Modelling of a tuned liquid multi-column damper. Application to floating wind turbine for improved robustness against wave incidence

Christophe Coudurier b,*, Olivier Lepreux a, Nicolas Petit b

a IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360, Solaize, France
b MINES ParisTech, Centre Automatique et Systèmes, Unité Mathématiques et Systèmes, 60 Bd St-Michel, 75272, Paris, Cedex 06, France

ARTICLE INFO
Keywords:
Structural control
U-tank
Anti-roll tank
U-tube
Tuned liquid column damper
Tuned liquid multi-column damper

ABSTRACT
In this paper, the coupling of a float with a tuned liquid multi-column damper (TLMCD), a novel structural damping device inspired by the classical tuned liquid column damper (TLCM), is modelled using Lagrangian mechanics. We detail the tuning of the design parameters for each considered variant of the TLMCD, and compare each of them against a layout of multiple TLCMs. The results show that the proposed TLMCD is superior to multiple TLCMs for this application as it is more robust against wave incidence and it creates significantly less parasitic oscillations.

1. Introduction

Wind power is the second fastest growing source of renewable electricity (National Renewable Energy Laboratory, 2012) in terms of installed power. The construction of offshore wind farms is growing worldwide. In Europe, offshore wind energy is expected to grow to 23.5 GW by 2020, tripling the installed capacity in 2015 (Ernst and Young, 2015). The major causes of this recent trend are the strength and regularity of wind far from the shore, which should allow for the easy mass production of electricity. To generate offshore wind energy, two types of technologies have been considered: fixed-bottom wind turbines (foundations fixed into the seabed) and floating wind turbines (FWTs). The fixed-bottom offshore wind turbine technology is too costly for use in water deeper than 60 m (Musial et al., 2006). This disqualifies them from use in most seas. FWTs are a tempting alternative. One advantage is that they are not as dependent on seabed conditions for installation and can be moved to a harbour for maintenance. The main drawback of FWTs is their sensitivity to surrounding water waves that increase the mechanical load on the wind turbine (Jonkman, 2007), hence reducing the lifespan of its mechanical parts. This sensitivity can be mitigated by increasing the mass and size of the mechanical structure. However, this leads to a prohibitive rise in the cost per kWh.

Previous studies have proposed compensating for tower fore-aft oscillations using collective and individual blade pitch control to modify the wind thrust forces (Jonkman, 2007; Namik, 2012; Christiansen et al., 2013). This solution has the advantage of requiring no structural modification, but delivers limited performance. The tower movements are still many times superior to those observed on onshore wind turbines. Instead of using aerodynamic forces, it is tempting to consider using hydrodynamic forces. In naval engineering, considerable attention has been paid to ship roll damping (since the advent of steamboats). However, most solutions involve the use of the speed of the ship relative to the water to generate lift to control the roll (Perez and Blanke, 2012) and, for this reason, are not easily transferable to our problem.

In addition to naval engineering, civil engineering has been a great contributor to such approaches, as skyscrapers are highly sensitive to wind gusts and earthquakes. This general field (structural control) is beyond the scope of this paper, and the reader can refer to (Saeed et al., 2013) for an overview. To improve the response of massive structures to external disturbances, attached moving masses, such as tuned mass dampers (TMD), can be employed. Among the most economical and efficient solutions is the tuned liquid column damper (TLCM), also known as the anti-roll tank or the U-tank. As originally proposed by Frahm (Frahm, 1911; Moaleji and Greig, 2007) to limit ship roll, it is a U-shaped tube on a plane orthogonal to the ship’s roll axis, and is generally filled with water. The liquid inside the TLCM oscillates due to the movement of the structure and liquid’s energy is dissipated through a restriction located in the horizontal section. The TLCM is usually chosen to damp the natural frequency of the structure. While TLCM systems have been modelled in the past by, for instance, (Chang and Hsu, 1998; Gao et al., 1997), it remains an active field of research (Di Matteo et al., 2014). A considerable amount of relevant research has been conducted over the
last two decades on civil engineering applications, where most of the work has focused on determining the optimal design of passive TLCDs, as well as active TLCDs (Lackner and Rotea, 2011; Namik et al., 2013; Siconolfi et al., 2015; Luo et al., 2011; Shadman and Akbarpour, 2012) have shown that the damping provided by the TLCD is not robust against a change in the wave incidence. As shown in Fig. 1, the damping provided by the TLCD aligned with the wave incidence (Coudurier et al., 2015). In this paper, we consider the damping of an offshore platform subject to waves of various angles of incidence. Such a system behaves as a six-DOF periodically oscillating rigid body. We try to minimize the roll and pitch oscillations by means of a TLCD, and neglect aerodynamic forces. Due to the mooring system, we cannot easily change the orientation of the barge and the wind turbine is modelled as a single rigid body, referred to as “the float” in this paper. Deformations in the wind turbine are neglected as its resonant period is inferior to the period of the monochromatic waves we consider here – ranging from 3 s to 30 s. The float is studied with all six degrees of freedom. To avoid any bias in the study, we do not consider the interaction between the rotor and the wind because the damping induced is dependent on the controller chosen for the barge and the wind turbine are modelled as a single rigid body, referred to as “the float” in this paper. Deformations in the wind turbine are neglected as its resonant period is inferior to the period of the monochromatic waves we consider here – ranging from 3 s to 30 s. The float is studied with all six degrees of freedom. To avoid any bias in the study, we do not consider the interaction between the rotor and the wind because the damping induced is dependent on the controller chosen for the barge and the wind turbine are modelled as a single rigid body, referred to as “the float” in this paper. Deformations in the wind turbine are neglected as its resonant period is inferior to the period of the monochromatic waves we consider here – ranging from 3 s to 30 s. The float is studied with all six degrees of freedom. To avoid any bias in the study, we do not consider the interaction between the rotor and the wind because the damping induced is dependent on the controller chosen for the barge and the wind turbine are modelled as a single rigid body, referred to as “the float” in this paper. Deformations in the wind turbine are neglected as its resonant period is inferior to the period of the monochromatic waves we consider here – ranging from 3 s to 30 s. The float is studied with all six degrees of freedom. To avoid any bias in the study, we do not consider the interaction between the rotor and the wind because the damping induced is dependent on the controller chosen for.
the wind turbine (its impact can be negative or positive (Larsen and Hanson, 2007)). An illustration of the float with a 3S TLMCD is given in Fig. 2.

2.1. Assumptions

To model the dynamics of the tank, we make the following assumptions:

1. the float is rigid. Therefore,
2. its centre of gravity, CoG, is immobile in the frame fixed to the barge,
3. the liquid in the TLMCD is incompressible,
4. the column width is small with respect to length,
5. the flow of liquid in the tank is uniform in each column,
6. the position of the free surface of liquid in the tank is within the vertical column (i.e. vertical columns are never empty).

2.2. Kinematics of the tank

A TLMCD is composed of two vertical tanks of cross-section \(A_t \) connected by a horizontal duct of cross-section \(A_h \). Liquid flows from one vertical column to the other through the horizontal tube. The restriction causing the damping (head loss) is located in the middle of the horizontal part. Fig. 3 is an illustration of the TLMCD with the parameters presented in this subsection.

