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Abstract—In modern constructions of residential buildings,
several energy saving technologies exist. Therefore, when such
buildings are renovated, various investments can be considered.
The contribution of this article is a method for evaluating the
ability of several renovating configurations to keep the inhab-
itants in a comfortable situation during load shifting periods.
This question is of importance in the relationship, and then in
the price setting, between the users (inhabitants) and the energy
provider who uses these load shifting periods to optimize his
production on a regional or national scale.
The evaluation is performed as follows. We consider a house
equipped with electric heaters. Then an optimization method is
used to compute, in a dynamical context, best heating strategies.
Gradually, the load shifting period is made longer, and, thus,
the weather conditions and the comfort constraints serve to
characterize the actual ability of the building to guarantee an
acceptable comfort during load shifting periods.
One conclusion is that for poorly insulated houses (which repre-
sents approximately 58% of the French stock) it is impossible to
shift the load more than 20 minutes in winter time, even when
using advanced regulation strategy of the electric heating system.
On the other hand, other configurations are much better suited
as illustrated in this article.

I. INTRODUCTION

Recently, significant efforts have been made to reduce

electricity peak-demand. In Europe, these peaks mostly occur

in winter time, and are, for the main part, due to heating

systems. To guarantee the grid stability, numerous studies have

been focused on the overall load reduction. At the level of the

individual houses, this reduction can be achieved thanks to a

careful architectural design to efficiently capture and restore

solar gains [1]. An advanced heating control strategy can also

be a solution. Such control can be based on power tariff [2] or

use the building thermal mass as an asset to shift the building

consumption, reducing the peak consumption [3], [4], [5], [6]

in turn.
This article follows such an approach and studies the

impact of load shifting on five thermal models ranging from

poorly to well insulated houses. The method of analysis

consists in solving dynamic optimization problems under con-

straints to accurately compute optimal trajectories following

a continuous-time approach similar to those presented in [7],

[8], [9]. Gradually, considering the duration of the load shift

as a parameter, one can determine the maximum allowable

duration of a complete heating load shifting while maintaining

an acceptable level of comfort. The results obtained in this

study show that the thermal mass of a poorly insulated building

is not sufficient to perform load shiftings superior to twenty

minutes. Thus, the use of houses inertia as power stocks

appears to be relevant only in the case of sufficiently insulated

buildings (which can actually handle load shiftings of several

hours). Practical cases of interest are presented.

In Section II, a description of the considered building is

given, together with a description of the discretization scheme

yielding a high order linear model of the system. In Section

III, this model is reduced and constraints are formulated on its

input and outputs. In Section IV, the algorithm serving to solve

the obtained constrained dynamical optimization is presented.

In Section V, the results on the abilities of the different

considered systems are presented together with the maximum

bearable duration of daily load shiftings for each model.

Finally in Section VI the conclusion and the perspectives of

the study are presented.

II. BUILDING MODEL

A. Building description

The building under study is a single-family house. It

corresponds to an actual experimental passive house being

part of the INCAS platform built in Le Bourget du Lac,

France (see Figure 1). For our study, five low performance

versions of the building are considered. The reference version

corresponds to a house built prior to the introduction of the

first French thermal regulation (1975). This reference version

used to represent 58% of the french stock in 2008. The four

other versions correspond to various renovation levels on this

reference. In this paper, they serve to study the beneficial

effects of renovation efforts on the peak load management.

The house has two floors for a total living area of 89 m2.

34% of its South facade surface is glazed while the North

facade has only two small windows. All the windows are

single-glazed. The South facade is also equipped with solar

protections for the summer period. The external walls are

made of a 30 cm-thick layer of concrete blocks and the

floor consists in 20 cm of reinforced concrete. There is no

insulation in the building except for the 10 cm of glass-

wool in the attic. According to thermal simulation results

using the Pléiades+COMFIE software [10], the heating load

is 253 kWh/(m2.year) which is typical for such type of house.

Comparisons have been performed during the design phase on
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the passive house version of this building with other simulation

tools like Energy Plus and TRNSYS [11] and have shown

similar results.

