ > 0 is a parameter we will choose afterwards. A simple but quite tedious
computation gives (using J0(z) = 1− 1

4z
2 + ◦(z2))

D(z, s) =
√
z cs2z2(1 + µ(s2z2)),

where c is a constant and µ is a smooth function such that µ(0) = 0. Using this last
expression in I ′2, we get

I ′2(z, w) ≤
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)

,(2.24)

where b > 0 is such that
∣∣h(t2)∣∣ ≤ b/(4t2) for all t ∈]0, π]. On the other hand, it is

easy to check that

I ′′2 (z, w) ≤
bw

4γ
M(z, w).(2.25)

Gathering (2.24) and (2.25), we get

I2(z, w) ≤
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)
+

bw

4γ
M(z, w).(2.26)

Thanks to the majorations (2.23) and(2.26), we get

KwM(z, w) ≤ K1 +
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)
+

bw

4γ
M(z, w).

This majoration is valid for z ∈]0, π], w > 0, and γ > 0 such that γ/w ≤ z. Now we
take

γ =
b

2K
.

Thus for each z > 0 and each w > γ/z, we have

(K − b/4γ)wM(z, w) ≤ K1 +
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)

.

Since K − b/4γ = K/2, we have

1

2
KwM(z, w) ≤ K1 +

√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)

.(2.27)
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Thus there exists C0 > 0 such that for each z ∈]0, π] and for every w > γ/z,

|D(z, iw)| ≤ C0√|w| .(2.28)

Since D(z, 0) ≡ 0, we deduce for each z > 0 that s �→ D(z, s)/s remains an entire
function of s (of exponential type), and the above majoration says that iR  s �→
D(z, s)/s belongs to L2.

Using the Paley–Wiener theorem. The Paley–Wiener theorem [17, p. 375] ensures

that, for any z ∈ [0, π], there exists [−G−1(z)√
a

, G−1(z)√
a

]  t �→ K(z, t) in L2 such that

D(z, s)/s =

∫ G−1(z)√
a

−G−1(z)√
a

K(z, ξ) exp (sξ)dξ.(2.29)

The integral bounds results from the following facts.
1. Via (2.16), 2

√
x = G−1(z), and (2.13), we have

∀s ∈ C, |(u(z, s)| ≤ N(z) exp

(
|s| G

−1(z)√
a

)

for some N(z) > 0.
2. A well-known property on J0 implies that

∀s ∈ C, |(u0(z, s)| ≤ N0(z) exp(|s| zK)

for some N0(z) > 0.

3. Since τ1x ≥ ax, (2.15) implies that zK < G−1(z)√
a

.

4. Thus

∀s ∈ C, |D(z, s)| = |u(z, s)− u0(z, s)| ≤ (N(z)+N0(z)) exp

(
|s| G

−1(z)√
a

)
.

Conclusion.

(u(z, s)− u0(z, s))/s =

∫ G−1(z)√
a

−G−1(z)√
a

K(z, ξ) exp (sξ)dξ.

This gives

u(z, s) =
(Lg)1/4√

π

√
zJ0(iKsz) +

∫ G−1(z)√
a

−G−1(z)√
a

sK(z, ξ) exp(sξ)dξ.

Pulling back this relation in the (x,A) coordinates, we deduce using (2.16) that

A(x, s) =
(Lg)1/4√

π

1

(τ1(x))1/4

√
G(2

√
x)J0(iKsG(2

√
x))

+
1

(τ1(x))1/4

∫ 2
√

x
a

−2
√

x
a

sK(G(2
√
x), ξ) exp (sξ)dξ.
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Then we quickly get Y (x, s) = Y (0, s)A(x, s). This gives in the time domain

Y (x, t) =
(Lg)1/4√

π

1

(τ1(x))1/4

√
G(2

√
x)

1

2π

∫ π

−π

Y (0, t+KG(2
√
x) sin θ)dθ

+
1

(τ1(x))1/4

∫ 2
√

x
a

−2
√

x
a

K(G(2
√
x), ξ)

[
∂

∂t
Y (0, t+ ξ)

]
dξ.