As we neglect the width of the columns, the TLMCD geometry is defined by a line whose coordinates are expressed in the frame fixed to the barge

\[
\rho \triangleq \begin{bmatrix} x_b \; \psi_t(\sigma) \; \zeta_t(\sigma) \end{bmatrix}
\]

with

\[
y_t(\sigma) \triangleq \begin{cases}
\frac{L_h}{2} - \frac{L_0}{2} & \sigma \leq \frac{L_0}{2} \\
-\sigma & \frac{L_0}{2} < \sigma \leq \frac{L_h}{2} \\
\frac{L_0}{2} - \frac{L_0}{2} & \frac{L_h}{2} < \sigma
\end{cases}
\]

where \(x_b \) is defined for each damping system to generate a symmetric problem, and where \(\sigma \) is the curvilinear abscissa along the geometry of the tank (\(\sigma = 0 \) is at the centre of the horizontal tube, and for \(\sigma > 0 \) \(y_t(\sigma) \) is negative). We write \(\psi_t(\sigma) \) as the unit vector tangent to the tank.

We define the cross-sectional area of the tank as

\[
A(\sigma) = \begin{cases}
A_t & \sigma \leq \frac{L_0}{2} \\
A_h & \frac{L_0}{2} < \sigma \leq \frac{L_h}{2} \\
A_h & \frac{L_h}{2} < \sigma
\end{cases}
\]

In this paper, the damping systems we consider consist of \(N \) identical elementary subsystems (referred to as elements), which are regularly rotated around \((\text{CoG}, z_b)\). The geometry of each element is given by \(R_t(\sigma) r_t(\sigma) \) where

\[
R_t(\alpha) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

is the rotation matrix around \(z \) and where \(\alpha_t \) is the orientation angle of the \(t \)th element. Let \(\psi_t(\sigma) \) be the algebraic speed in the \(t \)th element of the damping system. By convention, \(\psi_t(\sigma) \) is positive if the liquid flows towards positive \(\sigma \). The vector \(\psi_t(\sigma) \) is the speed of the liquid in the \(t \)th element expressed in \(z_b \) as

\[
\psi_t(\sigma) = v_t(\sigma) R_t(\alpha_t) \frac{d}{d\sigma} (\sigma) \quad (1)
\]

We also introduce \(\varphi_h \), the vector of algebraic speeds in the horizontal tubes, as

\[
\varphi_h = \mathbf{p}_h \psi(\sigma)
\]
with \(P_b \) given for each damping system in the Appendices.

3. Linearised dynamics

We define \(\mathbf{X} \triangleq [x^\Theta \ \omega \ \dot{x}^\Theta \ \dot{\omega}]^\top \) the state vector of our system, with \(x^\Theta = [x, y, z]^\top \in \mathbb{R}^3 \) the position of the systems centre of gravity, \(\Theta = [\rho, \theta, \psi]^\top \in \mathbb{R}^3 \) the orientation of the float, \(\omega \in \mathbb{R}^n \) and \(n_c \) the number of variables describing the speed of the liquid inside the TLCD (\(n_c \) will be detailed in §4 for each variant). The linearised model writes

\[
\ddot{\mathbf{X}} = \mathcal{A}(\omega)\mathbf{X} + \mathcal{B}(\omega) \begin{bmatrix} F_{\text{hydro}}(\omega, H) \\ Q_{\text{res}}(\eta) \end{bmatrix}
\]

with

\[
\mathcal{A}(\omega) = \begin{bmatrix} 0_{6+n_c \times 6+n_c} & I_{6+n_c \times 6+n_c} \\ M(0) + A(\omega) & (M(0) + A(\omega))^{-1} \end{bmatrix} \left[\begin{array}{c} \mathcal{B}(\omega) \\ 0_{6+n_c \times 6+n_c} \end{array} \right]
\]

where \(M(0) \) and \(C(0,0) \) the mass matrices given in §4 where \((q,q) = 0 \). The matrices \(A(\omega) \) and \(B(\omega) \) are respectively the radiation added mass and damping matrices, with \(\omega \) the angular frequency of the monochromatic wave. The stiffness matrix \(K \) accounts for buoyancy and gravity. The forces applied on the float and the liquid inside the TLCD are \(F_{\text{hydro}}(\omega, H) \), depending on the angular frequency \(\omega \) and \(H \) the wave height, and \(Q_{\text{res}}(\eta) \) as given in §4.2.

This linear model is based on the non-linear model presented in §4, which can be skipped by the reader, the system is tuned in §5, and the results of the numerical simulations are given in §6.

4. Dynamic model of the damping systems

4.1. Description and properties of the frames

In this paper, two frames are used: \(\mathcal{R}_b \triangleq (\text{CoG}, x_b, y_b, z_b) \) is the frame fixed to the barge, and \(\mathcal{R}_n \triangleq (\text{O}, x_n, y_n, z_n) \) is the Earth-fixed frame. Every vector \(r \in \mathbb{R}^3 \) is denoted with its velocity \(\dot{r} \) when expressed in the \(\mathcal{R}_b \) frame and \(r^\top \) in \(\mathcal{R}_n \). The frames are oriented such as \(\mathbf{z} \) points downwards.

The orientation of \(\mathcal{R}_b \) with respect to \(\mathcal{R}_n \) is defined by the “roll-pitch-yaw” Euler triple denoted by \(\Theta = [\phi, \theta, \psi]^\top \in \mathbb{R}^3 \) (See Fig. 4). The rotation matrix associated with \(\Theta \) is

\[
R(\Theta) = \begin{bmatrix}
\cos(\phi) \cos(\theta) & -\cos(\phi) \sin(\theta) & \sin(\phi) \\
\cos(\theta) \sin(\psi) + \sin(\theta) \cos(\phi) \cos(\psi) & -\cos(\theta) \cos(\psi) + \sin(\theta) \sin(\phi) \cos(\psi) & -\sin(\theta) \sin(\psi) - \cos(\theta) \cos(\phi) \sin(\psi) \\
\sin(\phi) \sin(\theta) & \cos(\phi) \cos(\theta) & -\sin(\phi) \cos(\theta) \\
\end{bmatrix}
\]

with \(\cos(\cdot) \) and \(\sin(\cdot) \). Therefore, \(x_b = R x_i \), where \(x_i \) is the position of CoG in \(\mathcal{R}_n \) expressed in the \(\mathcal{R}_n \) frame, and \(v_i \) the velocity of \(\mathcal{R}_b \) relatively to \(\mathcal{R}_n \) and expressed in \(\mathcal{R}_b \). For all \(\mathbf{u} = [u_1, u_2, u_3]^\top \in \mathbb{R}^3 \), we define the cross-product matrix as

\[
S(\mathbf{u}) = \begin{bmatrix} 0 & -u_3 & u_2 \\
u_3 & 0 & -u_1 \\
-u_2 & u_1 & 0 \\
\end{bmatrix} = -S(\mathbf{u})^\top
\]

such that \(\forall x, y \in \mathbb{R}^3, S(x)y = x \times y \). We denote by \(\omega_b \) the rotation speed of the \(b \) frame relative to the \(n \) frame, expressed in \(\mathcal{R}_b \). The time derivative of \(R \) can then be given by (Landau and Lifshitz, 1976)

\[
R = R S(\omega_b)
\]

We define

\[
G(\Theta) = \begin{bmatrix} x_R \ T(0,0,0) \ y_R \ R(\Theta)^\top \ z \end{bmatrix}^\top = \begin{bmatrix} 1 & 0 & -s_\theta \\
0 & c_\rho & s_\rho s_\theta \\
0 & -s_\rho & c_\rho c_\theta \\
\end{bmatrix}
\]

such that \(\omega_b = G\Theta \), with \(x, y, z \) as the unit vector along each axis.

