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SUMMARY

A method is proposed to systematically transform a constrained optimal control problem (OCP) into an unconstrained OCP,
which can be treated in the standard calculus of variations. The considered class of constraints comprises up to m input
constraints and m state constraints with well-defined relative degree, where m denotes the number of inputs of the given
nonlinear system. Starting from an equivalent normal form representation, the constraints are incorporated into a new system
dynamics by means of saturation functions and differentiation along the normal form cascade. This procedure leads to a new
unconstrained OCP, where an additional penalty term is introduced to avoid the unboundedness of the saturation function
arguments if the original constraints are touched. The penalty parameter has to be successively reduced to converge to the
original optimal solution. The approach is independent of the method used to solve the new unconstrained OCP. In particular,
the constraints cannot be violated during the numerical solution and a successive reduction of the constraints is possible,
e.g. to start from an unconstrained solution. Two examples in the single and multiple input case illustrate the potential of
the approach. For these examples, a collocation method is used to solve the boundary value problems stemming from the
optimality conditions. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper proposes a new method to solve constrained
optimal control problems (OCPs). In general, numer-
ical methods to solve OCPs can roughly be divided
in two different classes. In direct methods, the OCP
is discretized to obtain a finite-dimensional parameter
optimization problem, see e.g. [1–6]. Well-known
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advantages of the direct approach are the good domain
of convergence as well as the efficient handling of
constraints. On the other hand, indirect approaches
are based on the calculus of variations and require
the solution of a two-point boundary value problem
(BVP), see e.g. [7]. Indirect methods are known to
show a fast numerical convergence in the neighbor-
hood of the optimal solution and to deliver highly
accurate solutions, which makes them particularly
attractive in aerospace industries [8–11]. However,
the handling of constraints via Pontryagin’s maximum
principle [12] is in general non-trivial, since the overall
structure of the BVP depends on the sequence between
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singular/nonsingular and unconstrained/constrained
arcs and requires a priori knowledge concerning the
structure of the optimal solution.

In order to avoid these problems in handling
constraints, this paper exposes a method to incorporate
a set of constraints of a given OCP (called OCPx ) into a
new unconstrained one. For a nonlinear system with m
inputs, the method can handle up to m state constraints
and m (state-dependent) input constraints. The state
constraints are required to have a well-defined relative
degree in the sense of nonlinear geometric control. The
technique is systematic and allows a straightforward
numerical treatment of the new unconstrained OCP
in the calculus of variations. For sake of simplicity,
the main principles of the approach are presented for
the single input case with one state constraint and one
input constraint, and are then extended to multiple
input systems.

In the first step, the system dynamics of OCPx are
transformed into a normal form consisting of an internal
dynamics and a cascade of integrators with the state
constraint function corresponding to the first variable.
In these preliminary coordinates, an equivalent OCPy is
defined, where the constraints enter precisely at the top
and at the bottom of the normal form cascade. In a next
step, the constraints are represented by means of satu-
ration functions and successive differentiation along
the cascade. These substitutions propagate through the
internal dynamics and eventually define a new uncon-
strained dynamics. Its trajectories have inverse images
in the original coordinates, which intrinsically satisfy
the constraints.

Using the saturation functions, a new OCP�
� is

derived, which includes an additional penalty term with
parameter � to avoid unboundedness of the new states
or input, if one of the original constraints is touched.
The penalty parameter � has to be successively reduced
during the numerical solution of OCP�

� to eventually
approach the constrained optimal solution of OCPy .
The systematic incorporation of the constraints into
the formulation of OCP�

� has the advantage that the
constraints cannot be violated during the numerical
solution of OCP�

� and that the constraints can be
successively reduced, e.g. to start from an uncon-
strained solution.

The paper is organized as follows. In Section 2, the
considered OCPx in the single input case is exposed
and transformed to the equivalent OCPy in the normal
form coordinates. Section 3 describes the saturation
function approach to incorporate the constraints in
a new system representation and to derive a new
unconstrained OCP�

� with an additional penalty term.
In Section 4, the convergence properties of OCP�

� are
studied for �→0. Section 5 is devoted to the solution
of OCP�

� by deriving the optimality conditions from
the calculus of variations. A modified version of a
standard Matlab BVP solver is shortly introduced
to numerically solve the BVP stemming from the
optimality conditions. An example system with state
and input constraints illustrates the method and the
numerical solution. Section 6 extends the results to
multiple input systems and applies the concept to
an example application with one state constraint and
two input constraints. Finally, conclusions are given
in Section 7, where some of the advantages of the
proposed method are discussed.

2. PROBLEM FORMULATION IN
THE SINGLE INPUT CASE

The considered OCP is initially introduced for
nonlinear systems with one control and a set of one
state constraint and one input constraint (Section 6
addresses the multiple input case). A normal form
representation is derived by using the state constraint
as linearizing output. In this way, the constraints appear
at the top and the bottom of the normal form cascade,
which is the basis for the saturation function approach
presented in Section 3.

2.1. Optimal control problem

We consider a nonlinear control-affine single input
system of the form

ẋ= f (x)+g(x)u, x ∈Rn, u∈R (1)
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with f,g :Rn →Rn being sufficiently smooth. The
initial and (desired) final conditions are given by

x(0)= x0, �(x(T ))=0 (2)

with � :Rn →Rq . It is assumed that for each input u, the
system (1) and initial conditions in (2) yield a unique
state x . The cost functional to be minimized is of the
form

J (u)=�(x(T ))+
∫ T

0
L(x,u, t)dt (3)

where the functions � :Rn →R and L :Rn×R×R+ →
R are sufficiently smooth. The end time T is fixed for
the sake of simplicity. The following two constraints
are considered:

c(x)∈[c−,c+], u∈[u−(x),u+(x)] (4)

The function c(x) of the state constraint is assumed
to have a well-defined relative degree (in the sense
of geometric nonlinear control) with respect to the
dynamics (1). The second state-dependent input
constraint corresponds to a mixed input-state constraint
d(x,u)∈[d−,d+], which is well defined with respect
to u, i.e. �d/�u �=0, such that d can be inverted with
respect to u.

In summary, we consider the following OCP, noted
OCPx , and postulate the existence of an (at least local)
optimal solution in Assumption 1.

Problem OCPx:

minimize J (u)=�(x(T ))+
∫ T

0
L(x,u, t)dt

subject to ẋ = f (x)+g(x)u

x(0)= x0, �(x(T ))=0

c(x)∈[c−,c+], u∈[u−(x),u+(x)]
Assumption 1
OCPx has an optimal solution (u∗, x∗) with the optimal
cost J (u∗)= J∗ .

2.2. Normal form representation for state constraint

Following [13], the relative degree r�n of the
constraint function c(x) at a point x = x0 is defined by

LgL
i
f c(x) = 0, i =1, . . .,r−2

LgL
r−1
f c(x) �= 0 (5)

where L f and Lg denote the Lie derivatives along the
vector fields f (x) and g(x). Literally, r reveals how
many times the constraint function c(x) has to be differ-
entiated until the input u appears (see again [13]).

The constraint function c(x) can be used as
(partially) linearizing output to derive a change of
coordinates (

y

z

)
=
(

�y(x)

�z(x)

)
=�(x) (6)

with y= (y1, . . ., yr )T and �y = (�1, . . .,�r )T defined by

y1=c(x)=�1(x), yi = Li−1
f c(x)=�i (x)

i =2, . . .,r (7)

The additional coordinates z=�z(x)∈Rn−r are neces-
sary to complete the transformation (6) if r<n. Since
the relative degree of c(x) is assumed to be well defined
in a sufficiently large neighborhood of the point x0, the
Jacobian ��/�x is non-singular such that the inverse
transformation

x=�−1(y, z) (8)

exists. In these coordinates, we can transform OCPx
into an equivalent OCPy as follows:

Problem OCPy:

minimize J̄ (u)= �̄(y(T ), z(T ))

+
∫ T

0
L̄(y, z,u, t)dt (9a)

subject to ẏi = yi+1, i =1, . . .,r−1 (9b)

ẏr =a0(y, z)+a1(y, z)u (9c)

ż=b0(y, z)+b1(y, z)u (9d)
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y(0)=�y(x0), z(0)=�z(x0)

�̄(y(T ), z(T ))=0 (9e)

y1∈[c−,c+], u∈[ū−(y, z), ū+(y, z)]
(9f)

where �̄=�◦�−1, L̄= L ◦�−1, �̄=�◦�−1, ū± =u±◦
�−1 follow from OCPx with the change of coordi-
nates (6).

The notation ‘◦’ is consistently used throughout the
text as substitution rule to replace a specific argument of
a function p(·,v, ·) by a given transformation v=q(w),
i.e. p(·,q(w), ·)= p(·,v, ·)◦q.

In nonlinear control, the dynamics (9b)–(9d) are
often called input–output normal form, see e.g. [13].
The chain of integrators (9b)–(9c) with the func-
tions a0= Lr

f c(x)◦�−1 and a1= LgL
r−1
f c(x)◦�−1 are

the input–output dynamics, where the transformed
constraints (9f) appear at the top and bottom of the
cascade. The second part (9d) of the dynamics with
b0= L f �z(x)◦�−1 and b1= Lg�z(x)◦�−1 represents
the internal dynamics of the normal form. It is always
possible in the single input case to choose z=�z(x)
such that the internal dynamics (9d) are independent of
the input u [13]. Nevertheless, (9d) is the more general
form.

The last Equation (9c) of the input–output dynamics
can be inverted to determine the input u in dependence
of the states y, z, and ẏr :

u= ẏr −a0(y, z)

a1(y, z)
(10)

where a1(y, z) �=0 due to the well-defined relative
degree of c(x), see (5).