Then substituting

X(x, t) = Y (τ(x)/g, t) ,

Y (0, t) = X(0, t),

∂Y

∂t
(0, t) =

∂X

∂t
(0, t),

we get

X(x, t) =
L1/4√g

2π3/2(τ(x)τ ′(x))1/4

√
G(2

√
τ(x)/g)

∫ π

−π

y(t+KG(2
√

τ(x)/g) sin θ)dθ

+
1

(τ(x)τ ′(x)/g)1/4

∫ 2
√

τ(x)
ag

−2
√

τ(x)
ag

K(G(2
√

τ(x)/g), ξ) ẏ (t+ ξ) dξ

(2.30)

with y(t) = X(0, t).
Remark. In the case of a homogeneous chain, we can substitute

τ(x) = gx, τ ′(x) = g, τ1(x) = gx = τ(x),

K =
2

π

√
L

g
, z = G(2

√
x) = π

√
x

L
,K = 0,

and (2.30) reads

X(x, t) =
1

2π

∫ π

−π

y

(
t+ 2

√
x

g
sin θ

)
dθ,

which is indeed identical to (1.4).

3. The inhomogeneous chain with punctual load. The system of Figure 3.1
consists of a heavy chain with a variable section carrying a punctual load m. Small
deviations X(x, t) − u(t) from the vertical position are described by the partial dif-
ferential system 



∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g

∂2X

∂t2
= 0,

∂2X

∂t2
(0, t) = g

∂X

∂x
(0, t),

X(L, t) = u(t),

(3.1)

where u is the control. The tension in the chain writes τ(x): τ(0) = mg, and τ ′(x)/g >
0 is the mass distribution along the chain.
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X(x,t)

x=L

x=0

u(t)=X(L,t)

Fig. 3.1. The inhomogeneous (variable section) chain with punctual load.

Theorem 2. Consider (3.1) with [0, L]  x �→ τ(x) a smooth increasing function
with τ(0) = m. There is a one-to-one correspondence between the solutions [0, L]×R 
(x, t) �→ (X(x, t), u(t)) that are C3 in t and the C3 functions R  t �→ y(t) via the
following formulas:




X(x, t) = φ(x) [y(t+ θ(x)) + y(t− θ(x))] + ψ(x) [ẏ(t+ θ(x))− ẏ(t− θ(x))]

+

∫ x

0

B(x, ξ)[y(t+ θ(ξ)) + y(t− θ(ξ))] dξ,

u(t) = X(L, t)

(3.2)

with

y(t) = X(0, t),

θ(x) =

∫ x

0

√
τ ′

gτ
,

ψ(x) =

(
τ(0)τ ′(0)
τ(x)τ ′(x)

) 1
4 1

2

√
τ(0)

gτ ′(0)
,

φ(x) =

(
τ(0)τ ′(0)
τ(x)τ ′(x)

) 1
4

. . .

×
[
1 +

1

8

√
τ(0)

τ ′(0)

((√
τ ′

τ
+

τ ′′

τ ′

√
τ

τ ′

)
(x)−

(√
τ ′

τ
+

τ ′′

τ ′

√
τ

τ ′

)
(0)

+ · · ·+ 1

4

∫ x

0

(√
τ ′

τ
+

τ ′′

τ ′

√
τ

τ ′

)2 √
τ ′

τ

)]
,
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B(x, ξ) a smooth function of x, and ξ defined by the function τ via formula (3.15).

Correspondence (3.2) defines a family of linear operatorsAx with compact support
such that, for any C3 time function, X(x, t) = Axy|t is automatically the solution
of (3.1) with u(t) = X(L, t) and X(0, t) = y(t).

The proof relies on the following points.

1. Symbolic computations where the time derivation is replaced by the Laplace
variable s are performed. This yields a second order differential equation with
nonconstant coefficients in the space variable x.

2. The solution X(x, s) is factorized as X(x, s) = X(0, s)A(x, s). A partial
differential system is derived for A(x, s).

3. The study of s �→ A(x, s) is simplified by a Liouville transformation (x,A) �→
(z, u).

4. The solution A(x, s) of this differential equation is proven to be an entire
function of s and of exponential type. (Volterra expansion and majoring
series arguments are used.)

5. A careful study of the Volterra equation of the second kind satisfied by A
shows that modulo some functions (exponentials of s, depending on x and
explicitly calculated), for each x, the restriction of A(x, s) to the imaginary
axis is in L2.