We define \(q \triangleq [x^\Theta \ \theta \ \dot{\omega}]^\top \) and \(v \triangleq [v^\Theta \ \dot{\Theta}]^\top \), with \(\omega, v \in \mathbb{R}^n \) and \(n_c \) the number of variables describing the speed of the liquid inside the TLCD (\(n_c \) will be detailed in §4 for each variant). These variables are linked via \(v = R\dot{q} \) with

\[
R(\Theta) = \begin{bmatrix} R(\Theta)^\top & 0_{3 \times 3} & 0_{3 \times n_c} \\
0_{n_c \times 3} & G(\Theta) & 0_{n_c \times n_c} \\
0_{n_c \times 3} & 0_{n_c \times n_c} & I_{n_c} \\
\end{bmatrix}
\]

We have described the geometry and kinematics of the system, and now establish the dynamics of our systems using the Lagrangian approach. The dynamics of the system are classically given as

\[
\frac{d}{dt} \frac{\partial (T - V)}{\partial \dot{q}} - \frac{\partial (T - V)}{\partial q} = Q
\]

with \(T \) the kinetic energy, \(V \) the potential energy and \(Q \) the generalized forces.

4.2. Generalized forces

To obtain \(Q \) (the generalized forces), we express the power generated by external forces on our system as \(\mathcal{Q} \). We write \(Q = Q_{\text{hydro}} + Q_{\text{res}} \), with \(Q_{\text{hydro}} \) the generalized force due to the interactions between the waves and the barge, and \(Q_{\text{res}} \) the generalized force due to the restrictions in the TLCD. For our simulations, the interactions between the platform and the water were modelled using a diffraction-radiation software. Following classical writing of the force generated by the fluid flow through the restriction, we write the forces \(F_b \in \mathbb{R}^3 \) in a damping system as

\[
F_b = -\frac{1}{2} \rho A \eta \times T R(\dot{\omega}) \quad \text{or} \quad \left| T R(\dot{\omega}) \right|
\]

![Fig. 4. Orientation of \mathcal{R}_b with respect to \mathcal{R}_n.](image-url)
with \(\eta \in \mathbb{R}^N \) the vector of head-loss coefficients, \(\rho \) the fluid density, and \(\cdot \) the Hadamard product (entrywise product). To establish the expression for \(Q_{\text{res}} \), we express the power dissipated by the restrictions as \(P_{\text{res}} = \frac{\pi}{h} F_{h} \), with \(\frac{\pi}{h} = \frac{w^2}{P^2} \) according to (2). Therefore, \(Q_{\text{res}} \) is given by

\[
Q_{\text{res}}(t, w) = \left[\frac{\eta_{i+1}}{P^i F_i(w)} \right]
\]

(4)

4.3. System with N TLCDs (NU)

We consider \(N \) TLCDs regularly rotated around \((\text{CoG}, z_b)\), and denote this system NU. As an example, the 2U system is illustrated in Fig. 5. We set \(x_0^2 \) for our system to be axisymmetric. The orientation angle of each element writes \(\alpha_i = \frac{\pi}{N} \). To describe the position of the liquid, we need \(N \) variables, i.e. \(\text{nc} = N \). For the NU system, each element is a TLCD, therefore, the curvilinear abscissa of each element, \(\sigma_i \), ranges from \(-\zeta_i\) to \(\zeta_i\) defined as

\[
\sigma_i = \frac{L_0}{2} + L_0 + w_i
\]

\[
\zeta_i = \frac{L_0}{2} + L_0 - w_i
\]

4.3.1. Mechanical energy of the system

The potential energy of the NU system is written as

\[
V_{\text{NU}} = \frac{1}{2} \rho g \int_0^{rac{\pi}{N}} \sum_{i=1}^{N} A_i(\sigma) \left(\rho \mathbf{R}(\sigma) \mathbf{R}_z(\sigma) \mathbf{r}(\sigma) + \mathbf{x}^2 \right) d\sigma
\]

(5)

where \(g \) is the acceleration due to gravity, \(m_0 \) is the total mass of the liquid in the damping system.

The kinetic energy of the system is written as

\[
T_{\text{NU}} = \frac{1}{2} \frac{\pi}{h} F_h \hat{q} \cdot \mathbf{M}_{\text{NU}}(w) \hat{q}
\]

(6)

with

\[
\mathbf{M}_{\text{NU}}(w) = \mathcal{M}_{\text{NU}}(w) \mathbf{P}(\Theta) = \mathcal{M}_{\text{NU}} \in \mathbb{R}^{\text{nc} \times \text{nc} \times \text{nc}}
\]

(7)

where \(\mathcal{M}_{\text{NU}}(w) \) as defined in (A.2). The calculation of the kinetic energy is detailed in Appendix A.1.

4.3.2. System dynamics

We write the dynamics of the system as

\[
\mathbf{M}_{\text{NU}}(w) \hat{q} + \mathbf{C}_{\text{NU}}(w) \dot{q} + \mathbf{k}_{\text{NU}}(q) = \mathbf{Q}_{\text{hydro}} + \mathbf{Q}_{\text{res}}(w)
\]

(8)

with \(\mathbf{M}_{\text{NU}}(w) \) as defined in (7), and \(\mathbf{C}_{\text{NU}} \), \(\mathbf{k}_{\text{NU}} \) and \(\mathbf{Q}_{\text{res}} \) as defined in Appendix B.3.

4.4. Model of a star-shaped TLMCD with N elements (NS)

This damping system is composed of \(N \) halves of the TLCD interconnected at the coordinate \(r^0(\sigma = 0) \) and regularly rotated around \((\text{CoG}, z_b)\). We denote this system NS. For illustration purpose, the 3S system is shown in Fig. 6.

For this system, each element is a half-TLCD, therefore the curvilinear abscissa of each element, \(\sigma_i \), ranges from \(-\zeta_i\) to \(\zeta_i\). We still consider \(x_0^2 = 0 \).

The orientation angle writes, \(\alpha_i = \frac{\pi}{N} \).

We note \(\sigma = \zeta_i \), the coordinate of the free surface of the \(i \)th element.

The total mass of the liquid is constant, and can be given by

\[
m_i \triangleq \rho \sum_{i=1}^{N} A_i(\sigma_i) d\sigma
\]

If we know \(\zeta_i \) for \(i = 1, \ldots, N-1 \), we can easily deduce \(\zeta_N \); therefore, \(\text{nc} = N - 1 \). We define, for \(i = 1, \ldots, \text{nc} \),

\[
\zeta_i = \frac{L_0}{2} + L_0 + w_i
\]

(9)

and

\[
\zeta_N = \frac{L_0}{2} + L_0 - \sum_{i=1}^{N-1} w_i
\]

(10)

As shown in Appendix B.4, we write the dynamics of the system as

\[
\mathbf{M}_{\text{NS}}(w) \hat{q} + \mathbf{C}_{\text{NS}}(w) \dot{q} + \mathbf{k}_{\text{NS}}(q) = \mathbf{Q}_{\text{hydro}} + \mathbf{Q}_{\text{res}}(w)
\]

(11)

where \(\mathbf{M}_{\text{NS}} \), \(\mathbf{C}_{\text{NS}} \), \(\mathbf{k}_{\text{NS}} \) and \(\mathbf{Q}_{\text{res}} \) are defined in Appendix B.4.

4.5. Model of polygonal TLMCD with \(N \) elements (NP)

This damping system is composed of \(N \) horizontal columns laid out to form a convex regular \(N \)-gon with \(N \) vertical columns positioned at each intersection. We denote his system NP. The 3P case is shown in Fig. 7.