Note that OCPx and OCPy are two different forms
of the same OCP due to the one-to-one correspondence
of the coordinates x and (y, z) via the transformations
(6) and (8). This property leads to the following propo-
sition:

Proposition 1
Under Assumption 1 and due to the bijective
state transformation (6), OCPy has an optimal solu-
tion (u∗, y∗ =�y(x∗), z∗ =�z(x∗)) with optimal cost
J̄ (u∗)= J∗.

3. USING SATURATION FUNCTIONS TO
REPRESENT THE CONSTRAINTS

This section presents an approach to transform the
constrained OCPy to a new unconstrained OCP
and utilizes ideas from [14] originally developed
in the context of feedforward control design. The
proposed method takes advantage of the normal form
cascade (9b)–(9c) and systematically incorporates the
constraints on y1 and u within a new system represen-
tation by means of saturation functions and successive
differentiation of y1. The derived unconstrained system
defines a new OCP�

� that contains an additional penalty
term with parameter � in order to avoid unboundedness
of the saturation function arguments if the constraints
are touched.

3.1. Derivation of new system representation

The idea of the approach is to replace the coordinates
y and the corresponding input–output dynamics (9b)–
(9c) by a new system in unconstrained coordinates that
automatically satisfies the constraints (9f). In the first
step, the state constraint y1∈[c−,c+] is replaced by a
saturation function

y1=�(�1,c
±)∈ (c−,c+) (11)

with the new unconstrained variable �1∈R. The satu-
ration function �(�1,c

±) is assumed to be smooth and
strictly monotonically increasing, i.e. ��/��1>0 for all
�1∈R, which means that the limits c± are only reached
asymptotically for �1→±∞, as shown in Figure 1.

Figure 1. Asymptotic saturation function (11) with satura-
tion limits c± and coordinate �1.
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Hence, the constraint y1∈[c−c+] is actually satisfied
on the open intervals (c−,c+).

In order to substitute the next coordinate y2, Equa-
tion (11) is differentiated and a new coordinate �2 is
introduced:

ẏ1= y2=�′�̇1 with �̇1=�2 (12)

with the notation �′ = (��/��1)(�1,c
±). By intro-

ducing �2, a first differential equation �̇1=�2 is derived
for the previous coordinate �1. Further differentiation
of (12) leads to (if r>2)

ẏ2= y3=�′′�22+�′�̇2 with �̇2=�3 (13)

The Equations (12) and (13) show the concept behind
the successive differentiation y(i)

1 = yi+1 and the intro-
duction of new coordinates �̇i =�i+1 until yr is reached.
Hence, the following relations are obtained:

y1 = h1(�1)=�(�1,c
±) (14a)

yi = hi (�1, . . .,�i )

= �i (�1, . . .,�i+1)+�′�i , i =2, . . .,r (14b)

where the nonlinear terms �i are determined with
respect to the previous equation for yi−1, i.e. �2(�1)=0
and

�i (�1, . . .,�i−1)=
i−2∑
j=1

�hi−1

�� j
� j+1, i=3, . . .,r

As a result, the successive differentiation of y1 leads to
a new set of coordinates �= (�1, . . .,�r )

T that replaces
the normal form coordinates y by the relation

y=h(�)= (h1(�1), . . .,hr (�))T (15)

The final differentiation of yr =hr (�) eventually gives

ẏr =�r+1(�)+�′�̇r (16)

Since ẏr is affected by the input u via the final equation
(9c) of the input–output dynamics, the input constraint
in (9f) can be interpreted as the constraint

ẏr ∈[a−(y, z),a+(y, z)] (17a)

where a±(y, z) is defined with respect to the (constant)
sign of a1(y, z) �=0:

a±(y, z)=
{
a0(y, z)+a1(y, z)ū

±(y, z) if a1(y, z)>0

a0(y, z)+a1(y, z)ū
∓(y, z) if a1(y, z)<0

(17b)

In order to incorporate the constraint (17a) in Equation
(16), a second saturation function

�̇r =	(ũ,	±)∈ (	−,	+) (18a)

with a new input ũ is introduced, which eventually will
substitute the original input u in the equations. Similar
to �(�1,c

±) shown in Figure 1, the function	(ũ,	±) is
smooth and reaches the limits 	± only for ũ→±∞.‡
The saturation limits	± have to be chosen such that the
constraint (17a) is satisfied. Using (16) and (18a), the
inequalities a−(y, z)�ẏr�a−(y, z) can be written as

ã−(�, z)−�r+1(�)

�′(�1,c±)
�	(ũ,	±)� ã+(�, z)−�r+1(�)

�′(�1,c±)

with �′>0 and ã± =a±◦h being expressed in the
new coordinates (15). Hence, the saturation limits 	±
directly follow to

	± :=	±(�, z)= ã±(�, z)−�r+1(�)

�′(�1,c±)
(18b)

and thus depend on the states � and z in order to satisfy
(17a). Inserting (18) in (17a) leads to

ẏr = hr+1(�, z, ũ)

= �r+1(�)+�′ 	(ũ,	±(�, z)) (19)

in addition to the relations (15) for the coordinates y.
Finally, the original input u can be expressed in terms

‡The explicit formulas for the saturation functions �(�1,c
±) and

	(ũ,	±) used in this paper are stated in (A1) and (A2) in
Appendix A.1.
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Figure 2. New normal form (21) with subsystem �� and transformed internal dynamics �̃IN.

of the states (�, z) and the new input ũ by using the
inverse dynamics (10) and (15), (19):

u=hu(�, z, ũ)= hr+1(�, z, ũ)− ã0(�, z)

ã1(�, z)
(20)

with ã0=a0◦h and ã1=a1◦h.
Owing to the introduced saturation functions

�(�1,c
±) and 	(ũ,	±(�, z)) and the successive differ-

entiation of y1, the coordinates y and input u are
replaced by � and the new input ũ, which leads to the
new representation of the normal form (9b)–(9d)

�� : �̇i = �i+1, i =1, . . .,r−1 (21a)

�̇r = 	̃(�, z, ũ)=	(ũ,	±(�, z)) (21b)

�̃IN : ż = b̃(�, z, ũ)

= b̃0(�, z)+ b̃1(�, z)hu(�, z, ũ) (21c)

with b̃0=b0◦h and b̃1=b1◦h. The block diagram in
Figure 2 illustrates the structure of the new system
(21). The two saturation functions �(�1,c

±) and
	(ũ,	±(�, z)) are arranged at the top and bottom of
the chain of integrators, whereby the states � feed back
into the modified internal dynamics �̃IN and (together
with z) into 	(ũ,	±(�, z)) to determine the saturation
limits 	±(�, z).

Remark 1
The structure of the saturation limits 	±(�, z) in
(18b) has a particular advantage if the state constraint

y1∈[c−,c+] is approached, which implies�′(�1,c±)→
0. For certain properties of the constraint functions
(17b), it can be shown that the limits 	±(�, z) approach
±∞ for �′(�1,c±)→0, thus ‘opening’ the (normal-
ized) saturation function in (A2) (see Appendix A.1),
i.e. 	(ũ,	±(�, z))≈ ũ. More details can be found in
Appendix A.2 and Section 5.3.

3.2. Inverse relations

An important point is that the strict monotonicity
of the saturation functions (11) and (18) ensures
the one-to-one correspondence between the original
(constrained) normal form coordinates y1∈ (c−,c+)

with ẏi = yi+1 and the new (unconstrained) coor-
dinates �= (�1<∞, . . .,�r )

T related by �̇i =�i+1,

i =1, . . .,r−1. The unique correspondence is defined
from the inverse relations of (15)

�1 = �−1(y1,c
±)=h−1

1 (y1) (22a)

�i = yi −�i (�1, . . .,�i−1)

�′(�1,c±)

= h−1
i (�1, . . .,�i−1, yi ), i =2, . . .,r (22b)

which successively determine the coordinates �. In
summary, the overall inverse relation to (15) is denoted
by

�=h−1(y) (23)

with h−1 : (c−,c+)×Rr−1→Rr . Owing to the asymp-
totic nature of the saturation function �(�1,c

±), the
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coordinate �1=�−1(y1,c±) becomes unbounded if y1
touches one of the constraints c±. For the particular
choice (A1) of �(�1,�

±) in Appendix A.1, the inverse
function can be explicitly stated as

�1 = �−1(y1,c
±)

= 1
4(c

+−c−)[log(y1−c−)− log(c+−y1)] (24)

where the two log-terms lead to unboundedness of �1
if y1 touches either c− or c+, see Figure 1.

Similarly, the second saturation function 	(ũ,	±)

can be solved for the new input ũ on the open intervals
of the constraints (9f). Using (19), the new input ũ can
be formally written with the inverse relation

ũ=	−1
(
ẏr −�r+1(�)

�′(�1,c±)
,	±(�, z)

)
◦h−1 (25a)

In addition, ẏr is replaced by the right-hand side of
(9c), which formally leads to

ũ=hũ(y, z,u) (25b)

where the function hũ : (c−,c+)×Rr−1×Rn−r ×
(ū−, ū+)→R with ū± := ū±(y, z) has bounded values
on the open intervals of the constraints (9f) (see also
(17a)). This equation can be simplified, in the case
when (A2) in Appendix A.1 is used, by inserting (17b)
and (18b):

ũ = a1(y, z)(ū±− ū∓)

4�′(�1,c±)◦�−1
[log |u− ū∓|− log |ū±−u|]

for a1(y, z)≷0 (26)

Similar to the previous considerations for �1, the two
log terms show that ũ becomes unbounded if u reaches
one of its constraints ū±(y, z).