6. Thanks to the Paley–Wiener theorem and the last two properties of A, we
prove that, for each x, A can be represented as a compact sum (discrete and
continuous) of exponentials in s. This gives (3.2).

Proof. Symbolic computation. Replacing the time derivation by s gives


∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g
s2X = 0,

s2X(0, s) = gX ′(0, s).
(3.3)

We do not consider the other boundary condition since u is the control and can be
obtained explicitly from X via u(t) = X(L, t).

Factorization. It is very easy to check thatX(x, s) = X(0, s)A(x, s) is the solution
of (3.3), provided that A(x, s) is the solution of the following partial differential
system: 


∂

∂x

(
τ(x)

∂A

∂x

)
− τ ′(x)

g
s2A = 0,

A(0, s) = 1,

gA′(0, s) = s2.

(3.4)

Liouville transformation. This time we perform a Liouville transformation (al-
ready used in section 2)

(x,A) �→ (z, u)

with

p(x) = τ(x), λ = −s2

g
, r(x) = τ ′(x), q = 0, x ∈ [0, L].
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The new variables (z, u) are defined by the following formulas:

z =
1

K

∫ x

0

√
τ ′

τ
, 0 ≤ z ≤ π, K =

1

π

∫ L

0

√
τ ′

τ
,(3.5)

u(z, s) = (τ(x)τ ′(x))1/4A(x, s).(3.6)

System (3.4) is turned into

d2u

dz2
+ (ρ2 − h(z))u = 0 with

du

dz
(0) = (a+ bρ2), u(0) = 1,(3.7)

where

ρ = ı
K√
g
s, ı =

√−1,

h(z) =
f ′′(z)
f(z)

with f(z) = (τ(x)τ ′(x))1/4,

a =
f ′(0)
f(0)

, b =
1

K

√
τ(0)

τ ′(0)
.

Proving that C  ρ �→ u(z, ρ) is an entire function of exponential type. We claim
that, for each z, ρ �→ u(z, ρ) is an entire function of exponential type.

Denote by W (z, ρ) the 2× 2 matrix solution of

dW

dz
=

(
0 1

h(z)− ρ2 0

)
W

with W (0, ρ) = I. Since

u(z, ρ) =
(
1 0

)
W (z, ρ)

(
1

a+ bρ2

)
,

it suffices to prove that W is entire in ρ and of exponential type. Using the classi-
cal fixed point technique, W can be expressed as an absolutely convergent series of
iterated integrals (Volterra expansion)

W (z, ρ) =
∑
i≥0

Wi(z, ρ)

with

W0(z, ρ) = I, Wi+1(z) =

∫ z

0

(
0 1

h(σ)− ρ2 0

)
Wi(σ, ρ) dσ.(3.8)

For each i > 0, Wi(z, ρ) is a polynomial in ρ2 of degree i with coefficients depending
on z. Thus we have ∑

0≤i≤k

Wi(z, ρ) =
∑

0≤j≤k

W j,k(z) ρ2j .

From step k to k + 1, we add to W j,k(z) the coefficient of ρ2j in Wk+1, say, Wj,k+1,
to obtain W j,k+1(z):

W j,k+1(z) = W j,k(z) +Wj,k+1(z).
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Let α = sup[0,π] |h|. Then the absolute value of each entry of Wi(z, ρ) is bounded
by the corresponding entries in the following majoring series Mi(z, ρ) defined by the
induction (to be compared to (3.8)):

M0(z, ρ) = I, Mi+1(z) =

∫ z

0

(
0 1

α+ ρ2 0

)
Mi(σ, ρ) dσ.(3.9)

As for W , we can define M =
∑

i≥0 Mi and, for each k > 0, the matrices M j,k

and Mj,k+1 satisfying∑
0≤i≤k

Mi(z, ρ) =
∑

0≤j≤k

M j,k(z) ρ2j , M j,k+1(z) = M j,k(z) +Mj,k+1(z).

Standard matrix computations show that

M(z, ρ) = I +
∑
i>0

z2i

(2i)!

(
(ρ2 + α)i 0

0 (ρ2 + α)i

)

+
∑
i>0

z2i+1

(2i+ 1)!

(
0 (ρ2 + α)i

(ρ2 + α)i+1 0

)
.