The elements of this system are composed of one horizontal tube and one vertical column, therefore, the curvilinear abscissa of each element, \(\sigma_i \), ranges from \(-\frac{L_0}{2\text{tan}A} \) to \(\zeta_i\), as defined in (9). The geometry of our system implies \(x_0^2 = \frac{L_0}{2\text{tan}A} \).

The orientation angle \(\alpha_i \) writes \(\alpha_i = \frac{2\pi (i - 1)}{N} \), as in the NS problem.

There are \(2N \) values of the speed of the liquid (one for each horizontal
tube and each vertical column). We can write \(N \) local relations of flow conservation (at the base of each vertical column). We need \(nc = 2N - N = N \) independent variables to know the speed of the liquid in each column. As the total mass of the liquid is constant, there are \(N - 1 \) independent positions of free surfaces; therefore, we need to introduce an additional variable to completely describe the system. We arbitrarily choose \(w_{nc} \) to be the “position” of the liquid in the \(N^{th} \) horizontal column.

The system’s equations of motion are written as

\[
\mathcal{M}_{SP}(q) \ddot{q} + \mathcal{C}_{SP}(q, \dot{q}) \dot{q} + \mathcal{K}_{SP}(q) = \mathcal{Q}_{\text{base}} + \mathcal{Q}_{\text{res}}(\omega)
\]

(12)

where \(\mathcal{M}_{SP}, \mathcal{C}_{SP}, \mathcal{K}_{SP} \) and \(\mathcal{Q}_{\text{res}} \) are defined in Appendix B.5.

4.6. Results frame

As we change the incidence of the waves, we need to change the results variables: we introduce \(\varphi \), the inline angular response and \(\theta \), the transverse angular response to describe the oscillations of the FWT along the direction of the waves and perpendicular to the waves, respectively. We need to express \(\varphi \) and \(\theta \) in terms of \(\varphi, \theta, \psi \). For this purpose, we introduced \(\mathcal{R}_L \) and \(\mathcal{R}_B \) as the “results frames”. They are related via \(R(\Theta) \) such that \(\forall \theta \in \mathbb{R}^3 \),

\[
\mathcal{R}^L = R(\Theta)\mathcal{R}^N
\]

(13)

where \(\Theta = [\varphi, \theta, \psi]^T \). These frames are linked to \(\mathcal{R}_L \) and \(\mathcal{R}_B \) by a rotation around \(z \) at angle \(\beta \), such that \(\forall \theta \in \mathbb{R}^3 \),

\[
\mathcal{R}^L = R_{\beta}(\theta)\mathcal{R}^N
\]

and

\[
\mathcal{R}^B = R_{\beta}(\psi)\mathcal{R}^N.
\]

In §4.1 we defined \(R(\Theta) \) so that

\[
\mathcal{R}^L = R(\Theta)\mathcal{R}^N
\]

thus, we write

\[
\mathcal{R}^L = R_{\beta}(\theta)R(\Theta)\mathcal{R}^N = R_{\beta}(\psi)R(\Theta)R_{\beta}(\theta)\mathcal{R}^N
\]

and by identification with (13), we get

\[
R(\Theta) = R_{\beta}(\theta)R(\Theta)R_{\beta}(\psi).
\]

Solving this equation yields \(\Theta \), in terms of \(\Theta \) and \(\beta \).

5. Tuning the proposed configurations

Prior to assessing the robustness of each solution against wave incidence, we need to determine their design parameters. First, we must determine the mass of the liquid in the damper. We arbitrarily assume that each TLMCD of the 2U variant weighs 2% of the total mass of the float, and that each TLMCD weighs 4% of the total mass, i.e. 2U, 3S and 3P have the same mass. According to (Yalla, 2001), the price of the system depends on three factors: the loss of space (occupied by the TLMCD), additional construction costs, and the amount of steel needed for the tank. Since the space inside the barge has no commercial value, the cost of the loss of space is zero (if the system to dam was a building, the cost due to loss of space would have been the price of the floors occupied by the device). In our case, if the vertical columns were outside the float, additional construction costs would have incurred to ensure the structural integrity of the TLMCD. To reduce this cost to zero, we designed the dampers to fit inside the barge. To determine the best design of each damper, we use the MATLAB fminsearch optimisation function, with the following performance index to be minimized:

\[
P.I. = \max_{\nu \in \mathbb{R}} (|\psi\nu|)
\]

where \(|\psi\nu| \) is the steady state roll magnitude obtained via a simulation for each period of monochromatic wave (excitation). It is a min-max problem where the decision variables are \(L_\nu, \eta, \nu \) and \(\eta \). This problem is solved under constraints \(L_\nu \leq L_{\text{base}} \) and \(\eta \leq L_{\text{base}} \) to fit the damper inside the barge so that the construction cost remains zero. To avoid a violation of assumption 6, we set \(L_\nu = L_{\text{base}} \).

In a previous paper (Coudurier et al., 2015), we considered damping with a single TLMCD using the same float subject to waves in the vertical plane \(x_t = 0 \). The results showed that the optimal value of \(L_\nu = L_{\text{base}} \). Therefore, we chose to set \(L_\nu = L_{\text{base}} \) to reduce the number of variables in the optimization problem. As we have \(L_\nu = L_{\text{base}} \) and \(L_\nu = L_{\text{base}} \), the position of the TLMCD inside the barge is imposed.

We define \(\mu \equiv \frac{P.I.}{\max_{\nu \in \mathbb{R}} (|\psi\nu|)} \) as the ratio of the mass of the liquid in the TLMCD to the total mass of the float. We summarize the design of each damper in Table 4 for a given wave height \(H = 3 \text{ m} \) and an incidence of \(\beta = 0^\circ \).

As the natural period of the float is close to the predominant period of extreme sea states (15 s–20 s), we chose the performance index to damp this resonance. Note that for a given site, we could have used an adapted performance index to obtain the design best suited to the conditions of the local sea.

We also note that \(\nu \) (the cross-section ratio) of the 3P system is much larger, which means that the 3P system has a lower resonant period for the same \(\nu \).

6. Simulation results

In the previous section we detailed the design of each damping system. In this section we perform numerical simulations to compare their robustness against wave incidence. As the dampers are tuned to the roll/pitch natural frequency, they have almost no effect on the other motions of the wind turbine. This is why in this section we only deal with the roll and pitch motions.

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>(\eta)</th>
<th>(L_\nu)</th>
<th>(\eta)</th>
<th>(P.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2U</td>
<td>4.06</td>
<td>5.90</td>
<td>32.31 m</td>
<td>5.68 m²</td>
</tr>
<tr>
<td>3S</td>
<td>4.12</td>
<td>3.43</td>
<td>31.88 m</td>
<td>7.67 m²</td>
</tr>
<tr>
<td>3P</td>
<td>7.11</td>
<td>10.72</td>
<td>27.61 m</td>
<td>7.65 m²</td>
</tr>
</tbody>
</table>

Table 4

Optimal TLMCD parameters for a wave height \(H = 3 \text{ m} \).
6.1. Preliminary considerations

Before we perform numerical simulations, let’s consider the following points.

Evaluation criterion: The RAO We introduce the response amplitude operator (RAO). It is defined as the ratio of the system’s motion to the wave amplitude causing it, and is represented over a range of (monochromatic) wave periods (International Organization for Standardization, 2009). It is employed as a quantitative evaluation tool for the rest of the study.