3.3. New penalized OCP�
�

The derived system (21) is used to define a new uncon-
strained OCP with respect to the new input ũ. The cost
functional J̄ (u) of the previous OCPy can be expressed
in the new coordinates (�, z) and ũ by

J̃ (ũ)=�̃(�(T ), z(T ))+
∫ T

0
L̃(�, z, ũ, t)dt (27a)

with the substituted cost terms �̃= �̄◦h and L̃= L ◦h◦
hu . However, as it was discussed in the last section, the
state �1 and input ũ become unbounded if one of the
constraints (9f) is touched. This problem is taken into
account by adding an additional penalty term

p(ũ)=
∫ T

0
�21+ ũ2 dt (27b)

to the cost J̃ (ũ). This yields the following penalized
OCP�

� with penalty parameter � and repeating the
dynamics (21) for the sake of completeness, we have

Problem OCP�
�:

minimize P(ũ,�)= J̃(ũ)+�p(ũ) (28a)

subject to �̇i =�i+1, i =1, . . .,r−1 (28b)

�̇r=	̃(�, z, ũ)=	(ũ,	±(�, z)) (28c)

ż= b̃(�, z, ũ)

=b̃0(�, z)+ b̃1(�, z)hu(�, z, ũ)

(28d)

�(0)=h−1(�(x0)), z(0)=�z(x0)

�̃(�(T ), z(T ))=0 (28e)

where b̃0=b0◦h, b̃1=b1◦h and �̃= �̄◦h follow from
OCPy . The constraints (9f) are incorporated in the
dynamics by the asymptotic saturation functions
�(�1,c

±) and 	(ũ,	±(�, z)) with the variable limits
	±(�, z) defined in (18b). Their successive deriva-
tives uniquely define y=h(�), ẏr =hr+1(�, z, ũ), and
u=hu(�, z, ũ) stated in (15), (19), and (20).

Note that the penalized OCP�
� is truly unconstrained

because the constraints (9f) are incorporated in the
normal form dynamics (28b)–(28d). In practice, the
new OCP�

� will be successively solved with decreasing
values of the penalty parameter �→0. Before we
discuss convergence, we state the following assump-
tion:

Assumption 2
For each penalty parameter �>0, OCP�

� has an optimal
solution (ũ�,��, z�). Moreover, this solution has
bounded components ũ� and ��

1.
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Assumption 2 is reasonable from a practical point
of view to ensure solvability of OCP�

�. Moreover,
the assumption of boundedness guarantees that the
inverse transformations (23) and (25) are well defined,
which implies that y1 and u strictly remain inside the
constraints (9f).

By successively decreasing �→0, one intuitively
expects that the penalized cost P(ũ�,�) converges to
the optimal value J∗ and that y� =h(��, z�), z�, and
u� =hu(�

�, z�, ũ�) converge to the optimal solution
(u∗, y∗, z∗) of OCPy (see Proposition 1). This point is
addressed in the next section.

Remark 2
Under certain assumptions, the penalization of �1 used
to avoid its unboundedness is not required, since ũ also
becomes unbounded if y1 touches one of the constraints
c±. Moreover, in these cases, ũ gives an infinite
penalty value

∫ T
0 ũ2 dt (locally not square-summable),

which automatically implies that y1 strictly stays
inside the constraints (c−,c+) and therefore �1 and ũ
remain bounded. These points are developed in
Appendix A.2.

4. INVESTIGATION OF CONVERGENCE

This section investigates the convergence of the cost
and states of OCP�

� for the penalty parameter �→0.
Although the variables �� and ũ� as part of the solution
of OCP�

� may become unbounded in the limit �→0, the
convergence of the trajectories in the (y, z)-coordinates
can additionally be concluded under assumption of
strong convexity on OCPy .

4.1. Some definitions and further assumptions

Several norms are used in the following. The Euclidian
norm for a vector p∈Rq is denoted by ‖p‖. For time
(vector) functions p(t)∈Rq defined on t ∈[0,T ], the
standard norms Li (0,T ;Rq), i =1,2,∞ are used and
denoted by ‖p‖1,‖p‖2, and ‖p‖∞.

Moreover, some definitions and assumptions are
necessary, which are directly stated for OCPy and not

for the original OCPx for the sake of simplicity. Define
the set

S ={u∈ L∞(0,T ;R) : y(0)=�y(x0),

z(0)=�z(x0),

�̄(y(T ), z(T ))=0,

y1∈[c−,c+],

u∈[ū−(y, z), ū+(y, z)]

∀t ∈[0,T ]}

(29)

denoting the set of admissible inputs u, which—
together with their associated unique states (y, z)
following from the dynamics (9b)–(9d)—satisfy the
boundary conditions (9e) and constraints (9f). With the
definition of S, OCPy can alternatively be stated as

OCPy :min
u∈S J (u)

with the optimal solution J̄ (u∗)= J∗ (see Proposition
1). In order to allow statements concerning the conver-
gence of OCP�

�, define the following subset of admis-
sible inputs u for which the constraints (9f) are strictly
satisfied on the open intervals:

S0={u∈ S : y1 ∈ (c−,c+),

u ∈ (ū−(y, z), ū+(y, z)) ∀t∈[0,T ]}
(30)

For each admissible input u∈ S0, the inverse relations
(23) and (25) exist and yield bounded variables � and
ũ. This defines the image S̃0 of set S0 as

S̃0={ũ=hũ(y, z,u) :u∈ S0} (31)

with respect to all u∈ S0 and the corresponding states
(y, z). Hence, each new input ũ∈ S̃0 is admissible in
the sense that its associated states (�, z) are bounded
and unique and satisfy the boundary conditions (28e).
This allows to reformulate OCP�

� as

OCP�
� : min

ũ∈S̃0
P(ũ,�)
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Note that S̃0 is non-empty due to Assumption 2, which
in turn implies the non-emptiness of S0.

Finally, we impose the following additional assump-
tions on OCPy and not on OCP�

� for the sake of
generality:

Assumption 3

(a) The functional J̄ is continuous in u for all u∈ S.
(b) The optimal control u∗ lies in the closure of S0.
(c) The functions a0,a1,b0, and b1 satisfy the linear

growth and boundedness properties

‖a0(x̄)‖�ā0(1+‖x̄‖), ‖a1(x̄)‖�ā1

‖b0(x̄)‖�b̄0(1+‖x̄‖), ‖b1(x̄)‖�b̄1 ∀x̄=
(
y

z

)
∈Rn

(32)

∀x̄T = (yT, zT)∈Rn and for some constants ā0,
ā1, b̄0, and b̄1.

Although we already assumed uniqueness of the states
x̄ , the properties (32) of the (sufficiently smooth) func-
tions a0,a1,b1,b2 of the normal form (9b)–(9d) state
more precisely that there exists a unique and bounded
solution x̄ to each input u∈ S. Moreover, an impor-
tant consequence is that two solutions x̄u and x̄v for
associated inputs u and v satisfy

‖x̄u− x̄v‖∞�C‖u−v‖1 ∀u,v∈ S (33)

for some constant C>0. The proof can be found in
[15] using (32) and Gronwall’s lemma. The additional
assumption that the optimal control u∗ ∈ S also lies in
the closure of S0 is necessary to ensure that u∗ can be
approached from within S0, see e.g. [16] for a similar
assumption in the context of interior point methods.

4.2. Convergence results

The proof of convergence is adapted from the results
of Lasdon et al. [17] for OCPs with interior penalty
functions. Since OCP�

� has to be successively solved for

decreasing penalty parameters �k+1<�k , the following

lemma is of importance concerning the non-increase of
the cost (28a):

Lemma 1
Let ũk+1 and ũk be the optimal controls of OCP�

� for

0<�k+1<�k . Then, the following inequalities hold for
the cost functional (28a):

J̃ (ũk+1) � J̃ (ũk), p(ũk+1)�p(ũk)

P(ũk+1,�k+1) � P(ũk,�k) (34)

Proof
The proof directly follows from [16]. Since the optimal
controls ũk and ũk+1 minimize the cost (27a) for �k+1

and �k , the following inequalities are true:

J̃ (ũk)+�k p(ũk)� J̃ (ũk+1)+�k p(ũk+1) (35a)

J̃ (ũk+1)+�k+1 p(ũk+1)� J̃ (ũk)+�k+1 p(ũk) (35b)

Multiplying the first inequality with �k+1/�k (which
satisfies 0<�k+1/�k<1) and adding the resulting
inequality to the second one gives

J̃ (ũk+1)

(
1− �k+1

�k

)
� J̃ (ũk)

(
1− �k+1

�k

)
(35c)

Since 0<�k+1<�k , it follows that J̃ (ũk+1)� J̃ (ũk).
Using this result in (35a) and dividing by �k>0 leads
to p(ũk)�p(ũk+1). The last inequality to be proven
follows from the nested relations
P(ũk+1,�k+1)�P(ũk,�k+1)�P(ũk,�k). �

The following theorem concerns the convergence of
the cost P(ũk,�k) using the results of Lemma 1:

Theorem 1
Let {�k} be a decreasing sequence of positive penalty
parameters with limk→∞ �k =0. Then, P(ũk,�k)
converges to the optimal cost

lim
k→∞ P(ũk,�k)= J∗ (36a)

with

lim
k→∞ J̃ (ũk)= J∗, lim

k→∞ �k p(ũk)=0 (36b)
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Proof
The proof of the theorem is adapted from [17]. Since
J̄ (u) is continuous over S and u∗ ∈ S also lies in
the closure of S0 (see Assumption 3), it follows
that for any parameter 
J>0, one can always find
an admissible input u
 ∈ S0 with associated states
(y
, z
) such that J̄ (u
)<J∗+
J/2. For this u
 ∈ S0,
there exists a corresponding new (bounded) input
ũ
 =hũ(y
, z
,u
)∈ S̃0 with J̃ (ũ
)= J̄(u
), which
allows to rewrite the previous inequality as

J̃ (ũ
)<J∗+
J/2 (37a)

Select �l such that

�l p(ũ
)<
J/2 (37b)

Then, for any k>l with �k<�l and using Lemma 1, it
follows that

P(ũk,�k)�P(ũl ,�l)�P(ũ
,�l) (37c)

where ũk and ũl are the optimal solutions for �k and
�l , respectively. With (37a) and (37b), there exists an
upper estimate on P(ũ
,�l) with

P(ũ
,�l)<J∗+
J/2+
J/2= J∗+
J (37d)

Finally, using P(ũk,�k)> J̃ (ũk)>J∗>J∗−
J , Equa-
tions (37c) and (37d) lead to the conclusion that
∀
J>0,∃l such that ∀k>l, |P(ũk,�k)− J∗|<
J . This
proves (36a) and additionally (36b) by remembering
that p(ũk)>0. �

Note that until this point no convexity assumption
was necessary to prove the convergence of the cost (36).
In order to prove convergence of the states, we require
the following strong convexity assumption:

Assumption 4
The cost functional J̄ (u) of OCPy satisfies the strong
convexity property

D‖u−v‖22
� J̄ (u)+ J̄ (v)−2 J̄

(
1
2u+ 1

2v
)

∀u,v∈S (38)

for some D>0.