That is,

M(z, ρ) =

(
cosh(z

√
ρ2 + α) sinh(z

√
ρ2 + α)/

√
ρ2 + α

sinh(z
√

ρ2 + α)
√

ρ2 + α cosh(z
√

ρ2 + α)

)
.(3.10)

For each j, the matrices M j,k =
∑

j≤l≤k−1 Mj,l converge as k tends to ∞. Denote

byM j the limit. By construction,M =
∑

j≥0 M j(z) ρ2j , and this series has an infinite

radius of convergence in ρ, since, for each z, the functions ρ �→ cosh(z
√

ρ2 + α),

ρ �→ sinh(z
√

ρ2 + α)/
√

ρ2 + α, and ρ �→ sinh(z
√

ρ2 + α)
√

ρ2 + α are entire functions
of ρ2.

But, for each i, j, and k, the matrices M j,k and Mj,k+1, whose entries are always
nonnegative, dominate the absolute values of the entries of W j,k and Wj,k+1, respec-
tively. Thus for each j, the matrices W j,k =

∑
j≤l≤k−1 Wj,l converge as k tends to

∞. Denote by W j the limit. By construction, W =
∑

j≥0 W j(z)ρ2j , and this series
has an infinite radius of convergence in ρ, since M has one. In other words, W is an
entire function of ρ. Moreover, the entries of M are upper bounds of the entries of W .
Thus W is of exponential type in ρ: for each z ∈ [0, π], there exists E > 0 such that

∀ρ ∈ C, |W (z, ρ)| ≤ E exp(z|ρ|).

We have proven that, for each z ∈ [0, π], u(z, ρ) is an entire function of ρ of exponential
type with

∀ρ ∈ C, |u(z, ρ)| ≤ b(z) exp(z|ρ|)

for some b(z) > 0 well-chosen.

Proving that “a part” of R  ρ �→ u(z, ρ) belongs to L2. In general, R  ρ �→
u(z, ρ) does not belong to L2. Thus the Paley–Wiener theorem does not apply directly.
Removing some appropriate terms, the remaining is in L2.
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Let

v(z, ρ) = u(z, ρ) + bρ sin(ρz)−
(
1 +

b
∫ z

0
h

2

)
cos(ρz).(3.11)

In the following we prove that this entire function of exponential type is such that R 
ρ �→ v(z, ρ) belongs to L2.

From the Volterra equation of the second kind satisfied by u (see [19, p. 111]),

u(z, ρ) =

(
cos(ρz) + (a− bρ2)

sin(ρz)

ρ

)
+

1

ρ

∫ z

0

sin(ρ(z − ζ)) h(ζ) u(ζ, ρ) dζ,

we quickly derive a similar equation satisfied by v,

v(z, ρ) = φ(z, ρ) +
1

ρ

∫ z

0

sin(ρ(z − ζ)) h(ζ) v(ζ, ρ) dζ,

where φ = φ1 − bφ2 with

φ1(z, ρ) =a
sin(ρz)

ρ
+

1

ρ

∫ z

0

sin(ρ(z − ζ))h(ζ) cos(ρζ)

(
1 + (b/2)

∫ ζ

0

h

)
dζ,

φ2(z, ρ) = cos(ρz)

∫ z

0

h/2 +

∫ z

0

sin(ρ(z − ζ))h(ζ) sin(ζ) dζ.

Clearly, there exists D1 > 0 such that for all z ∈ [0, π] and ρ ∈ R,

|φ1(z, ρ)| ≤ D1

1 + |ρ|
(h is bounded). With 2 sin(ρ(z − ζ)) sin(ζ) = cos(ρ(z − 2ζ))− cos(ρz), we have

φ2(z, ρ) =

∫ z

0

cos(ρ(z − 2ζ))h(ζ) dζ.

The integration by part (by assumption τ is C4 thus h is C1)∫ z

0

cos(ρ(z − 2ζ))h(ζ) dζ =
h(0) + h(z)

2ρ
sin(ρz) +

1

2ρ

∫ z

0

sin(ρ(z − 2ζ))h′(ζ) dζ

shows that for large |ρ|, φ2 tends to zero at least as 1/|ρ|. Thus there exists D2 > 0
such that for all z ∈ [0, π] and ρ ∈ R,

|φ2(z, ρ)| ≤ D2

1 + |ρ| .