6.2. Numerical simulations

We simulated the system’s response to a 3 m wave excitation until a steady state was attained. We plotted the RAOs for monochromatic waves of periods ranging from 3 s to 30 s as well as for different incident angles. It has been verified that the vertical columns were never empty during

Fig. 8. RAO of an arrangement of multiple TLCDs (a) and variants of TLMCDs ((b) and (c)) for different wave incidences of a 3 m monochromatic wave.
the simulations.

We plotted the results in Fig. 8. Due to the symmetries of the damping systems, we plotted curves between 0° and 45° for the 2U case, and between 0° and 30° for the 3S and 3P cases.

In Fig. 8, we can see that the 3S and 3P systems are more robust against wave incidence than the 2U damper. All dampers create a parasitic transverse angular response, but it is worth noting that the 2U system creates significantly greater parasitic transverse angular motion than the 3P and 3S dampers.

7. Conclusions

In this paper, we introduced the concept of a tuned liquid multi-

Appendix A. Kinetic and potential energy of the proposed dampers

Appendix A.1. Kinetic energy of the NU damper

Following the method used in [8, Appendix B], we compute the kinetic energy of the NU system. For the NU system and for \(i = 1, \ldots, N \)

\[
\nu_i(\sigma) = \frac{A_i}{A(\sigma)} \nu_i,
\]

we write \(\nu_i(\sigma) \) according to (1)

\[

\nu_i(\sigma) = \frac{A_i}{A(\sigma)} \nu_i R_i(\sigma) \frac{d\phi}{d\sigma}(\sigma).
\]

Therefore, matrix \(P_{\text{hnu}} \) appearing in (2) can be given by

\[
P_{\text{hnu}} = \nu_i \nu_i^T.
\]

We write the kinetic energy of the system as

\[
T_{\text{NU}} = T_i + T_{\text{DOU}},
\]

where

\[
T_i = \frac{1}{2} \left[M_i \ 0_{6 \times 6} \ 0_{6 \times \nu} \right] v
\]

with \(M_i \) the float mass matrix, and

\[
T_{\text{DOU}} = \frac{1}{2} \rho \sum_{i=1}^{N} \int_{-\varepsilon_i}^{\varepsilon_i} A_i(\sigma)||v||^2 + \nu_i \times R_i(\sigma) R_i(\sigma) + \nu_i^2(\sigma)||^2 \ d\sigma,
\]

\[
= \frac{1}{2} \sum_{i=1}^{N} \left(\rho \int_{-\varepsilon_i}^{\varepsilon_i} A_i(\sigma) \nu_i^2(\sigma) ||v||^2 \ d\sigma \right) \omega^2 + \omega^2 \left(\rho \sum_{i=1}^{N} \int_{-\varepsilon_i}^{\varepsilon_i} A_i(\sigma) S_i(\sigma) R_i(\sigma) R_i(\sigma) \ d\sigma \right) \nu_i^2(\sigma)
\]

\[
+ \omega^2 \left(\rho \sum_{i=1}^{N} \int_{-\varepsilon_i}^{\varepsilon_i} A_i(\sigma) S_i(\sigma) R_i(\sigma) \ d\sigma \right) \nu_i^2(\sigma)
\]

\[
+ \frac{1}{2} \sum_{i=1}^{N} \left(\rho A_i \int_{-\varepsilon_i}^{\varepsilon_i} \frac{\dot{w}_i^2(\sigma)}{A_i(\sigma)} \ d\sigma \right).
\]

Therefore, we can write

\[
T_{\text{NU}} = \frac{1}{2} \nu_i \nu_i^T M_{\text{NU}}(w) v = \frac{1}{2} \nu_i \nu_i^T M_{\text{NU}}(q) \dot{q},
\]
with \(\mathcal{M}_{\text{NS}} \triangleq \mathcal{P}^T \mathcal{M}_{\text{NS}} \mathcal{P} \) and

\[
\mathcal{M}_{\text{NS}}(w) \triangleq \begin{bmatrix}
M_i & 0_{0,nc} \\
0_{0,nc} & 0_{nc,nc}
\end{bmatrix} + \begin{bmatrix}
m_i \omega^3 & M_{aw}(w) & M_{aw}(w) \\
M_{aw}(w) & M_{aw}(w) & M_{aw}(w) \\
M_{aw}(w) & M_{aw}(w) & M_{aw}(w)
\end{bmatrix},
\]

(A.2)

For \(i = 1, \ldots, nc, \)

\[
m_i \triangleq \rho \sum_{j=1}^N \int_{-\epsilon_i}^{\epsilon_i} A_i(\sigma) d\sigma_i \in \mathbb{R}
\]

\[
M_{aw} \triangleq -\rho \sum_{j=1}^N \int_{-\epsilon_i}^{\epsilon_i} A_i(\sigma) S(R_i(\alpha) r^i(\sigma)) d\sigma_i = -M_{aw}^0(w) \in \mathbb{R}^{3\times3}
\]

\[
M_{aw}[i,j] \triangleq \rho A_i \int_{-\epsilon_i}^{\epsilon_i} R_i(\alpha) \frac{d^3 r}{d\sigma} (\sigma) d\sigma_i \in \mathbb{R}^{3\times1}
\]

\[
M_{aw}[i,j] \triangleq \rho A_i \int_{-\epsilon_i}^{\epsilon_i} S(R_i(\alpha) r^i(\sigma)) R_i(\alpha) \frac{dr}{d\sigma} (\sigma) d\sigma \in \mathbb{R}^{3\times1}
\]

\[
M_q \triangleq \rho A_i \left(P_{\text{lin}}^T \frac{L_0}{2\nu} (\nu - 1) + \nu^{-2} P_{\text{lin}}^T \right) P_{\text{eq}} \in \mathbb{R}^{n_2}
\]

with \(M_{aw} \in \mathbb{R}^{3\times3}, M_{aw} \in \mathbb{R}^{3\times3}. \)

Appendix A.2. Kinetic and potential energy of the NS damper

Following the method used in Appendix A.1 for the NS variant, we write

\[
\mathcal{M}_{\text{NS}}(w) \triangleq \begin{bmatrix}
M_i & 0_{0,nc} \\
0_{0,nc} & 0_{nc,nc}
\end{bmatrix} + \begin{bmatrix}
m_i \omega^3 & M_{aw}(w) & M_{aw}(w) \\
M_{aw}(w) & M_{aw}(w) & M_{aw}(w) \\
M_{aw}(w) & M_{aw}(w) & M_{aw}(w)
\end{bmatrix}
\]

with, for \(j = 1, \ldots, nc, \)

\[
m_j \triangleq \rho \sum_{i=1}^N \int_{j-\epsilon_j}^{j+\epsilon_j} A_i(\sigma) d\sigma_i \in \mathbb{R}
\]

\[
M_{aw} \triangleq -\rho \sum_{j=1}^N \int_{j-\epsilon_j}^{j+\epsilon_j} A_i(\sigma) S(R_i(\alpha) r^i(\sigma)) d\sigma_i = -M_{aw}^0(w) \in \mathbb{R}^{3\times3}
\]

\[
M_{aw}[i,j] \triangleq \rho A_i \int_{j-\epsilon_j}^{j+\epsilon_j} R_i(\alpha) \frac{d^3 r}{d\sigma} (\sigma) d\sigma_i \in \mathbb{R}^{3\times1}
\]

\[
M_{aw}[i,j] \triangleq \rho A_i \int_{j-\epsilon_j}^{j+\epsilon_j} S(R_i(\alpha) r^i(\sigma)) R_i(\alpha) \frac{dr}{d\sigma} (\sigma) d\sigma \in \mathbb{R}^{3\times1}
\]

\[
M_q \triangleq \rho A_i \left(P_{\text{lin}}^T \frac{L_0}{2\nu} (\nu - 1) + \nu^{-2} P_{\text{lin}}^T \right) P_{\text{eq}} \in \mathbb{R}^{n_2}
\]

with \(M_{aw} \in \mathbb{R}^{3\times3}, M_{aw} \in \mathbb{R}^{3\times3}, \) and

\[
P_{\text{eq}} \triangleq \begin{bmatrix}
0_{n_2} \\
-1_{1,nc}
\end{bmatrix}
\]