The strong convexity property (38) e.g. holds for
linear systems with quadratic cost functional.

The strong convexity assumption (38) would imply
uniqueness of the optimal control u∗ if the set S was
convex. However, since this is not known (in particular
due to the presence of state constraints), we assume
uniqueness in the next theorem to prove convergence
of the trajectories.

Theorem 2
Assume that the optimal control u∗ of OCPy is unique
and that Assumption 4 holds. Then, the input uk =
hu(�

k, zk, ũk) as well as yk =h(�k, zk) and zk following
from the solution of OCP�

� with �k+1<�k converge to
the optimal trajectories (u∗, y∗, z∗) according to

lim
k→∞‖uk−u∗‖2 = 0, lim

k→∞‖yk− y∗‖∞ =0

lim
k→∞‖zk−z∗‖∞ = 0 (39)

Proof
The uniqueness of u∗ ensures that J̄ (u)� J̄ (u∗)∀u∈ S.
Hence, the strong convexity property (38) can be used
to conclude

D‖u−u∗‖22
� J̄ (u)+ J̄ (u∗)−2 J̄

(
1
2u+ 1

2u
∗)

� J̄ (u)+ J̄ (u∗)−2 J̄ (u∗)= J̄(u)− J̄ (u∗) (40)

The uniqueness of u∗ also ensures that J∗ = J̄ (u∗)
holds. Hence, with the results of Theorem 1 and
the equivalent cost values J̄ (uk)= J̃(ũk), it follows
from (40) that uk =hu(�

k, zk, ũk) converges to u∗ in
L2. The convergence of yk =h(�k, zk) and zk relies
on the linear growth property in Assumption 3. The
L1-norm in (33) can be related to L2 used in (38)
by means of Hölder’s inequality, which leads to
‖u−u∗‖1�

√
T ‖u−u∗‖2. Hence, (33) can be formu-

lated as ‖x̄− x̄∗‖∞�C‖u−u∗‖1�C
√
T ‖u−u∗‖2 with

x̄T = (yT, zT), which shows the convergence of yk and
zk in L∞. �

Note that no statement is made concerning the
limits of �k and ũk for k→∞, since they become
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unbounded if the optimal trajectories y∗ and u∗
touch the constraints (9f). However, the corresponding
mappings hu(�

k, zk, ũk) and h(�k) converge to the
optimal trajectories u∗ and y∗ as stated in Theorem 2.

5. NUMERICAL SOLUTION OF OCP�
�

This section now focuses on the numerical solution
of OCP�

�. In the first step, the optimality conditions
are derived, which lead to a two-point BVP for OCP�

�.
This BVP can be solved numerically by a colloca-
tion method, which is a modified version of a standard
Matlab BVP solver. A simple example from the litera-
ture illustrates the derivation of OCP�

� and its numerical
solution.

5.1. Necessary optimality conditions

The necessary optimality conditions for OCP�
� follow

from the classical calculus of variations. For the
sake of compactness, one can comprise the states in
x̃T = (�T, zT) and rewrite the dynamics (28b)–(28d)
and boundary conditions (28e) of OCP�

� under the form

˙̃x = f̃ (x̃, ũ)

x̃(0) =
(
h−1(�(x0))

�z(x0)

)
, �̃(x̃(T ))=0

(41)

where f̃ follows from the right-hand side of (28b)–
(28d). Define the Hamiltonian

H(x̃ ,�, ũ, t) = L̃(x̃, ũ, t)+�p(ũ)+�T f̃ (x̃, ũ)

= L̃(x̃, ũ, t)+�(�21+ ũ2)

+
r−1∑
i=1

��,i�i+1+��,r 	̃(�, z, ũ)

+�T
z b̃(�, z, ũ)

with the adjoint states �� = (��1, . . .,��,r )
T and �T =

(�T
� ,�T

z ). Then, the minimization of H with respect to

the new input ũ is given by§

�H
�ũ

= � L̃
�ũ

+2�ũ+��,r
�	̃

�ũ
+�T

z
�b̃
�ũ

=0 (42a)

Using the transformations (15), (20), and the internal
dynamics (28d), the partial derivatives of L̃ and b̃
become

� L̃
�ũ

=
[
�L
�u

◦h◦hu
]

�hu
�ũ

�b̃
�ũ

= b̃1(�, z)
�hu
�ũ

(42b)

The term �hu/�ũ can be further detailed with the help
of (20)¶

�hu
�ũ

= 1

ã1(�, z)

�hr+1

�ũ
= �′(�1,c±)

ã1(�, z)

�	̃

�ũ
(42c)

The adjoint system for � is defined by �̇
T =−�H/�x̃ ,

which can be written in more detail as

�̇�,1 = − � L̃
��1

−2��1−��,r
�	̃

��1
−�T

z
�b̃
��1

(43a)

�̇�,i = − � L̃
��i

−��,i−1−��,r
�	̃

��i
−�T

z
�b̃
��i

i =2, . . .,r (43b)

�̇
T
z = −� L̃

�z
−��,r

�	̃

�z
−�T

z
�b̃
�z

(43c)

§For the numerical solution of the optimality conditions (see
Section 5.2), we assume �2H/�ũ2>0 (strengthened Legendre–
Clebsch condition). Note that the positive definiteness of
�2H/�ũ2 represents a sufficient (second-order) optimality condi-
tion.
¶The detailed expressions in (42) allow some further statements
concerning the penalty term �(�21+ ũ2). If one of the input
constraint in (9f), or alternatively (17a), is approached, the second
saturation function 	 similarly goes to 	− or 	+ with �	̃/�ũ=
�	/�ũ→0. Hence, a side-effect of the remaining penalty term
2�ũ in (42) is that it helps to avoid singularity of �H/�ũ in the
case of saturation.
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with the final condition

�T(T )= ��̃

�x̃
+�T ��̃

�x̃
(43d)

and the additional multipliers �∈Rq . The differen-
tial equations and boundary conditions (41), (43)
together with the algebraic equation (42) for ũ defines
a two-point boundary value problem (BVP), which
(in general) must be solved numerically to obtain the
input u�, the states (x̃ �,��), and the multipliers ��. The
normal form coordinates y� and finally the original
input u� and state x � follow from the relations (15),
(20), and (8):

y� = h(��), u� =hu(�
�, z�, ũ�)

x � = �−1(y�, z�)
(44)

In order to approach the optimal solution (u∗, y∗, z∗)
and optimal cost J̄ (u∗)= J∗, the BVP (41)–(43) has
to be solved successively for a sequence {�k} of
decreasing penalty parameters �k+1<�k and using the
previous solutions for �k within a continuation scheme.
If the optimal solution (u∗, y∗, z∗) touches one of the
constraints (9f), the reduction of �k →0 is not possible,
since, in this case, the internal variables �k1 and ũk

of OCP�
� would become unbounded in the limit. In

practice, the sequence {�k} is stopped at a certain step
k when the corresponding solution is sufficiently close
to the optimal one.

5.2. Numerical solution with collocation

An efficient method to numerically solve two-point
BVPs is collocation, see e.g. [18]. A convenient collo-
cation code is the solver bvp4c [19] implemented under
MATLAB, which can be used to solve nonlinear two-
point BVPs. However, to be applicable to OCPs, we
extended the bvp4c-code to additionally account for
algebraic equations like (42) as they arise from the
optimality conditions. This leads to the general BVP
formulation of (index 1) differential–algebraic equa-
tions (DAE)

ẋd = fd(xd , xa, t, p) (45a)

0= fa(xd , xa, t, p) (45b)

0= fbc(xd(t0), xd(t f ), xa(t0), xa(t f ), p) (45c)

with the differential and algebraic equations (45a) and
(45b) for the dynamic and algebraic states xd(t) and
xa(t) on the time interval t ∈[t0, t f ] and the boundary
conditions (45c). Unknown parameters p can addition-
ally be considered in the DAE formulation (45).

The general collocation method and its implemen-
tation in bvp4c has been left unchanged as it was
designed to be applicable and numerically robust
for a wide range of BVPs. The function bvp4c
discretizes the differential equations (45a) along a
time mesh ti ∈[t0, t f ], i =1, . . .,N . In addition, the
bvp4c-code has been extended to additionally eval-
uate the algebraic equation (45b) at the mesh points
ti . The resulting discretized equations (45a) and
(45b) together with the boundary conditions (45c)
results in a set of nonlinear algebraic equations for
the variables xd(ti ) and xa(ti), i =1, . . .,N , which
is solved with a Newton iteration scheme. In addi-
tion, bvp4c employs a mesh refinement strategy
to adapt the time mesh ti ∈[t0, t f ], i =1, . . .,N ,
and the number of grid points N in each Newton
step based on the residual along the discretized
ODEs (45a).

In order to use the collocation method for solving
OCP�

�, the BVP (41)–(43) has to be adapted to
the DAE form (45). The ODEs (45a) are given by
the system and adjoint equations in (41) and (43) for the
dynamic state xT

d = (x̃T,�T). The input ũ denotes the
algebraic variable z= ũ with (42) corresponding to
(45b). The boundary conditions for x̃ and � in (41)
and (43) are comprised in (45c). The multipliers � in
the final condition (43d) can be treated as unknown
parameters p=�.