This proves that v satisfies

v(z, ρ) = φ(z, ρ) +
1

ρ

∫ z

0

sin(ρ(z − ζ))h(ζ)v(ζ, ρ) dζ(3.12)

with |φ(z, ρ)| ≤ D/(1 + |ρ|) for all z ∈ [0, π] and ρ ∈ R. (D > 0 is a well-chosen
constant independent of z and ρ.)
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This last inequality gives the desired conclusion by the following classical compu-
tation (see [19, p. 112], for instance).

Let β(z, ρ) = sup0≤ζ≤z |v(ζ, ρ)|. By (3.12) we have for each z1 and z2 in [0, π], z1 ≤
z2

|v(z1, ρ)| ≤ D

1 + |ρ| +
αz1β(z2, ρ)

|ρ| ≤ D

1 + |ρ| +
απ

|ρ| β(z2, ρ).

(Remember that α = sup[0,π] |h|.) In particular, when z1 = z2 = z, we have

β(z, ρ)

(
1− απ

|ρ|
)

≤ D

1 + |ρ| .(3.13)

Finally, for |ρ| ≥ 2απ , β(z, ρ) ≤ 2D/(1 + |ρ|). This proves that R  ρ �→ v(z, ρ)
belongs to L2.

Using the Paley–Wiener theorem. At last, the Paley–Wiener theorem ensures
that the Fourier transform of ρ �→ v(z, ρ) has a compact support included in [−z, z]
since for all ρ ∈ C, |v(z, ρ)| ≤ N exp(z|ρ|) for some constant N > 0. This means that,
for each z ∈ [0, π], there exists [−z, z]  ζ �→ K(z, ζ) in L2([−z, z]) such that

v(z, ρ) =

∫ +z

−z

K(z, ζ) exp(ıζρ) dζ.

Since v is an even function of ρ, K is also an even function of ζ. Thus we have, finally,

v(z, ρ) =

∫ +z

0

K(z, ζ)(exp(ıζρ) + exp(−ıζρ)) dζ.(3.14)

Conclusion. Pulling back this last relation in the (x,A) coordinates, noticing
that ρ = ıKs/

√
g, that exp(−θs) is the Laplace transform of the θ-delay operator,

and that u(0, ρ) is, up to a constant, the Laplace transform of X(0, t), we deduce after
some standard but tedious computations formulae (3.2). The new function B(x, ξ) is
related to K(z, ζ) via

K

√
τ(ξ)

τ ′(ξ)
B(x, ξ) =

(
τ(0)τ ′(0)
τ(x)τ ′(x)

) 1
4

K
(√

g

K
θ(x),

√
g

K
θ(ξ)

)
.(3.15)

At last,

A(x, s) = ϕ(x) (exp θ(x)s+ exp θ(x)s) + ψ(x)s (exp θ(x)s− exp θ(x)s)

+

∫ x

0

K(x, ζ)(exp(θ(ζ)s) + exp(−θ(ζ)s)) dζ,

so X(x, s) = X(0, s)A(x, s) when turned back into the time-domain does give formu-
lae (3.2).

4. Conclusion. We have shown that, around the stable vertical position, heavy
chain systems with or without load, with constant or variable section, are “flat”: the
trajectories of these systems are parameterizable by the trajectories of their free ends.
Relations (1.4), (2.2), and (3.2) show that such parameterizations involve operators
of compact supports.
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It is surprising that such parameterizations can also be applied around the inverse
and unstable vertical position. For the homogenous heavy chain, we have only to
replace g by −g to obtain a family of smooth solutions to the elliptic equation (singular
at x = 0)

∂

∂x

(
gx

∂X

∂x

)
+

∂2X

∂t2
= 0

by the integral

X(x, t) =
1

2π

∫ π

−π

y(t+ 2ı
√

x/g sin θ) dθ,

where y is now a holomorphic function in R× [−2√L/g,+2
√

L/g] that is real on the
real axis. This parameterization can still be used to solve the motion planning problem
in spite of the fact that the Cauchy problem associated to this elliptic equation is not
well-posed in the sense of Hadamard.

Acknowledgments. The authors are indebted to Michel Fliess and Philippe
Martin for fruitful discussions relative to the Paley–Wiener theorem, series expansions,
majoring series arguments, and Liouville transformations.
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France, 1992.
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