285
The potential energy of the NS system is written as
\[
V_{NS} = z^T \left(g \sum_{i=1}^{N} \int_{0}^{L_{i}} \dot{A}(\sigma) \left(R(\Theta) R_{i}(\alpha) \mathbf{r}^p(\sigma) + \mathbf{x}^p \right) d\sigma \right) = -gmz - gpx^T R(\Theta) \left[\sum_{i=1}^{N} \int_{0}^{L_{i}} \dot{A}(\sigma) \left(R_{i}(\alpha) \mathbf{r}^p(\sigma) \right) d\sigma \right]
\]
(A.3)

Appendix A.3. Kinetic and potential energy of the NP damper

Following the method used in Appendix A.1 for the NP variant, we write
\[
M_{NP}(w) = \begin{bmatrix}
M_{\nu} & 0_{N\times h} \\
0_{h\times N} & 0_{h\times h}
\end{bmatrix} + \begin{bmatrix}
M_{\nu}(w) & M_{\nu}(w) & M_{\nu}(w) \\
M_{\nu}(w) & M_{\nu}(w) & M_{\nu}(w) \\
M_{\nu}(w) & M_{\nu}(w) & M_{\nu}(w)
\end{bmatrix}
\]

with, for \(j = 1, \ldots, n_c \),
\[
m_i \triangleq \rho \sum_{i=1}^{N} \int_{0}^{L_{i}} A_i(\sigma) d\sigma_i \in \mathbb{R}
\]

\[
M_{\nu} \triangleq -\rho \sum_{i=1}^{N} \int_{0}^{L_{i}} A_i(\sigma) S_i(R_i(\alpha) \mathbf{r}^p(\sigma)) d\sigma_i = -M_{\nu}(w) \in \mathbb{R}^{3\times 3}
\]

\[
M_{\nu} \triangleq -\rho \sum_{i=1}^{N} \int_{0}^{L_{i}} A_i(\sigma) S_i^2(R_i(\alpha) \mathbf{r}^p(\sigma)) d\sigma_i = M_{\nu}'(w) \in \mathbb{R}^{3\times 3}
\]

\[
M_{\nu}^{[:j]} \triangleq \rho A_i P_{\nu} : [i,j] \sum_{i=1}^{N} \int_{0}^{L_{i}} R_i(\alpha) \frac{d\mathbf{r}^p}{d\sigma}(\sigma) d\sigma_i + \rho A_i P_{\nu,2} : [i,j] \sum_{i=1}^{N} \int_{0}^{L_{i}} R_i(\alpha) \frac{d^2\mathbf{r}^p}{d\sigma^2}(\sigma) d\sigma_i \in \mathbb{R}^{3\times 3}
\]

\[
M_{\nu}^{[:j]} \triangleq \rho A_i \begin{bmatrix}
L_{\nu} & 0 & \cdots & 0 \\
0 & L_{\nu} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & L_{\nu}
\end{bmatrix} P_{\nu,2} \in \mathbb{R}^{3\times 3}
\]

with \(M_{\nu} \in \mathbb{R}^{3\times 3} \), \(M_{\nu} \in \mathbb{R}^{3\times 3} \), and

\[
P_{\nu,2} \triangleq \begin{bmatrix}
0_{N-1} & 0_{N-1} \\
-1_{1\times N-1} & 0
\end{bmatrix}
\]

\[
P_{\nu} \triangleq \begin{bmatrix}
\nu & 0 & \cdots & 0 & 1 \\
\nu & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\nu & \cdots & \nu & \nu & 1 \\
0 & \cdots & 0 & 0 & 1
\end{bmatrix}
\]

The potential energy of the NP system is written as
\[
V_{NP} = z^T \left(g \sum_{i=1}^{N} \int_{0}^{L_{i}} \dot{A}(\sigma) \left(R(\Theta) R_{i}(\alpha) \mathbf{r}^p(\sigma) + \mathbf{x}^p \right) d\sigma \right) = -gmz - gpx^T R(\Theta) \left[\sum_{i=1}^{N} \int_{0}^{L_{i}} \dot{A}(\sigma) \left(R_{i}(\alpha) \mathbf{r}^p(\sigma) \right) d\sigma \right]
\]
(A.4)
Appendix B. Derivation of system dynamics

Appendix B.1. Preliminary results

For our calculation, we need the following results:

We define the derivative of row vector \(\mathbf{x}^T \triangleq [x_1 \ldots x_n] \) by column vector \(\mathbf{y} \triangleq \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \) as

\[
\frac{\partial \mathbf{x}^T}{\partial \mathbf{y}} \triangleq \begin{bmatrix}
\frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_m}
\end{bmatrix}.
\] (B.1)

Proposition 1. \(\forall \mathbf{r} \in \mathbb{R}^3 \), the derivative of \(\mathbf{r}^T \mathbf{R} \) by \(\Theta \) is given as

\[
\frac{\partial \mathbf{r}^T \mathbf{R}}{\partial \Theta} = -G^T S(\mathbf{R}^T \mathbf{r})
\] (B.2)

with \(G \) as defined in (??), and \(S(\cdot) \) is the matrix associated with the cross-product. We detail the calculus for each of the tree base vectors \((\mathbf{x}, \mathbf{y}, \mathbf{z}) \). We have

\[
\mathbf{R}^T \mathbf{z} = \begin{bmatrix} -s_y \\ s_x c_y \\ c_x c_y \end{bmatrix}
\]

so

\[
-G^T S(\mathbf{R}^T \mathbf{z}) = \begin{bmatrix} 0 & c_y c_p & -c_y s_p \\ -c_y & -s_y s_p & -s_y c_p \\ 0 & 0 & 0 \end{bmatrix}
\]

and

\[
\frac{\partial \mathbf{z}^T \mathbf{R}}{\partial \Theta} = \begin{bmatrix} 0 & c_y c_p & -c_y s_p \\ -c_y & -s_y s_p & -s_y c_p \\ 0 & 0 & 0 \end{bmatrix}.
\]

Therefore,

\[
\frac{\partial \mathbf{z}^T \mathbf{R}}{\partial \Theta} = -G^T S(\mathbf{R}^T \mathbf{z}).
\]

We also have

\[
\mathbf{R}^T \mathbf{y} = \begin{bmatrix} c_p s_y \\ c_p c_y + s_p s_b s_y \\ s_p c_y + c_b s_p s_y \end{bmatrix}
\]

so,

\[
-G^T S(\mathbf{R}^T \mathbf{y}) = \begin{bmatrix} 0 & -s_p c_y + c_y s_p s_y & -c_p c_y - s_y s_p s_y \\ -s_y s_p & s_p c_y + c_b s_p s_y & c_p c_y - s_y c_p s_y \\ c_p s_y & -c_p c_y + s_y s_p s_y & s_p c_y + c_y c_p s_y \end{bmatrix}
\]

and

\[
\frac{\partial \mathbf{y}^T \mathbf{R}}{\partial \Theta} = \begin{bmatrix} 0 & -s_p c_y + c_y s_p s_y & -c_p c_y - s_y s_p s_y \\ -s_y s_p & s_p c_y + c_b s_p s_y & c_p c_y - s_y c_p s_y \\ c_p s_y & -c_p c_y + s_y s_p s_y & s_p c_y + c_y c_p s_y \end{bmatrix}.
\]