Remark 4
The normal form dynamics (28b)–(28d), which is
comprised in the compactly written dynamics (41),
can be written in a higher-order representation of �1.
The same structure is reflected in the adjoint system
(43). By successively differentiating (42), the adjoint
equations (43) can be expressed in terms of ��,r and its
derivatives [20]. These higher-order representations in
�1 and ��,r result in fewer unknowns in the collocation
scheme and lead to a higher accuracy of the numerical
solution [18, 20].
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5.3. Example system

Consider the following modified version of the classical
double integrator problem in [7]:

minimize J (u)= 1

2

∫ 1

0
u2 dt (46a)

subject to ẏ1= y2, ẏ2=u (46b)

y(0)=(0,1)T, y(1)=(0,−1)T

(46c)

y1∈[c−,c+], u∈[u−,u+] (46d)

The system (46b) is already written in the normal form
(9b)–(9c) with the states y= (y1, y2)T and no internal
dynamics (9d). The state constraint in (46d) has relative
degree r=2 and, together with the input constraint u∈
[u−,u+], directly correspond to (9f).

Following Section 3, the constraints (46d) are repre-
sented by two saturation functions � and 	, which
yields the relations (15) and (20)

y1 = �(�1,c
±), y2=�′�2

u = hu(�, ũ)=�′′�22+�′	(ũ,	±(�))
(47a)

with the saturation limits (18b)

	±(�)= u±−�′′�22
�′(�1,c±)

(47b)

In the new coordinates �= (�1,�2)
T with input ũ, the

dynamics (46b) and boundary conditions (46c) are
replaced by

�̇1 = �2, �̇2= 	̃(�, ũ)

�(0) = (0,1)T, �(1)= (0,−1)T
(48)

with 	̃=	(ũ,	±(�)). The boundary conditions in (48)
correspond to (46c), since symmetry is assumed for the
state constraints c+ =−c−, which yields 0=�(0,c±)

and �′(0,c±)=1 for the saturations functions (A1) and
(A2) in Appendix A.1.

As described in Section 3.3, the cost (46a) is trans-
formed and penalized in the new coordinates

P(ũ,�)=
∫ T

0

1

2
hu(�, ũ)2+�(�21+ ũ2)dt

to account for the unboundedness of �1 or ũ if one of
the constraints (46d) is touched. Finally, the optimality
conditions (42), (43) read as

�H
�ũ

= hu(�, ũ)�′ �	̃

�ũ
+2�ũ+��,2

�	̃

�u
=0 (49a)

�̇�,1 = −hu(�, ũ)
�hu
��1

−2��1−��,2
�	̃

��1
(49b)

�̇�,2 = −hu(�, ũ)
�hu
��2

−��,2
�	̃

��2
(49c)

The final conditions ��,i (T )=�i , i =1,2 following
from (43d) can be omitted, since the multipliers �1,�2
do not appear elsewhere.

The transformations (47a) and the optimality condi-
tions (49) are analytically calculated with the software
package MATHEMATICA using the explicit formulas
(A1)–(A2) in Appendix A.1 for � and 	. The equa-
tions of the two-point BVP (46b) and (46c), (48) and
(49) are adapted to the form (45) and are provided as
MATLAB Cmex-functions to the collocation solver, as
described in Section 5.2.

The initial guess for the state �(ti ) is a linear inter-
polation between the boundary conditions (46c) on a
uniform time mesh ti ∈[0,1], i=1, . . .,N , with N =30
mesh points. The initial guess for �(ti) and ũ(ti ) is zero.
The BVP is successively solved for the penalty terms
�∈{100,10−1, . . .,10−12} using the previous solution
as initial guess for the next run. For the simulation
studies, we considered the constraints c± =±0.15 and
u± =±3.5.

Figure 3 shows the optimal solutions (ũ�,��) and
the corresponding original variables (u�, y�) following
from (47a) for several penalty parameters �. Remark-
able is that the first solution for �=100 already
closely approaches the constraints and has been readily
obtained by starting from a trivial initial guess. This
illustrates the particular advantage of the approach that
the constraints (46d) cannot be violated during the
numerical solution due to their systematic incorporation
in (47) and (48).

Clearly visible is the non-violation of the constraints
(46d) and the convergence to the optimal solution
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Figure 3. Optimal trajectories for the example (46) with decreasing penalty parameter �.
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Figure 4. Behavior of second saturation function �̇2=	(ũ,	±(�)) for �=10−12.

(u∗, y∗) for decreasing �.‖ As discussed in Section
3.2, the internal states (�1,�2) and the new input ũ
(plotted logarithmically in Figure 3) tend to become
unbounded when the constraints (46d) are approached
and � is successively reduced. For the final run with
�=10−12, the minimal distance of y�

1 and u� to the

‖Note that (u∗, y∗) can be analytically computed, which is omitted
here due to the lack of space. The optimal value of the cost
is J ∗ =u+(1−√

2c+u+−1/
√
3)≈3.04815 for the constraint

values c± =±0.15 and u± =±3.5.

constraints c+ =0.15 and u− =−3.5 is of order 10−9

and 10−11, respectively. The distance to the optimal
cost J∗ is of order 10−7.

Figure 4 additionally shows the trajectories of �̇2=
	(ũ,	±(�)) to illustrate the behavior of 	. At the
beginning and end of the time interval [0,1],	 almost
reaches (with negligible distance) the lower limit 	−(�)

corresponding to the input constraint in Figure 3. In the
middle of the interval, the bounds 	±(�) behave in a
symmetric manner and significantly increase in magni-
tude due to the gradient �′(�1,c±) appearing in the
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denominator in (47b). Hence, 	 ‘opens’ in the neigh-
borhood of the state constraint, which leads to �̇2=
	(ũ,	±(�))≈ ũ due to the normalization (�	/�ũ)∈
(0,1) of the saturation function (A1) in Appendix A.1.
This effect is shown in the two right plots of Figure 4
and is explained in more details in Appendix A.2 (also
see Remark 1).

6. EXTENSION TO THE MULTIPLE
INPUT CASE

This section extends the results from the previous
sections to the multiple input case in a compact manner.
The main extension concerns the incorporation of
multiple input constraints, which—as will appear—is
more convoluted than in the single input case.

6.1. Optimal control problem OCPx

Considered is the following nonlinear control-affine
multiple input system:

ẋ= f (x)+
m∑
i=1

gi (x)ui (50)

with the state x ∈Rn , the input vector u= (u1, . . .,um)T

∈Rm , and the sufficiently smooth vector fields f,gi :
Rn →Rn, i =1, . . .,m. The boundary conditions (2)
and cost function (3) with L :Rn×Rm →R are in
essence the same as in the single input case.

In consistency with the constraints (4), the following
state and input constraints are assumed:

ci (x)∈[c−
i ,c+

i ], ui∈[u−
i (x),u+

i (x)], i=1, . . .,m (51)

The vector relative degree {r1, . . .,rm} of the m func-
tions ci (x) at a point x0 is defined by [13]

Lgj L
k
f ci (x)=0 (52a)

for all 1� j�m,k<ri −1,1�i�m, and for all x in a
neighborhood of x0. Moreover, the m×m matrix

A(x)=

⎛
⎜⎜⎜⎝

Lg1 L
r1−1
f c1(x) · · · Lgm L

r1−1
f cm(x)

...
...

Lg1 L
rm−1
f c1(x) · · · Lgm L

rm−1
f cm(x)

⎞
⎟⎟⎟⎠
(52b)

has to be non-singular at x= x0. In the following, we
assume that the m state constraints in (51) have a well-
defined relative degree {r1, . . .,rm}, which means that
the conditions (52a) as well as the non-singularity of
the decoupling matrix (52b) are satisfied in a suffi-
ciently large neighborhood of x0. The OCP OCPx is
summarized as follows.

Problem OCPx (multiple input case):

minimize J (u)=�(x(T ))+
∫ T

0
L(x,u, t)dt

subject to ẋ= f (x)+
m∑
i=1

gi(x)ui

x(0)= x0, �(x(T ))=0

ci (x)∈[c−
i ,c+

i ]
ui∈[u−

i (x),u+
i (x)], i =1, . . .,m

Note that the consideration of m state constraints and
m input constraints is the most general case considered
here. If an input ui is unconstrained, the respective
limits can be set to u±

i →±∞. If the number of state
constraints is less than the number m of inputs, the
remaining functions ci (x) have to be chosen to achieve
a well-defined relative degree {r1, . . .,rm}. This case is
addressed by the example application in Section 6.5.

