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ABSTRACT 

 For reusable launchers, in-flight landing trajectory 

planning is a challenging task. The naturally disturbed 

atmospheric environment may render the landing 

objectives – such as the landing site location or the 

incidence safety bounds – mutually incompatible. This 

article discusses a methodology to recover feasibility in 

over-constrained optimization problems used for 

Powered Descent Guidance. Nominal and emergency 

guidance problems are first discussed from a high-level 

viewpoint, and then developed to handle a Quadratic 

Programming based guidance method, which is 

illustrated on numerical examples for a planar rocket 

model. 

 

1. INTRODUCTION 

 Powered landing for reusable launchers occurs in a 

naturally disturbed and uncertain environment. For 

instance, unexpected wind gusts can push a rocket far 

from the nominal landing site. The online Powered 

Descent Guidance (PDG) problem, aiming at providing a 

landing trajectory, must answer the following question at 

many instants during the flight: provided the current 

rocket position, orientation, and velocities, is landing still 

feasible at the landing site, and if not, what is a 

satisfactory solution? 

 Though the PDG problem is formulated in several 

different ways in the literature [1]–[7], a general common 

feature of the formulation is that they start by solving a 

feasibility problem for a constrained dynamical system. 

We are interested in the landing scenarios when this 

problem is not feasible anymore – as shown in Figure 1. 

Our work focuses on designing a method to keep 

providing a landing trajectory when the ideal target is not 

reachable anymore. Such a trajectory is called an 

emergency trajectory, and is computed by relaxing a 

constraint subset, using negotiable parameters. 

 This article is structured as follows. First, a high-

level description of the nominal and emergency guidance 

scenario is introduced in Section 2. More precisely, a 

systematic method – see Algorithm 1 below – chooses 

the constraints that can or cannot be loosened. In Section 

3, we show that if the initial PDG problem is formulated 

as a Quadratic Program (QP) – using previous work of 

the authors [8] – then the negotiability problem can be 

formulated as a Linear Program (LP). The latter makes 

real-time resolution possible by relying on off-the-shelf 

solvers. Numerical simulations are provided in Section 4, 

to demonstrate the above-mentioned concepts for various 

choices of negotiable parameters. 

 

 

Figure 1: The need for emergency guidance. Here, it is 

impossible to design a landing trajectory satisfying all 

the objectives for the left-most rocket initial conditions. 

 

2. THE EMERGENCY PROBLEM 

 First, the variables describing the PDG problem are 

defined, and a generic description of nominal guidance 

method is introduced. Then, a high-level description of a 

procedure providing emergency guidance is presented. 

2.1. Powered Descent Guidance variables 

 As will be detailed below, the PDG problem is 

described by its decision variable z, its input 𝜉, and 

several objective parameters 𝑝. 

 Consider a rocket described by its state 𝑥, conveying 

its positions, its speeds, and its mass. It is assumed that it 

is controlled by a variable 𝑢, conveying its engine flow 

𝑞, and its incidence 𝛼. 

The inputs of the PDG problem are the initial 

conditions of the rocket – denoted 𝑥0 – and parameters – 

denoted 𝜂 – that influence the Equations of Motion 

(EoM), such as the wind magnitude (𝑤) or the Engine 

Specific Impulse (𝐼𝑠𝑝). The dynamic equation writes 
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�̇� = 𝑓(𝑥, 𝑢, 𝜂). 

 To alleviate the writing, these inputs are conveyed 

by a variable 𝜉 = (𝑥0, 𝜂). 

 We consider that 𝑢, which is an infinite dimensional 

variable in general, is approximated by a finite 

dimensional variable 𝜇. Basically, 𝜇 conveys the values 

of 𝑢 at some prescribed collocation points [8], [9].  

 Another important variable for the PDG problem is 

the time-of-flight 𝑡𝑓 which is implicitly defined by the 

landing condition constraint “Altitude(𝑡𝑓) = 0.” 