Therefore,
\[
\frac{\partial \mathbf{y}^T \mathbf{R}}{\partial \Theta} = -G^T \mathbf{S} (\mathbf{R}^T \mathbf{y}).
\]

Finally,

\[
\mathbf{R}^T \mathbf{x} = \begin{bmatrix}
C_p \psi \\
- C_p \psi + s_p \delta \psi \\
\delta \psi + C_p \psi
\end{bmatrix}
\]

so,

\[
-G^T \mathbf{S} (\mathbf{R}^T \mathbf{x}) = \begin{bmatrix}
0 & s_p \delta \psi + C_p \delta \psi & C_p \psi - s_p \delta \psi \\
-s_p \delta \psi & s_p \delta \psi + C_p \delta \psi & C_p \psi \\
-c_p \delta \psi & - C_p \psi - s_p \delta \psi & s_p \psi - C_p \delta \psi
\end{bmatrix}
\]

and

\[
\frac{\partial \mathbf{x}^T \mathbf{R}}{\partial \Theta} = \begin{bmatrix}
0 & s_p \delta \psi + C_p \delta \psi & C_p \psi - s_p \delta \psi \\
-s_p \delta \psi & s_p \delta \psi + C_p \delta \psi & C_p \psi \\
-c_p \delta \psi & - C_p \psi - s_p \delta \psi & s_p \psi - C_p \delta \psi
\end{bmatrix}.
\]

Therefore,

\[
\frac{\partial \mathbf{x}^T \mathbf{R}}{\partial \Theta} = -G^T \mathbf{S} (\mathbf{R}^T \mathbf{x}).
\]

With \(\mathbf{r} = r_1 \mathbf{x} + r_2 \mathbf{y} + r_3 \mathbf{z} \), by linearity,

\[
\frac{\partial \mathbf{x}^T \mathbf{R}}{\partial \Theta} = -G^T \mathbf{S} (\mathbf{R}^T \mathbf{r}).
\]

Proposition 2. The derivatives of \(\mathbf{v}^T \) and \(\mathbf{\omega}^T \) by \(\Theta \) are

\[
\frac{\partial \mathbf{v}^T}{\partial \Theta} = -G^T \mathbf{S} (\mathbf{v})
\]

(B.3)

\[
\frac{\partial \mathbf{\omega}^T}{\partial \Theta} = G^T - G^T \mathbf{S} (\mathbf{\omega}).
\]

(B.4)

Hence,

\[
\mathbf{\omega}^T = G(\Theta) \mathbf{\hat{\Theta}} = \begin{bmatrix}
\dot{\phi} + s_x \dot{\psi} \\
C_p s_x \psi + c_x \dot{\psi} \\
C_p \dot{\psi} - s_x \dot{\psi}
\end{bmatrix}
\]

so,

\[
\frac{\partial \mathbf{\omega}^T}{\partial \Theta} = \begin{bmatrix}
0 & c_p s_x \psi - s_x \dot{\psi} & -c_p s_x \psi - c_x \dot{\psi} \\
-c_p \dot{\psi} & -s_p \delta \psi & -s_p \dot{\psi} \\
0 & 0 & 0
\end{bmatrix}
\]

With \(G \) as defined in (??),

\[
\dot{G}^T = \begin{bmatrix}
0 & 0 & 0 \\
0 & -c_p \dot{\psi} & -c_x \dot{\psi} \\
-c_p \dot{\psi} & C_p s_x \psi - s_p \delta \psi & -c_p s_x \psi - s_x \dot{\psi}
\end{bmatrix}.
\]

We also write

\[
G^T \mathbf{S}(G(\Theta) \dot{\Theta}) = \begin{bmatrix}
0 & -c_p s_x \psi + s_x \dot{\psi} & c_p s_x \psi + c_x \dot{\psi} \\
-c_p \dot{\psi} & s_p (\dot{\phi} + s_x \dot{\psi}) & c_x (\dot{\phi} + s_x \dot{\psi}) \\
-c_x \dot{\psi} & c_x s_x \psi - s_p \delta \psi & -c_p s_x \psi - s_x \dot{\psi}
\end{bmatrix}.
\]

Therefore,
\[
\frac{\partial \omega^T}{\partial \Theta} = G^T - G^T S(\omega^T).
\]

As \(\omega^T \) is \(R^T \hat{x}^T \), according to Proposition 1,

\[
\frac{\partial \omega^T}{\partial \Theta} = -G^T S(\omega^T).
\]

Appendix B.2. Derivation of the dynamics for the NU system

Using a Lagrangian approach, the dynamics of the system are given by

\[
\frac{d}{dt} \left(\frac{\partial (T_{NU} - V_{NU})}{\partial q} \right) - \frac{\partial (T_{NU} - V_{NU})}{\partial q} = Q
\]

We first derive \(\frac{\partial \omega_{NU}}{\partial q} \). According to (A.1), \(T \) is independent of \(x^T \); therefore,

\[
\frac{\partial T_{NU}}{\partial x^T} = 0_{n_x 1}.
\]

As \(M \) is symmetrical and is not a function of \(\Theta \),

\[
\frac{\partial T_{NU}}{\partial \Theta} = \frac{1}{2} \frac{\partial (\dot{q}^T \dot{M}_{NU} \ddot{q})}{\partial \Theta} - \frac{\partial (\ddot{q}^T)}{\partial \Theta} M_{NU} (\ddot{q}).
\]

Using (B.3) and (B.4),

\[
\frac{\partial (\ddot{q}^T)}{\partial \Theta} = \frac{\partial q^T}{\partial \Theta} = \left[\frac{\partial q^T}{\partial \Theta} \frac{\partial q^T}{\partial \Theta} 0_{3x1} \right] = \left[-G^T S(\omega^T) \quad G^T - G^T S(\omega^T) \quad 0_{3x1} \right].
\]

The term \(\frac{\partial \omega_{NU}}{\partial q} \) can be expressed as

\[
\frac{\partial \omega_{NU}}{\partial \dot{q}_{nu}} = \frac{1}{2} \dot{q}^T \dot{M}_{NU} \ddot{q}
\]

with

\[
\frac{\partial}{\partial \dot{q}_{nu}} M_{nu} = -\rho A \left(R_i(\alpha_i) \hat{r}_i(\xi_{nu}) - R_i(\alpha_i) \hat{r}_i(-\xi_{nu}) \right)
\]

\[
\frac{\partial}{\partial \dot{q}_{nu}} M_{nu} = -\rho A \left(\frac{S(R_i(\alpha_i) \hat{r}_i(\xi_{nu}))^2 - S(R_i(\alpha_i) \hat{r}_i(-\xi_{nu}))^2}{} \right)
\]

\[
\frac{\partial}{\partial \dot{q}_{nu}} M_{nu}[::i] = \rho A \left(R_i(\alpha_i) \frac{\partial \hat{r}_i}{\partial \sigma} (\xi_{nu}) - R_i(\alpha_i) \frac{\partial \hat{r}_i}{\partial \sigma} (-\xi_{nu}) \right)
\]

\[
\frac{\partial}{\partial \dot{q}_{nu}} M_{nu}[::j \neq i] = 0_{3x1}
\]

\[
\frac{\partial}{\partial \dot{q}_{nu}} M_{nu}[::j \neq i] = 0_{3x1}
\]

\[
\frac{\partial}{\partial \dot{q}_{nu}} M_{nu} = 0_{n_{\omega_{nu}}}
\]