6.2. Normal form representation

Owing to the well-defined relative degree {r1, . . .,rm} of
the constraint functions ci (x), i =1, . . .,m, there exists
a change of coordinates [13](

y

z

)
=
(

�y(x)

�z(x)

)
=�(x) (53a)

with yT = (yT
1 , . . ., yT

m) and yi = (yi,1, . . ., yi,ri )
T

defined by

yi,1=ci(x)=�i,1(x), yi, j = L j
f ci (x)=�i, j (x)

j =2, . . .,ri , i =1, . . .,m (53b)

The single functions �i, j are comprised in �=
(�1,1, . . .,�m,rm )T. The additional coordinates z=�z(x)∈
Rn−r with r=∑m

i=1 ri are necessary to complete the
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transformation (53) if r<n. In these coordinates, the
original OCPx can be stated under the following form:

Problem OCPy (multiple input case).

minimize J̄ (u)= �̄(y(T ), z(T ))

+
∫ T

0
L̄(y, z,u, t)dt (54a)

subject to ẏi, j = yi, j+1, j =1, . . .,ri −1 (54b)

ẏi,ri =ai,0(y, z)

+
m∑
j=1

ai, j (y, z)u j , i=1, . . .,m

(54c)

ż=b0(y, z)+B(y, z)u (54d)

y(0)=�y(x0), �̄(y(T ), z(T ))=0 (54e)

yi,1∈[c−
i ,c+

i ], ui ∈[ū−
i (y, z), ū+

i (y, z)]
i =1, . . .,m (54f)

where ai,0= Lri
f ci (x)◦�−1,ai, j = Lgj L

ri−1
f ci (x)◦�−1,

and u= (u1, . . .,um)T. The functions of the cost �̄=�◦
�−1, L̄= L ◦�−1, and constraints ū±

i =u±
i ◦�−1 corre-

spond to OCPx .
As in [13], the normal form dynamics of OCPy

comprises the input–output dynamics (54b)–(54c) and
the internal dynamics (54d) with the matrix function
B :Rr ×Rn−r →Rn−r×m . The equations for ẏi,ri can
be written in vector notation

ẏr =a0(y, z)+ Ā(y, z)u (55a)

with ẏr = (ẏ1,r1, . . ., ẏm.rm )T and a0= (a0,1, . . .,a0,m)T

to determine the input vector u:

u= Ā−1(y, z)(ẏr −a0(y, z)) (55b)

The inverse of the decoupling matrix Ā(y, z)=
{ai, j(y, z)}= A(x)◦�−1 is well-defined due to the full
rank condition (52b).

6.3. Using saturation functions to represent the
constraints

In a straightforward extension of the single input case
in Section 3, the state constraints in (54f) can be

represented bym saturation functions yi,1=�i (�i,1,c
±
i )

and using successive differentiation of yi,1. This defines
the mappings

yi,1 = hi,1(�i,1)=�i (�i,1,c
±
i ), i=1, . . .,m (56a)

yi, j = hi, j (�i,1, . . .,�i, j )

= �i, j (�i,1, . . .,�i, j−1)+�′
i�i, j , j=2, . . .,ri

(56b)

comprised in

y=h(�)= (h1,1(�1,1), . . .,hm,rm (�m))T (57)

The vector notation �i = (�i,1, . . .,�i,ri )
T is used when

it is beneficial. The nonlinear terms �i, j are determined
with respect to the previous equation for yi, j−1, i.e.

�i,2(�i,1)=0

�i, j (�i,1, . . .,�i, j−1)=
j−2∑
k=1

�hi, j−1

��i,k
�i,k+1

j =3, . . .,ri , i =1, . . .,m

Similar to the single input case, the successive differen-
tiations of yi,1 along the multiple cascades lead to a new
set of coordinates �T = (�T

1 , . . .,�T
m)∈Rr that replaces

y. The inverse mapping is denoted by y=h−1(�) and
is addressed in more detail in Section 3.2. The final
differentiations to reach yi,ri yield

ẏi,ri =�i,ri+1(�i )+�′
i �̇i,ri , i =1, . . .,m (58)

In contrast to the straightforward derivation of (56)–
(57), the incorporation of the input constraints ui ∈
[ūi (y, z), ūi(y, z)] via the highest derivatives ẏi,ri is
more complicated than in the single input case due
to the influence of the decoupling matrix Ā(y, z) in
(55a). Only in the exceptional case when Ā(y, z) is a
diagonal matrix, i.e. ẏi,ri =a0,i(y, z)+ai,i(y, z)ui , the
constraints on ui can directly be mapped to ẏi,ri as
in (19), in order to use further saturation functions
for �̇i,ri =	i (ũi ,	

±
i ). In the general case, the structure

of the decoupling matrix Ā(y, z) has to be taken into
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account by using 	i (ũi ,	
±
i ), i=1, . . .,m in a linear

combination⎛
⎜⎜⎜⎝

�̇1,r1
...

�̇m,rm

⎞
⎟⎟⎟⎠=D

⎛
⎜⎜⎜⎝

	1(ũ1,	
±
1 )

...

	m(ũm,	±
m)

⎞
⎟⎟⎟⎠ (59)

where the elements of the m×m matrix D={di, j} and
the saturation limits 	±

i still have to be determined.
Combining (55a), (58), and (59) in vector notation with
�r+1 = (�1,r1+1, . . .,�m,rm+1)

T (and omitting arguments
where it is beneficial) leads to⎛

⎜⎜⎜⎝
�′
1 0

. . .

0 �′
m

⎞
⎟⎟⎟⎠D

⎛
⎜⎜⎜⎝

	1

...

	m

⎞
⎟⎟⎟⎠

= ã0(�, z)+ Ã(�, z)u−�r+1(�)

=|Ã|−1 Ã(|Ã|u+
(�, z)) (60a)

where ã0=a0◦h, Ã= A◦h, and

(�, z)=|Ã|Ã−1(ã0(�, z)−�r+1(�)) (60b)

The non-singularity of the decoupling matrix Ã(�, z)
follows from the well-defined relative degree, which
ensures that the inverse Ã−1 with the determi-
nant |Ã| �=0 exists in a sufficiently large neighbor-
hood of �(x0).∗∗ The vector equation (60a) can be
reformulated and expanded with respect to the partial
derivatives (�′

1, . . .,�
′
m):

D

⎛
⎜⎜⎝

	1

...

	m

⎞
⎟⎟⎠= |Ã|−1

⎛
⎜⎜⎜⎜⎜⎝

∏
k∈K1

�′
k 0

. . .

0
∏

k∈Km

�′
k

⎞
⎟⎟⎟⎟⎟⎠ Ã

︸ ︷︷ ︸
m×m matrix

∗∗The normalization in (60) with respect to the determinant
| Ã(�, z)| is used to achieve consistency with the single input
case, also see Remark 5.

×

⎛
⎜⎜⎝

|Ã|u1+
1
...

|Ã|um +
m

⎞
⎟⎟⎠ 1

m∏
k=1

�′
k︸ ︷︷ ︸

m vector

(61)

The sets Ki are defined by Ki ={k=1, . . .,m :k �= i}.
Owing to the reformulation, the first part of the right-
hand side of (61) is a m×m matrix independent of u,
whereas the second part is a vector of dimension m that
depends on u. By comparison with the left-hand side
of (61), the elements of the matrix D={di, j} are set to

di, j :=di, j(�, z)= ãi, j (�, z)

|Ã(�, z)|
∏

k∈Ki

�′
k(�k,1,c

±
k )

i =1, . . .,m (62)

and thus depend on the states � and z. The functions
ãi, j (�, z) belong to the decoupling matrix Ã(�, z)=
{ãi, j (�, z)}. Further comparison of the saturation func-
tions (	1, . . .,	m) with the vector on the right-hand
side of (61) shows that each 	i is related to the i th input
ui via the expression (|Ã|ui +
i )/

∏m
k=1�′

k . Hence, in
order to satisfy the input constraints in (54f), the limits
of the saturation functions 	i (ũ,	±

i ), i=1, . . .,m have
to be chosen to

	±
i := 	±

i (�, z)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|Ã(�, z)|ũ±
i (�, z)+
i (�, z)∏m

k=1�′
k(�k,1,c

±
k )

if |Ã(�, z)|>0

|Ã(�, z)|ũ∓
i (�, z)+
i (�, z)∏m

k=1�′
k(�k,1,c

±
k )

if |Ã(�, z)|<0

(63)

depending on the sign of the determinant |Ã(�, z)| �=0.
The highest derivatives ẏr = (ẏ1,r1, . . ., ẏm,rm )T in

(58) can now be expressed as

ẏi,ri =�i,ri+1(�i )+�′
i

m∑
j=1

di, j (�, z)	̃ j (�, z, ũ j )

=hi,ri+1(�, z, ũ), i =1, . . .,m (64a)
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with 	̃i =	i (ũi ,	
±
i (�, z)) and the new input vector

ũ= (ũ1, . . ., ũm)T. Summarizing these relations in ẏr =
hr+1(�, z, ũ), we can rewrite the input vector (55b) in
the new coordinates � and inputs ũ as

u = hu(�, z, ũ)

= Ã−1(�, z)(hr+1(�, z, ũ)−ã0(�, z) (64b)

Remark 5
The expansion with respect to the partial derivatives
�′
k in (61) has been undertaken in order to collect all

�′
k–terms in the denominator of the saturation limits

(63). The benefit of this formulation is mentioned in
Remark 1 for the single input case. Moreover, it can
easily be verified that the expressions (59) with (62)–
(63) exactly reduce to (18) for m=1.

6.4. New penalized OCP OCP�
�

As stated in detail in Section 3.2, the coordinates �i,1
and new inputs ũi as the arguments of the saturation
functions (56a) and (59) become unbounded if one of
the corresponding state or input constraints (54f) is
touched. This problem is addressed (as in the single
input case) by penalizing �i,1 and the new inputs ũi , i =
1, . . .,m, in the cost function, which leads to the new
penalized OCP�

�.

Problem OCP�
� (multiple input case):

minimize P(ũ,�)= J̃(ũ)

+�
m∑
i=1

∫ T

0
(�2i,1+ ũ2i )dt (65a)

subject to �̇i, j =�i, j+1, j=1, . . .,ri −1

�̇i,ri =
m∑
j=1

di, j (�, z)	̃ j (�, z, ũ), i=1, . . .,m

(65b)
ż= b̃(�, z, ũ)

= b̃0(�, z)+ B̃(�, z)hu(�, z, ũ) (65c)

�(0)=h−1(�(x0)), z(0)=�z(x0)

�̃(�(T ), z(T ))=0 (65d)

where b̃0=b0◦h, B̃= B◦h, and �̃= �̄◦h follow from
OCPy . The constraints (54f) are incorporated in
the dynamics by the asymptotic saturation func-
tions �i (�i,1,c

±
i ) and the linearly combined 	̃i =

	i (ũi ,	
±
i (�, z)) with (62), (63). Their successive

derivatives uniquely define y=h(�), ẏr =hr+1(�, z, ũ),
and u=hu(�, z, ũ) stated in (57) and (64).