Therefore, the finite-dimensional decision variable of our 

generic PDG problem is 

𝑧 = (
𝜇
𝑡𝑓

). 

 

Finally, the PDG problem has several objective-

related parameters, conveyed by a variable 𝑝. For 

instance, the position of the landing site or the incidence 

bound (respectively denoted 𝑧𝑓 and 𝛼max) are problem-

specific choices that can be present in this parameter 𝑝. 

Two examples will be presented in Section 4. The value 

of these parameters is 𝑝nom for a nominal landing 

scenario. 

2.2. The nominal PDG problem 

Let us denote by ℱ(𝜉, 𝑝) the set of decision variables 

𝑧 that satisfy the constraints above. Basically, ℱ conveys 

the dynamic equation of 𝑓, the various bounds on the 

engine and the incidence, the landing site location 

constraint, and other bounds such as normal load limits. 

Also, denote by 𝐽(𝑧) a cost on 𝑧 that defines how 

desirable is the trajectory defined by 𝑧. Then, the 

problem of finding the best landing trajectory boils down 

to solving 

 

PDG(𝜉)     ∶=     min
𝑧∈ℱ(𝜉,𝑝nom)

𝐽(𝑧) . 

 

Most of the current research efforts in PDG 

focus on finding the best way to express this problem and 

using the fastest and most reliable computational 

methods to solve it [1], [3], [7]. 

PDG(𝜉) is what we call the nominal guidance 

problem, when ℱ(𝜉, 𝑝nom) is a non-empty set. However, 

it is possible that for some values of 𝜉, the latter becomes 

infeasible, i.e., ℱ(𝜉, 𝑝nom) = ∅. Altering the value of 𝑝 

to recover feasibility is what we call emergency PDG. 

Such a procedure is presented below. 

 

2.3. A generic methodology for emergency guidance 

Consider an infeasible case, and let us formulate a 

question worth answering, e.g., what should be done if 

the rocket starts its descent too far from the landing site? 

To answer it, we propose a general approach, detailed 

below, that we apply on a specific landing procedure in 

the next section. 

 Emergency landing is required when the given input 

𝜉 makes ℱ(𝜉, 𝑝nom) empty. This is due to the 

impossibility to achieve the target values 𝑝nom. We 

propose to first compute the smallest perturbation of 𝑝 

that recovers feasibility, and then to re-optimize it in view 

of the original PDG(𝜉) problem. 

The perturbation in the variable 𝑝 is denoted Δ𝑝 

such that 𝑝 = 𝑝nom + Δ𝑝, where Δ𝑝 is bounded between 

Δ𝑝− and Δ𝑝+. This perturbation Δ𝑝 represent our 

negotiable parameters. Thus, we can introduce 

Negotiate(𝜉), also called the negotiation problem, which 

is 

    

min
𝑧, Δ𝑝

γ(Δ𝑝)                            

s. t. :
𝑧 ∈ ℱ(𝜂, 𝑝nom + Δ𝑝),

Δ𝑝− ≤ Δ𝑝 ≤ Δ𝑝+.      

 

for some arbitrary non-negative penalty function 𝛾 

satisfying 

𝛾(Δ𝑝) = 0   ⇔    Δ𝑝 = 0. 

 Typically, 𝛾 is a norm such as the 1-norm or the 

infinity norm. We are interested in the optimal value of 

Negotiate(𝜉), denoted 𝒫∗, which allows us to define the 

problem Refine(𝜉, 𝒫∗) such that 

min
𝑧, Δ𝑝

𝐽(𝑧)                                

s. t.: 

𝑧 ∈ ℱ(𝜉, 𝑝nom + Δ𝑝),

Δ𝑝− ≤ Δ𝑝 ≤ Δ𝑝+,       

𝛾(Δ𝑝) =  𝒫∗.                