Fig. 1. 3D view of the house (west and south facades)

Four different renovations of this building are presented in

Table I:

TABLE I
VERSIONS OF THE CONSIDERED BUILDING THROUGHOUT RENOVATIONS

Version Renovation Heating
applied consumption

(kWh/m2.year)
Reference (1st) none 253

Roof (1) + 30 cm of

insulation (2nd) glass-wool in the attic 246
Triple glazing (2) + Triple glazed

(3rd) windows 215
Insulation of (3) + 15 cm of glass-

external walls (4th) wool in external walls 93
Heat recovery (4) + HRV with an

ventilation (HRV) efficiency of 0.5 80

(5th) (accounting for air infiltration)

B. Thermal model
The building is modeled as spatial zones of homogenous

temperature. For each zone, each walls are divided in fine

meshes small enough to also have a homogeneous temperature

in each mesh point. There is one more mesh for the air

and furniture in the zone. Eventually, a thermal balance is

performed on each mesh within the building. It takes into

account:

• Pcond: the losses (or gains) by conduction in walls, floor

and ceiling.

• Psol: the gains due to solar irradiance through the win-

dows

• Pconv: the losses (or gains) due to convection at walls

surface

• Pin: the internal gains due to heating, occupancy and other

loads (only for zone air mesh)

• Pbridges: heat losses through thermal bridges, not associ-

ated to thermal mass

• Pventil : heat losses due to air exchange.

When applied to the air of each zone, the thermal balance

equation reads:

CairṪair = Pin + Pcond + Pbridges + Pventil + Psol + Pconv (1)

with Cair the thermal capacity of the node air (including

furniture) and Tair the temperature of the mesh. For each zone,

repeating equation (1) for each mesh point and including an

output equation leads to the following continuous linear time-

invariant system.

CṪ (t) = AT (t) + EU(t)
Y (t) = JT (t) + GU(t)

}
(2)

with:

• T mesh temperatures vector

• U driving forces vector (climate parameters, heating, etc.)

• Y outputs vector (here, temperature of the air nodes)

• C thermal capacity diagonal matrix

• A, E, J, G matrices relating the vectors of the dynamics.

For representative simulations, it is important to know the

occupancy of the building, which partly defines Pin with the

emission of heat by the inhabitants and the appliances. The

second part of heat emission in Pin is due to the heating

system. Another important factor is the weather model. It

defines the losses due to heat transfer with the ambient

temperature and the gains with solar irradiance. All the data

of the house occupancy and weather models are included in

the input vector U .

III. MODEL REDUCTION AND CONSTRAINTS

A. Model reduction

The high order linear model (2) is now reduced. In view of

application of optimization methods, its state dimension (order

33) is too large to allow a fast convergence of the optimization

algorithm. A reduction method is applied to lower the state

dimension. To reduce the dimension of the dynamics, several

methods exist such as, e.g., singular perturbations [12], and

identification methods [13]. In our case, an efficient method is

the balanced truncation [14]. Indeed, this truncation consists in

removing the state variables which receive the least effort from

the input and contribute the less to the variations of the output,

that is to say, the state variables that are easily negligible

from an energetic view-point1. To determine the order of the

reduced model, one can compare the error between the high

order model and the reduced ones over one year and quantify

it in terms of mean and standard deviation. Here, we decide

to take the minimal order such that these statistical properties

are both inferior to 0.1. In this case, all models are at least

third order, and one of them is fourth order.

In Table II, the various time constants of the considered models

are reported. One shall notice that these thermal building

models clearly have three well separated time scales [12].

Interestingly, it shall be noticed that the main effects of the

renovation is to enlarge the slow time constants. This is

particularly true for the adjunction of insulation.

1We refer the interested reader to [14], for mathematical definitions of the
considered approximation



TABLE II
VALUE OF THE TIME CONSTANTS OF THE FIVE DIFFERENT MODELS.

1st 2nd 3rd 4th 5th

Time 8 min 7 min 8 min 9 min 9 min
constants 13 h 13 h 2 h 13 h 18 h

95 h 98 h 8 h 160 h 180 h
91 h

B. Model and constraints

1) Model notations: In the following, we use the classical

linear state space representation to represent the model:

ẋ(t) = Ax(t) + Bu(t) + d(t) (3)

y(t) = Cx(t) (4)

where x is the state of the model, y is the inside temperature,

d represents the influence of the outside temperature and the

solar fluxes on the heating of the house and u represents the

heating flux on the air node and is the control variable.

2) Constraints:
a) Inside temperature constraints: The temperature con-

straints are 24 hours periodic and are:

• y ≤ 24◦C at all times.

• y ≥ 14◦C between 9 a.m. and 5 p.m.

• y ≥ 20◦C otherwise.

To simplify the notations, we write these temperature con-

straints as follows:

y− ≤ y ≤ y+ (5)

b) Control constraints: The control constraints are not

the same for all systems:

• 0 ≤ u ≤ 20 kW for the buildings whose walls have not

been insulated.

• 0 ≤ u ≤ 10 kW for the buildings whose walls have been

insulated.