Similar to the single input case, the penalty param-
eter � has to be successively reduced during the numer-
ical solution of OCP�

� in order to approach the optimal
solution (u∗, y∗, z∗) of OCPyvia the mappings (57) and
(64). For details, we refer back to Sections 4 and 5 of
the single input case.

6.5. Example: Ducted fan

The incorporation of the constraints in the multiple
input case is illustrated for the planar ducted fan [21],
as shown in Figure 5. The system consists of a rigid
body described by the position (x1, x2) in the center of
gravity and the angle  to the vertical. The thrust of the
ducted fan is given by the body-fixed forces u1 and u2,
which can be adjusted by moving the flaps at the end of
the duct. We consider the following constrained OCP
with constraints on both inputs (u1,u2) and angle :

minimize J (u)=
∫ T

0
�+2u21+u22 dt (66a)

subject to mẍ1=u1 cos −u2 sin  (66b)

mẍ2=−mg+u1 sin+u2 cos

(66c)

J ̈=ru1 (66d)

x(0)= (0,0,0,0,0,0)T

x(T )= (0,0,1,0,0,0)T (66e)

∈[−,+]
u1∈[u−

1 ,u+
1 ], u2∈[u−

2 ,u+
2 ] (66f)

The simplified model equations (66b)–(66d) are
taken from [21] as well as the model parameters††

††The experimental setup of the ducted fan used in [21] is attached
to a vertical stand with a counter weight, which leads to the
reduced gravity force.
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Figure 5. Ducted fan with position (x1, x2), angle  to the
vertical, and thrusts u1 and u2.

r=0.2m, J=0.05kgm2,m=2.2kg,m g=4N and the
input constraints u1∈[−5,5]N and u2∈[0,17]N.
An additional constraint is imposed on the angle
∈[−30,30]◦ to arbitrarily restrict the movement of
the fan. The transition problem for the fan is to cover
a horizontal distance of 1m in the free end time T ,
which leads to the boundary conditions (66e) for the
state vector x= (x1, ẋ1, x2, ẋ2,, ̇)T. The cost (66a)
can be interpreted as a trade-off between time and
energy optimality with respect to the parameter �, see
again [21]. In the following, we choose �=1000 to
put a strong emphasis on the minimization of T . The
following derivation of the penalized OCP�

� proceeds
along the lines of the previous subsections. As will
appear, the extra feature that T is a free parameter
does not interfere.

Remark 6
The ducted fan belongs to the class of flat systems [22],
i.e. there exists a so-called flat output z= (z1, z2) with

z1= x1− J

mr
sin, z2= x2+ J

mr
cos (67)

which allows to parameterize the states and inputs u=
(u1,u2)

(x, y,) = fx (z1, z̈1, z2, z̈2)

u = fu(z̈1, z
(3)
1 , z(4)1 , z̈2, z

(3)
2 , z(4)2 )

(68)

in terms of z and its time derivatives. By planning
an appropriate flat time trajectory z(t), t ∈[0,T ], the
corresponding input trajectory u(t) can be algebraically
calculated, which steers the system (66b)–(66d)
between the boundary conditions (66e) and satisfies the
constraints (66f) for a large enough transition time T .
Hence, the non-emptiness of the set S0 of admissible
controls, see (30), can explicitly be concluded.

Since only one state constraint c1(x)= is given, a
second function c2(x) can be freely chosen in order to
derive the normal form coordinates (53):

y1,1 = , y1,2=̇, y2,1=x2

y2,2 = ẋ2, z1=x1, z2=ẋ1

Note that x2 and not x1 is chosen as coordinate y2,1 to
achieve a well-defined relative degree {r1,r2}={2,2}
around the vertical position =0. The normal form
(54b)–(54d) directly follows from reordering the model
equations (66b)–(66d):

ẏ1,1 = y1,2, ẏ1,2= r

J
u1 (69a)

ẏ2,1 = y2,2, ẏ2,2=−g+ sin y1,1
m

u1+cos y1,1
m

u2

(69b)

ż1 = z2, ż2= cos y1,1
m

u1− sin y1,1
m

u2 (69c)

In addition, the inputs u1 and u2 can be obtained by
solving (69a)–(69b):

u1= J

r
ẏ1,2, u2=m

g+ ẏ2,2
cos y1,1

− J

r
ẏ1,2 tan y1,1 (70)

In the normal form coordinates y=(y1,1, y1,2,
y2,1, y2,2)T and z= (z1, z2)T, the state constraint
y1,1=∈[−,+] can be incorporated by a saturation
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function �1(�1,1,
±), whereas the second coordi-

nate y2,1= x1 is unconstrained. This leads to the
relations (57)

y1,1 = �1(�1,1,
±), y1,2=�′

1�1,2

ẏ1,2 = �′′
1�

2
1,2+�′

1�̇1,2, y2,1=�2,1

y2,2 = �2,2, ẏ2,2= �̇2,2

(71)

between y and the new coordinates �= (�1,1,�1,2,
�2,1,�2,2)

T. Note that the choice y2,1=�2,1 corresponds
to a second saturation function y2,1=�2(�2,1, x

±
2 ), if

(arbitrary) constraints for y2,1= x2∈[x−
2 , x+

2 ] are set
to x±

2 →∞. Then, the normalized saturation function
(A1) in Appendix A.1 reduces to �2(�2,1, x

±
2 )→�2,1.

In order to incorporate the input constraints (66f),
two new saturation functions 	i (ũi ,	

±
i ), i =1,2, are

used to parameterize the highest derivatives �̇1,2 and
�̇2,2 according to (59). With the decoupling matrix Ã(�)

following from (69a)–(69b) and y1,1=�1(�1,1,
±),

Ã(�)=
⎛
⎜⎝

r

J
0

sin�1

m

cos�1

m

⎞
⎟⎠ , |Ã(�)|= r

m J
cos�1

(72)

the single elements di, j of the 2×2 matrix D={di, j}
are derived from (62):

D(�)=

⎛
⎜⎜⎝

m

cos �1
0

J

r
�′
1 tan �1

J

r
�′
1

⎞
⎟⎟⎠ (73)

In addition, the expression (60b) evaluates to


(�) =

⎛
⎜⎜⎝

cos �1

m
0

− sin �1

m

r

J

⎞
⎟⎟⎠
(−�′′

1�
2
1,2

−g

)

=

⎛
⎜⎜⎝

−cos �1

m
�′′
1�

2
1,2

sin�1

m
�′′
1�

2
1,2− r g

J

⎞
⎟⎟⎠

and is used to determine the saturation limits (63)

	±
1 (�) = cos�1

m�′
1

( r
J
u±
1 +�′′

1�
2
1,2

)

	±
2 (�) = 1

�′
1

(
r cos �1

Jm
u±
2 +sin �1

m
�′′
1�

2
1,2− rg

J

) (74)

This finally leads to the unconstrained system (66b)–
(66d) with the states (�, z) and the new inputs
(ũ1, ũ2):

�̇1,1 = �1,2, �̇1,2= m

cos�1
	̃1(�, ũ1) (75a)

�̇2,1 = �2,2, �̇2,2= J

r
�′
1 tan�1	̃1(�, ũ1)

+ J

r
�′
1	̃2(�, ũ2) (75b)

ż1 = z2, ż2= J�′
1

r
(	̃1− tan�1	̃2)

+ J�′′
1�

2
1,2

mr cos �1
−g tan�1 (75c)

where 	̃i =	i (ũi ,	
±
i (�)), i =1,2. The internal

dynamics (75c) is obtained by inserting (70)–(71)
and (75a)–(75b) into (69c). With the new system
dynamics (75), the OCP (66) of the ducted fan can be
transformed to OCP�

�, whereby an additional penalty

term �
∫ T
0 �21,1+ ũ21 + ũ22 dt with parameter � is added

to the cost (66a) to avoid the unboundedness of the
saturation function arguments if one of the constraints
(66f) is touched.

The optimality conditions for OCP�
� are derived

according to Section 5.1 and are omitted here due to
the lack of space. Note that the final conditions (43d)
for the adjoint state �∈R6 can be omitted since the
final conditions (66e) for the ducted fan encompass
the whole state vector x . In addition to (42) and (43),
the transversality condition H(x̃ ,�, ũ)|T =0 forms a
further final condition to account for the free end
time T .

The new system (75) as well as the optimality condi-
tions (42) and (43) are analytically calculated with
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Figure 6. Optimal trajectories for the ducted fan with decreasing penalty parameter �.

MATHEMATICA using the explicit formulas (A1)–(A2)
in Appendix A.1 and are provided as Cmex-functions
to the MATLAB collocation solver described in Section
5.2. A time transformation �=
 t with the normalized
time coordinate �∈[0,1] and the scaling factor 
 is
used to address the free end time T =
. In the DAE
representation (45) of the BVP solver, 
 is used as free
parameter p.

The initial guess for the states (�, z) is a linear inter-
polation between the respective boundary conditions on
a uniform mesh with 200 points for the new time coor-
dinate �∈[0,1]. The initial guess for � and (ũ1, ũ2) is
simply zero, whereas the free parameter p=
 is initial-
ized with p=1. The BVP is successively solved for
the penalty terms �∈{100,10−1, . . .,10−11} using the
previous solution as initial guess for the next run. The
mesh refinement of the BVP solver is turned off during
the successive solutions and the single trajectories are
computed on the fixed uniform mesh with 200 points.
The reason for using a fixed mesh is that the mesh
refinement leads to an increase of mesh points during
the successive solutions, while the complex shape of
the trajectories strongly changes.

Figure 6 shows the simulation results for several
penalty parameters �. The trajectories for the final run
with �=10−11 show an aggressive behavior, where all
the constraints (66f) are clearly exploited. This aggres-
sive maneuver of the ducted fan corresponds to the
strong emphasis on time optimality in the cost (66a)
with �=1000.