 

 The fact that Δ𝑝 is free in the constraints of 

Refine(𝜉, 𝒫∗) means that we seek the optimal value of z 

such that the objective parameters are as close as possible 

– in the sense imposed by 𝛾 – from their nominal value 

𝑝nom. The high-level procedure for Emergency Powered 

Descent Guidance (E-PDG) is described by Algorithm 1. 

Input: 𝜉 

Step 1: Solve Negotiate(𝜉), which gives an 

optimal penalty 𝒫∗on the negotiable parameters.  

Step 2: Solve Refine(𝜉, 𝒫∗), which gives an 

optimal landing strategy 𝑧∗. 

Output. 𝑧∗ 

Algorithm 1: Emergency Powered 

Descent Guidance (E-PDG) 



 

Note that this algorithm does not expect 

Negotiate(𝜉) to have a unique solution (otherwise Step 

2 is useless), since only the value of 𝒫∗ matters. 

Moreover, E-PDG is compatible with the nominal 

guidance. In other words, for all the values of 𝜉 for which 

PDG(𝜉) is feasible, E-PDG and PDG(𝜉) will return the 

same value. Indeed, if ℱ(𝜉, 𝑝nom) is feasible for some 

input 𝜉, then Negotiate(𝜉) will return 𝒫∗ = 0, which 

implies Δ𝑝 = 0. In this case, Refine(𝜉, 0) is directly 

equivalent to PDG(𝜉). This is one salient advantage of E-

PDG: it can be plugged in place of any arbitrary nominal 

guidance method. 

 

3. QP/LP EMERGENCY GUIDANCE 

In practice, we applied the E-PDG algorithm to a 

Quadratic Programming based guidance method 

developed by the authors [8]. 

 

3.1. PDG using Quadratic Programming 

Extending the notations from [8], the main problem 

PDG(𝜉) is described using a quadratic cost and linear 

constraints, which we will denote QP(𝜉) 

 

min
𝑧

1

2
𝑧⊤𝑊𝑧                    

s. t. :
𝐺𝑧 ≤ ℎ + 𝐻𝑝  𝑝nom

𝐴𝑧 = 𝑏+ 𝐵𝑝  𝑝nom

 

 

where 𝐺, ℎ, 𝐻, 𝐴, 𝑏, 𝐵 are matrices that depend on a 

mission-specific reference trajectory. Here, ℎ and 𝑏 are 

affine functions of the input 𝜉. Here, 𝑊simply denotes a 

weighting matrix, assumed positive-definite. 

 

3.2. Application of E-PDG 

The penalty 𝛾 is here the 1-norm. The negotiation 

problem is denoted NegotiateLP(ξ) and consist in 

 
min
𝑧, Δ𝑝

‖Δ𝑝‖1                                     

s. t. :

𝐺𝑧 ≤ ℎ + 𝐻𝑝  (𝑝nom + Δ𝑝)

𝐴𝑧 = 𝑏 + 𝐵𝑝  (𝑝nom + Δ𝑝)

Δ𝑝− ≤ Δ𝑝 ≤ Δ𝑝+               

 

 

and returns its optimal value 𝒫∗. The refine problem is 

denoted RefineQP(𝜉, 𝒫∗) and is 

 

min
𝑧, Δ𝑝

1

2
𝑧⊤𝑊𝑧                                   

s. t. :

𝐺𝑧 ≤ ℎ + 𝐻𝑝  (𝑝nom + Δ𝑝)

𝐴𝑧 = 𝑏 + 𝐵𝑝  (𝑝nom + Δ𝑝)

Δ𝑝− ≤ Δ𝑝 ≤ Δ𝑝+               
‖Δ𝑝‖1 = 𝒫∗                         

 

 

Note, as suggested by its name, that NegotiateLP(ξ) 

can be solved using Linear Programming, by 

decomposing Δ𝑝 into its positive and negative parts. See 

Example 1.13 in Betts’ book [10] for further details. 

Likewise, RefineQP(𝜉, 𝒫∗) is solved using Quadratic 

Programming [11]. 