To simplify the notations in the algorithm, we write the control

constraints as follows:

0 ≤ u ≤ u+ (6)

c) Load shifting: In our case the load shiftings consist

in a daily time period when the heating of the house is not

allowed to consume any energy. These shiftings start everyday

at 5 p.m.. The objective of this study is to determine the

maximum duration of these load shiftings beyond which it

becomes impossible to satisfy both (5) and (6).

IV. METHOD AND ALGORITHM

A. Method

In order to characterize the duration of load shifting which

allows the inside temperature to satisfy (5) while the heating

power satisfies (6), a state constrained optimal control ap-

proach is used. Indeed, when there does not exist any solution

for the constrained optimal control problem, it is deduced that

the load shiftings are too long. This property is independent

of the temperature control system, and solely stems from the

ability of the building to store energy.

To determine the maximum allowable duration of the load

shifting, a sequence of continuous time optimal control prob-

lems is solved with increasing load shifting periods until there

exists no solution satisfying the constraints (5) and (6).

B. Algorithm

For this problem, the constraints are (5) and (6) and the

considered criterion is the energy consumed over the whole

week. To solve the state constraint optimal control problem a

maximum principle-based interior method is used (following

interior point approaches in [7], [8], [9], [15]), which has been

adapted for the energy consumption problem. The criterion is

given by the following (to minimize energy consumption):

J = min
u∈[0,u+]

∫ T

0

u(t)dt (7)

with the dynamics and the state constraint y ∈ [y−, y+] seen

above, and where T = 7 days.

The first step, in this algorithm is to operate the following

change in variable2 on the control variable u:

u � φ(ν) = u+

(
ekν

1 + ekν

)
(8)

This change in variable is such that ν is an uncon-

strained variable and the optimization problem is now J =
minν∈R

∫ T

0
φ(ν)dt.

To solve this problem, an indirect method [17] using an adjoint

vector p is used. This adjoint vector p has the same dimension

as the state x of the reduced dynamical system (3). It satisfies

the following differential equation

dp

dt
(t) = −Atp(t)− Ctγ′y(Cx(t)) (9)

where γ′y is the derivative of the following function

γy(y(t)) =

(
y+(t)− y−(t)√

(y+(t)− y(t))(y(t)− y−(t))
− 1

)2.1

(10)

In (10), the expression serves to keep the output away from

the constraint (see [16]). The power 2.1 guarantees the well-

posedness of the method (see [9]). Now, to compute the

optimal control, an interior method is used. It consists in

solving a sequence of optimal control problems, depending

on a parameter εn, converging to the optimal solution of

the problem while producing trajectories lying strictly in

the interior of the constraints. The iterative algorithm is the

following:

• Step 1: Initialize the functions x(t) and p(t) such that the

initial unknown Cx(t) ∈ (y−(t), y+(t)) for all t ∈ [0, T ],
and set ε = ε0. Simply, p can be chosen identically equal

to zero at first step.

• Step 2: Compute ν∗ε = sinh−1
(
− 1+ptB

ε

)
. Thus the

optimal solution u∗ε = φ−1(ν∗ε ) is given using equation

(8) with k = 0.8.

2Similar to the saturation function approach considered in [16]



• Step 3: Solve the two differential systems of equation
dx
dt = Ax+Bu∗ε and dp

dt = −Atp−Ctγ′y(Cx) forming a

two point boundary value problem (e.g. using bvp4c see

[18]), with the following boundary constraints x(0) = x0

and p(T ) = 0.

• Step 4: Decrease ε, initialize x(t) and p(t) with the

solutions found at Step 3 and restart at Step 2.

In our case, the sequence (εn) has been chosen such that

εn = 10−
n
10 with n = 0 · · · 40. The proof of convergence of

this algorithm can be found in [9]. Details on its derivation

can also be found in [16].

V. SIMULATIONS AND RESULTS

A. Simulations

The considered optimization takes place in winter over one

particularly cold week. The ambient temperature history is

reported on Figure 2. For each version of the building, indoor

temperatures (see Figure 3) and energy consumption over the

week have been computed, first without load shifting and then,

with maximal bearable load shifting (see Figure 4).
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Fig. 2. Ambient temperature over one week of winter
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Fig. 4. Energy consumption over one week for the five versions of the
building. For each building the consumed energy is displayed without load
shifting and with the maximal bearable one.

B. Summary of the results

In terms of energy consumption the first and second versions

of the building are quite similar (Fig. 4). The adjunction

of triple glazed windows (3rd version) induces a significant

decrease of energy consumption (≈ 30%). The insulation

of the external walls (4th version) clearly allows to reduce

the energy consumption further (≈ 50%). The most effective

renovation strategy in terms of energy consumption seems to

be the increasing of insulation.