According to (5), and (B.2), \(\frac{\partial \omega_{NU}}{\partial q} \) is given by

\[
\frac{\partial V_{NU}}{\partial \omega_{nu}} = \left[\begin{array}{c} 0 \\ 0 \\ -g_{nu} \end{array} \right] = -g_{nu} Z.
\]

\[
\frac{\partial V_{NU}}{\partial \Theta} = -g_{nu} \frac{\partial Z^T}{\partial \Theta} \left(\sum_{i=1}^{n_{\omega_{nu}}} \int_{-\xi_{nu}}^{\xi_{nu}} A_i(\sigma) R_i(\alpha_i) \hat{r}_i(\sigma) d\sigma \right)
\]
\[= \rho G^2 S \sum_{i=1}^{nC} \int_{-\infty}^{\infty} A_i(\sigma) R_i(\alpha) r^i(\sigma) d\sigma \]

\[= \rho G^2 S \sum_{i=1}^{nC} \int_{-\infty}^{\infty} \left[\frac{\nu L_{w_i} \sin \alpha}{2} - i L_{w_i} \cos \alpha \right] d\sigma \]

\[\frac{\partial V_{NU}}{\partial \dot{q}} = -\rho \rho A \dot{z} R(\Theta) R(\alpha) \left(r^i(\zeta) - r^i(-\zeta) \right). \]

According to (5), \(V_{NU} \) is not a function of \(\dot{q} \); thus,

\[\frac{d}{dt} \frac{\partial V_{NU}}{\partial \dot{q}} = 0 \text{ for } t > 1. \]

We also have

\[\frac{d}{dt} \left(\frac{\partial T_{NS}}{\partial \dot{q}} \right) = \mathcal{H}_{NS} \dot{q} + \left(\dot{\mathcal{P}}^T M_{NS} \mathcal{P} + \sum_{i=1}^{nC} w_i \frac{\partial M_{NS}}{\partial \dot{q}} \mathcal{P} + \mathcal{P}^T M_{NS} \mathcal{P} \right) \dot{q}. \]

Appendix B.3. Summary of NU system dynamics

We write the dynamics of the system as

\[\mathcal{H}_{NU}(q) \dot{q} + C_{NU}(q, \dot{q}) \dot{q} + k_{NU}(q) = Q_{nuo}(t, \beta) + Q_{res}(\dot{w}) \]

with \(\mathcal{H}_{NU}(q) \) defined in (A.1), and

\[C_{NU} \dot{\mathcal{P}}^T M_{NU} \mathcal{P} + \mathcal{P}^T \sum_{i=1}^{nC} w_i \frac{\partial M_{NU}}{\partial \dot{q}} \mathcal{P} + \mathcal{P}^T M_{NU} \mathcal{P} - \left[\begin{array}{c} 0_{n \times n_c} \\ \frac{\partial (\mathcal{P})^T}{\partial \dot{q}} M_{NU} \mathcal{P} \\ \frac{1}{2} \dot{q}^T \frac{\partial M_{NU}}{\partial \dot{q}} \mathcal{P} \\ \vdots \\ \frac{1}{2} \dot{q}^T \mathcal{P} \frac{\partial M_{NU}}{\partial \dot{q}} \mathcal{P} \end{array} \right] \]

\[k_{NU} \dot{q} = -g \begin{bmatrix} -\rho G^2 S \sum_{i=1}^{nC} \left(\frac{\nu L_{w_i} \sin \alpha}{2} - i L_{w_i} \cos \alpha \right) \\ \rho A \dot{z} R(\Theta) R(\alpha) \left(r^i(\zeta) - r^i(-\zeta) \right) \\ \vdots \\ \rho A \dot{z} R(\Theta) R(\alpha) \left(r^i(\zeta) - r^i(-\zeta) \right) \end{bmatrix} \]

\[Q_{res} = \left[\begin{array}{c} 0_{n \times n_c} \\ P_{nuo} F_{nuo}(w) \end{array} \right] \]

\[P_{nuo} = \nu \lambda_w. \]

Appendix B.4. Summary of NS system dynamics

Using the expressions of the energies obtained in Appendix A.2, and following the method used in Appendix B for the NU system, we write the dynamics of the NS system as

\[\mathcal{H}_{NS}(q) \dot{q} + C_{NS}(q, \dot{q}) \dot{q} + k_{NS}(q) = Q_{nsd}(t, \beta) + Q_{res}(\dot{w}) \]

with

\[\mathcal{H}_{NS}(q) \dot{q} = \frac{\partial (\mathcal{P})^T}{\partial \dot{q}} M_{NS}(w) \mathcal{P}(\Theta) \]

290
Appendix B.5. Summary of NP system dynamics

Using the expressions of the energies obtained in Appendix A.3, and following the method used in Appendix B for the NU system, we write the dynamics of the NP system as

\[
\mathcal{M}_{NP}(q) \ddot{q} + C_{NP}(q, \dot{q}) \dot{q} + k_{NP}(q) = Q_{\text{hydro}} + Q_{\text{resNP}}(\dot{w})
\]

with

\[
\mathcal{M}_{NP}(q) \equiv \mathcal{P}(\Theta)^T M_{NP}(w) \mathcal{P}(\Theta)
\]

\[
C_{NP} \equiv \dot{\mathcal{P}}^T M_{NP} \mathcal{P} + \mathcal{P}^T \sum_{i=1}^{n_c} w_i \frac{\partial M_{NP}}{\partial w_i} \mathcal{P} + \dot{\mathcal{P}}^T M_{NP} \dot{\mathcal{P}} - \begin{bmatrix}
\frac{0_{1 \times 6}}{
\frac{\partial (\mathcal{P}^T \dot{q})}{\partial \Theta} M_{NP} \mathcal{P} \\
\frac{1}{2} q \dot{q}^T \frac{\partial M_{NP}}{\partial w_1} \mathcal{P} \\
\vdots \\
\frac{1}{2} q \dot{q}^T \frac{\partial M_{NP}}{\partial w_{n_c}} \mathcal{P}
\end{bmatrix}
\]

\[
k_{NP} \equiv -g \begin{bmatrix}
m, z \\
-\rho G^T (R^T \dot{z}) \sum_{i=1}^{N} \frac{A_i(\sigma) R_i(\alpha)^T (\alpha) d\sigma}{2} \\
\rho A_i \dot{z}^T \mathcal{P}(\Theta)(R_i(\alpha) \mathbf{r}^T(\xi_1) - R_i(\alpha_1) \mathbf{r}^T(\xi_{1_1})) \\
\vdots \\
\rho A_i \dot{z}^T \mathcal{P}(\Theta)(R_i(\alpha_{n_c}) \mathbf{r}^T(\xi_{n_c}) - R_i(\alpha_n) \mathbf{r}^T(\xi_n)) \\
0
\end{bmatrix}
\]

\[
Q_{\text{resNP}} = \begin{bmatrix}
0_{1 \times 6} \\
P_{NP}^T F_{\text{res}}(\dot{w})
\end{bmatrix}
\]
References