 

It is noteworthy that the problem NegotiateLP(ξ), 

aiming at recovering feasibility, builds upon 

mathematical programming techniques known as right-

hand side alteration methods [12]. Here, as conveyed by 

the matrices 𝐻𝑝 and 𝐵𝑝 and due to the limited number of 

levers, only a sub-space of the constraint right-hand side 

can be altered. 

 

3.3.  A geometric interpretation 

The connections between problems QP(𝜉), 

NegotiateLP(ξ) and RefineQP(𝜉, 𝒫∗) can be easily 

understood from a geometric point of view. On a toy-

problem, let us see with a simplifying perspective how 

these work by projecting the constraint on a planar 

representation. 

The constraints of  QP(𝜉) define a polytope: the 

inequalities define half-spaces, and the equalities define 

hyperplanes. Thus, the feasible set for the variable 𝑧 in 

𝑄𝑃(0) is the set represented in blue in Figure 2.  

 

 
Figure 2: The constraints of QP(0). 

 When the inputs are non-zero, for example when 

Δ𝑥0 ≠ 0, the right-hand side vectors ℎ and 𝑏 of the 

constraints of QP(𝜉) are modified. Geometrically, it 

corresponds to a pure translation of the lines representing 

the constraints, as shown in Figure 3. 



 

 
Figure 3: The constraints of QP(𝜉),when Δ𝑥0 ≠ 0. 

 However, if Δ𝑥0 is too large (for example when the 

rocket starts its descent too far from the landing site, as 

pictured in Figure 1), then satisfying all the constraints 

simultaneously becomes impossible, as Figure 4 

suggests. 

 
Figure 4: The constraints of QP(𝜉),when Δ𝑥0 makes 

the constraints infeasible. 

 Hence the need for the E-PDG algorithm. Let us 

assume that the final horizontal position Δ𝑧𝑓 can be 

negotiated, i.e., we take 𝑝 = Δ𝑧𝑓. Modifying its value 

will have a direct impact on the right-hand side of the 

equality constraints from QP(𝜉). By solving 

NegotiateLP(ξ), we find the smallest value of Δ𝑧𝑓 that 

recovers feasibility, as illustrated in Figure 5.  

 
Figure 5: The constraints of QP(𝜉), when Δ𝑝 = (Δ𝑧𝑓) 

helps recover feasibility. 

 

4. NUMERICAL SIMULATIONS 

Let us apply the above-mentioned guidance 

algorithm, to two scenarios conveying different 

negotiation parameters. 

Both scenarios presented below consider inputs 

defined with respect to a reference trajectory, shown in 

plain black in Figures 6 and 7. Several input values 𝜉 

that differ in their initial horizontal position Δ𝑧0 are 

presented. Note that to ease the comparison between 

them, Figures 6 and 7 are plotted for the same input list. 

 

4.1. FINAL HORIZONTAL POSITION 

Let us assume that the landing site is very large (for 

instance if the rocket landing site is in a flat desert). Thus, 

if necessary, the final horizontal position Δ𝑧𝑓 can be 

negotiated. As shown in Figure 6, if Δ𝑥0 becomes large 

enough, negotiation is needed, and it yields the farthest 

trajectories (in dashed blue). 

 

 
Figure 6: Nominal and emergency trajectories, when 

landing site location is allowed to be negotiated. 

 

4.2. INCIDENCE BOUND 

 Contrary to the previous example, let us assume that 

the final horizontal position is not negotiable, which 

happens if one whishes to land on a platform at see for 

instance. Instead, we assume that the safety bound 𝛼𝑚𝑎𝑥 

imposed on the rocket incidence 𝛼, can be negotiated by 

a parameter 𝑝 = Δ𝛼𝑚𝑎𝑥  such that 

|𝛼| ≤ 𝛼𝑚𝑎𝑥 + Δ𝛼𝑚𝑎𝑥 . 