7. CONCLUSIONS

The presented approach describes a systematic way to
transform a constrained optimal control problem OCPx
into a new unconstrained one. For a given nonlinear
system with m inputs, the treated class of constraints
comprises up to m input constraints and m state
constraints with well-defined relative degree. Starting
from an equivalent OCPy in normal form coordinates, a
new system representation is derived by means of satu-
ration functions and successive differentiation along the
normal form cascade. This system in new coordinates
is used to define a new unconstrained OCP�

� with an
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additional penalty term in order to avoid unboundedness
of the saturation function arguments, which occurs if
the original constraints are touched. After deriving the
optimality conditions for OCP�

�, the resulting BVP
can be solved numerically (e.g. with the collocation
method as used in this paper), whereby the penalty
parameter � has to be successively reduced within a
continuation scheme. The single analytical steps in
the derivation of OCP�

� can be automated by using
computer algebra systems such as MATHEMATICA or
MAPLE.

The systematic incorporation of the constraints
shows the philosophy behind the approach, which
stresses the importance of analytical preprocessing
to derive a truly unconstrained OCP. Compared,
for instance, with interior penalty methods, where
barrier functions are added to the cost to account for
constraints, the saturation function approach directly
includes the constraints in the new system dynamics.
A particular benefit of this procedure is that the
constraints cannot be violated in the new coordinates,
which is of advantage for finding an initial numerical
solution or to successively reduce the magnitude of
the constraints, e.g. to start from an unconstrained
solution.

Moreover, the proposed method is independent of
the numerical method that is finally used to solve the
derived unconstrained OCP. Besides the collocation
method used in this paper, first investigations with indi-
rect gradient and shooting methods have shown that
the intrinsic incorporation of the constraints has further
advantages over the classical constraint penalization
concerning speed of convergence and non-violation of
the constraints.

The performance of the proposed methodology has
been tested for several challenging benchmark prob-
lems, including the Goddard problem with thrust and
dynamic pressure constraints [23] and the space shuttle
reentry problem with input and heating constraints
[24]. Current research concerns the application of
the proposed methodology to real-time trajectory
optimization, in particular in the context of real-time
iteration schemes [25]. Further research is done on the
extension of the approach to a more general class of
constraints.

APPENDIX A

A.1. Choice of saturation functions

An appropriate choice to construct the saturation func-
tion �(�1,c

±) is for instance

�(�1,c
±)=c+− c+−c−

1+exp(s�1)
with s= 4

c+−c− (A1)

The parameter s adjusts the slope at the position �1=0
and is chosen in (A1) to normalize the slope at �1=0
to ��/��1=1. Note that the saturation limits c± are
only reached asymptotically for �1→±∞.

The second saturation function in (16) with the new
input ũ and the saturation limits 	± :=	±(�, z) is
constructed accordingly by

	(ũ,	±)=	+− 	+−	−

1+exp(sũ)
with s= 4

	+−	− (A2)

Other choices for asymptotic saturation functions can
e.g. be obtained for tanh-functions.

A.2. Limit behavior of saturation functions

This appendix explores the behavior of the satura-
tion functions y1=�(�1,c

±) and �̇r =	(ũ,	±(�, z))
defined in (A1)–(A2) and the unboundedness of
�= (�1, . . .,�r )

T and ũ, when the state constraint in
(9f) becomes active. This case corresponds to the
limit problem for OCP�

�, if the solution y� =�(��
1,c

±)

approaches a state-constrained optimal trajectory y∗
for �→0.

We consider a trajectory y(t) with a constrained arc
y(t)=c+, t ∈[tin, tout] and investigate the behavior of
� and ũ at the entry point tin with the entry conditions

y1(tin)=c+, yi (tin)=0, i =1, . . .,r (A3a)

These interior boundary conditions follow from the
normal form (9b)–(9d). For every admissible control u,
the state vector (y1, . . ., yr , z) is a continuous function
of time t ∈[0,T ]. Hence, the cascade structure of the
dynamics (9b)–(9c) shows that all states yi , i =2, . . .,r
have to be zero at the entry point tin to a constrained
arc y1=c+=const. for t ∈[tin, tout].
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To allow precise statements, assume in addition that
the input constraint u∈[ū−(y, z), ū+(y, z)] is not active
when entering the state constraint y1(tin)=c+ and that
u is continuous over tin. This leads to

ẏr (tin)=0, a−(y, z)<0<a+(y, z) for t→ tin (A3b)

where a±(y, z) are the transformed input constraints
(17a) for ẏr . The following investigations rely on a
series expansions of y∗(t), which we assume to exist:

A.2.1. Behavior of coordinates �. A power series of y1
at y1(tin)=c+ can be written as

y1(tin−�) = c+−(ek�
k+ek+1�

k+1+O(�k+2))

k > r (A4)

with ek �=0 and ��0 as a new time coordinate. Note
that k>r due to the entry conditions in (78), which
imply y(i)

1 (tin)=0 for i =1, . . .,r .‡‡ The behavior of �1
can be investigated by looking at (24). For y1→c+, the
first log-term converges to log(c+−c−), whereas the
second term log(c+− y1) becomes unbounded. Hence,
�1 can be approximated by

�1(tin−�) ≈−c̄ log(c+− y1) for y1→c+

=−c̄k log(ek�)

−c̄ log

(
1+ek+1

ek
�+O(�2)

)
(A5)

with c̄= (c+−c−)/4. The latter equation follows from
(A4) and applying the sum rule log(p+q)= log(p)+
log(1+q/p). With the time derivatives (di/dt i)�1(t)=
(−1)i(di/d�i )�1(tin−�), this leads to the finite-time
blowup behavior of the coordinates � and �̇r for ��1:

�1(tin−�) ≈ −c̄k log(ek�)

�i+1(tin−�) ≈ (i−1)!c̄k/�i , i=1, . . .,r−1 (A6)

�̇r (tin−�) ≈ (r−1)!c̄k/�r

‡‡The value of k corresponds to the first derivative of y1(t),
which is discontinuous over tin, i.e. y

(k)
1 (t−in ) �= y(k)

1 (t+in )=0, and
can be characterized (under certain assumptions) with respect
to the order r of the constraint y1=c(x), see [26, 27].

The faster unboundedness of the derivatives of �1 can
be observed in Figures 3 and 4 for Example (46).

A.2.2. Behavior of new input ũ. Further statements can
be obtained for ũ by using the saturation function (A2)
with the limits (18b) to explicitly state the inverse func-
tion (25a):

ũ = a+−a−

4�′(�1,c±)◦�−1

×[log(ẏr −a−)− log(a+− ẏr )] (A7)

where the arguments of a±(y, z) are omitted for the
sake of simplicity. Note that inserting the relation (9c)
for ẏr leads to (26). The denominator term �′(�1,c±)◦
�−1 in (A7) can be simplified with (24) and using (A4):

�′
1(�1,�

±
1 )◦�−1 = 4

(y1−c−)(c+−y1)

(c+−c−)2

≈ 1

c̄
(ek�

k+O(�k+1)) for ��1

(A8)

The log-terms in (A7) are rewritten with ẏr (t)=
(−1)r (dr/d�r )y1(tin−�) following from (A4):

log

(−a−+ ẏr
a+− ẏr

)

= log

(−a−−ēk�k−r+O(�k−r+1)

a++ēk�k−r+O(�k−r+1)

)
(A9a)

= log

(
−a−

a+ − ēk
a+

(
1− a−

a+

)
�k−r

+O(�k−r+1)

)
(A9b)

= log

(
−a−

a+

)
+ ēk
a−

(
1− a−

a+

)
�k−r

+O(�k−r+1) (A9c)

where ēk = (−1)rk!/(k−r)!ek . The expression (A9b) is
derived by expanding the fraction in (A9a) with respect
to the single numerator terms and applying the expan-
sion rule 1/(1+ p)=∑∞

i=0(−1)i pi . The last equation
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(A9c) follows from the standard expansion rules. In
summary, (A7) can be written as

ũ(tin−�)= c̄

4
(a+−a−)

log

(
−a−

a+

)
+ ēk
a−

(
1−a−

a+

)
�k−r+O(�k−r+1)

ek�k+O(�k+1)
(A10)

Owing to Assumption (A3b), log(−a−/a+) is bounded
and ũ behaves like 1/�r corresponding to the blowup
behavior of �̇r in (A6). Hence, ũ becomes unbounded
(and locally non-square-summable) if ẏr approaches
one of the constraints a±(y, z), see (17a) and (A7).
This shows that (at least if y1 is series expandable)
the penalty term on �1 in the cost (27a) is actually not
required, since the penalization of ũ accounts for both
constraints (9f), also see Remark 2. Note in particular
that ũ becomes even faster unbounded, if one of the
constraints a±(y, z) tries to cross zero, which leads to
unboundedness of log(−a−/a+).

A.2.3. Behavior of saturation limits 	±(�, z). From
(16), it can be concluded that �r+1(�)→0 for y1→c+,
since ẏr (tin)=0 and �′�̇r →0 for �→0, which follows
from the series expansions (A6) and (A8) with k>r .
Hence, the saturation limits (18b) behave like

	±(�, z)≈ c̄ã±(�, z)

ek�k
for ��1 (A11)

which shows that 	±(�, z) becomes faster unbounded
than �̇r in (A6). Moreover, 	± →±∞ due to the
inequality in (A3b). Since 	± are the saturation limits
for 	∈ (	−,	+), the normalization of the saturation
function (A2) leads to

�̇r =	(ũ,	±(�, z))≈ ũ (A12)

when y1 approaches the constraint c+. This means
that the second saturation function 	 ‘opens’ and �̇r
becomes unconstrained (see Figure 4). The reason for
this property is that, due to Assumption (78), y1 can
smoothly enter into the constraint c+ without any inter-
action with the input constraint in (9f).
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