Now, considering the ability in handling load shiftings, Table

III and Figure 5 illustrate that the three first versions of the

building cannot handle load shifting superior to 20 minutes.

Interestingly, the adjunction of triple glazed windows (3rd

version) does not improve the load shifting ability whereas

it is efficient for energy savings. Actually, handling large load

shifting periods becomes possible solely when the insulation

is sufficiantly increased.

TABLE III
VALUE OF THE MAXIMUM LOAD SHIFTING DURATION FOR EACH VERSION

OF THE BUILDING.

1st 2nd 3rd 4th 5th

Load shifting duration 15 min 20 min 20 min 4 h 6 h

152 153 154 155 156 157 158
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Building 1: load shifting 15 min

Building 2: load shifting 20 min

Building 3: load shifting 20 min

Building 4: load shifting 4 hours

Building 5: load shifting 6 hours

Minimal inside temperature

Fig. 5. Comparison of the optimal indoor temperature during the load shifting
of the last day of the week

C. Explanation of the results: the role of zeros in the transfer
function

As reported on Table II, the renovation mainly influences

the slow time constant of the systems. It is particularly

noticeable that once some insulation has been added to the

building the slow time constant is almost twice as large as

the one of the non insulated versions. Nevertheless, even for

the first version of the building, the slow and medium time

constants are large compared to the duration of the maximum

bearable load shifting (15 min). Thus, this modification of the

slow and medium time constants through insulation does not

satisfyingly explain the increase of maximum bearable load

shifting duration (from 15 min to 6 h).

Actually, a role is played by the zeros of the transfer function

between the heating flux on the air node and the indoor

temperature. Table IV exhibits that the slow (resp. medium)

zero and pole of the first building version are closer from

each other than the ones of the fifth version. This increased
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Fig. 3. Comparison of the optimal indoor temperature of each building with the maximum bearable load shiftings duration. The behavior of the indoor
temperature is different on the last day because of the particularly cold ambient temperature.

distance between poles and zeros results in an increased

control authority on the slow time scale state variables. This

improvement allows to store energy within 24 hours in the

slow state variables. By contrast, the non-insulated building

slow time scale are not controllable enough to store energy

within 24 hours in the slow time scale state variables, resulting

in an energy storage in the fast time scale state variable and

thus in a small load shifting period. This point will be a topic

of future investigations.

TABLE IV
VALUE OF THE POLES AND THE ZEROS OF THE DIFFERENT TIME SCALES

FOR THE FIRST AND THE FIFTH VERSION.

1st version 5th version
slow pole P = −0.0105 P = −0.00558
slow zero Z = −0.0178 Z = −0.0174

medium pole P = −0.0789 P = −0.0548
medium zero Z = −0.268 Z = −0.251

VI. CONCLUSION

On the methodological side, it appears that the state con-

strained dynamic optimization is an effective tool to study

properties of the buildings. The existence of feasible trajecto-

ries only depends on the characteristics of the buildings. The

presented time continuous method yields precise results even

when considering fast time scales phenomenom.

On the applicative side, we have emphasized that a non-

insulated residential house cannot handle load shifting superior

to 20 minutes even if an advanced strategy of regulation is

used. To allow these buildings to handle long load shiftings,

their thermal mass is not sufficient, the buildings must be

insulated enough or have auxiliary energy storage capacity.

But, the regulation system itself is not sufficient to achieve

long load shifting duration.
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des systèmes, 2009.

[12] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[13] P. Malisani, F. Chaplais, N. Petit, and D. Feldmann, “Thermal building

model identification using time-scaled identification methods,” 49th
IEEE Conference on Decision and Control, pp. 308–315, 2010.

[14] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control. Prentice
Hall, 1996.

[15] A. Forsgren, P. Gill, and M. Wright, “Interior methods for nonlinear
optimization,” SIAM Review, vol. 4, no. 4, p. 525–597, 2002.

[16] K. Graichen, A. Kugi, N. Petit, and F. Chaplais, “Handling constraints in
optimal control with saturation functions and system extension,” Systems
and Control Letters, vol. 59, no. 11, pp. 671–679, 2010.

[17] A. Bryson and Y. Ho, Applied Optimal Control. Ginn and Company:
Waltham, MA, 1969.

[18] L. Shampine, J. Kierzenka, and M. Reichelt, Solving boundary value
problems for ordinary differential equations in MATLAB with bvp4c.,
2000. [Online]. Available: http://www.mathworks.com/bvp tutorial