 Considering the same input values as in the previous 

example, we see that the farthest trajectories from the 

reference need to negotiate the value of Δ𝛼𝑚𝑎𝑥 to recover 

feasibility, leading to a sharped turn for the dashed pink 

trajectories shown in Figure 7. 



 

 
Figure 7: Nominal and emergency trajectories, when 

the incidence bound is allowed to be negotiated. 

 

 

5. FUTURE WORK 

 This paper presented a generic methodology to 

provide emergency guidance for infeasible Powered 

Descent Guidance problems and has been illustrated on a 

2D rocket model. 

Future work will focus on extending the E-PDG 

algorithm to a richer framework that enforces a hierarchy 

of importance between the components of 𝑝 (see for 

example [13], which has been accepted after presenting 

our work at the 25th ESA Symposium, but before the final 

editing of this paper). Moreover, extension to more 

complex rocket models, with 3D descriptions and non-

trivial engine dynamics are under study. 

 

6. REFERENCES 

 

[1] Z. Song et al., “Survey of autonomous guidance 

methods for powered planetary landing,” Front. 

Inf. Technol. Electron. Eng., vol. 21, no. 5, pp. 

652–674, May 2020, doi: 

10.1631/FITEE.1900458. 

[2] M. Szmuk, T. P. Reynolds, and B. Açikmeşe, 

“Successive Convexification for Real-Time 6-

DoF Powered Descent Guidance with State-

Triggered Constraints,” ArXiv181110803 Math, 

Nov. 2018, Accessed: Feb. 12, 2020. [Online]. 

Available: http://arxiv.org/abs/1811.10803 

[3] M. Sagliano et al., “Onboard Guidance for 

Reusable Rockets: Aerodynamic Descent and 

Powered Landing,” p. 35, Jan. 2021. 

[4] B. A. Steinfeldt, M. J. Grant, D. A. Matz, R. D. 

Braun, and G. H. Barton, “Guidance, Navigation, 

and Control System Performance Trades for Mars 

Pinpoint Landing,” J. Spacecr. Rockets, vol. 47, 

no. 1, pp. 188–198, Jan. 2010, doi: 

10.2514/1.45779. 

[5] P. Lu, “Propellant-Optimal Powered Descent 

Guidance,” J. Guid. Control Dyn., vol. 41, no. 4, 

pp. 813–826, Apr. 2018, doi: 10.2514/1.G003243. 

[6] L. Ma, K. Wang, Z. Shao, Z. Song, and L. T. 

Biegler, “Trajectory Optimization for Planetary 

Multi-Point Powered Landing,” IFAC-Pap., vol. 

50, no. 1, pp. 8291–8296, Jul. 2017, doi: 

10.1016/j.ifacol.2017.08.1404. 

[7] D. Malyuta et al., “Convex Optimization for 

Trajectory Generation,” ArXiv210609125 Cs Eess 

Math, Jun. 2021. 

[8] H. Ménou, E. Bourgeois, and N. Petit, 

“Sensitivity Analysis for Powered Descent 

Guidance: Overcoming degeneracy,” 2022 

European Control Conference, London, 2022. 

[9] D. Kraft, “On Converting Optimal Control 

Problems into Nonlinear Programming 

Problems,” in Schittkowski K. (eds) 

Computational Mathematical Programming, 

1985, vol. 15. 

[10] J. T. Betts, Practical methods for optimal control 

and estimation using nonlinear programming. 

SIAM, 2001. 

[11] M. Andersen, J. Dahl, and L. Vandenberghe, 

“CVXOPT: Convex Optimization.” 2020. 

[12] J. W. Chinneck, Feasibility and Infeasibility in 

Optimization: Algorithms and Computational 

Methods. Springer Science & Business Media, 

2007. 

[13] H. Ménou, E. Bourgeois, and N. Petit, “Nominal 

And Emergency Rocket Landing Guidance Using 

Quadratic Programming,” AAS/AIAA 

Astrodynamics Specialist Conference, Charlotte, 

NC, 2022. 

 

 

 

 


