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A B S T R A C T

This paper addresses several control problems for a prototypical microfluidic process designed for the
separation operations of a fluid containing particles. The device is composed of one or several cascaded
bifurcations that are traveled by the fluid. The volume fraction of particles in the flow is modified at
each bifurcation. Fractionation is caused by the Zweifach–Fung effect, which governs the fluid dynamics
in this device. It is a nonlinear effect that solely depends on the ratio of the flow rates in the branches.
Propagation through the dead- volumes of the device and its capillary tubings generate input-varying delays
of hydraulic type. These hydraulic delays strongly contribute to the complexity of the input–output dynamics
to be controlled. The paper presents a model of the device and formulates some concise control problem
statements for future research, along with illustrative simulation results. The case of single and dual bifurcation
are presented.
1. Introduction

This article studies a class of prototype microfluidic systems ex-
ploiting the Zweifach-Fung effect to enrich or filter a fluid containing
particles in suspension. Microfluidics is a vast scientific domain that
emerged more than two decades ago [1]. It is commonly described as
the science of manipulating and controlling fluids at Reynolds num-
bers under 1. Typical microfluidics devices are arranged in arrays of
channels whose diameters are much smaller than 1 mm (from a few
tens to a few hundreds of micrometers), see e.g. [2], and are designed
to handle very small quantities (microliters to picoliters). Microfluidic
systems are used in process engineering, chemistry, and biotechnology,
among others, allowing fluids to interact, be mixed, measured, or
encapsulated within each other, according to a desired process scheme.
Typical networks of channels consist of inlets, zigzag, cross, split, traps,
and pillars, among other architectures, see [3] for a state-of-the-art
overview.

The fluid mechanics at stake in microfluidic systems is highly de-
pendent on the complex geometry of the network. A phenomenon
that has received particular attention in this field is the Zweifach-
Fung effect (see [4]), a.k.a. bifurcation law. In words, it is described as
follows, from [5]: ‘‘when a suspension of particles reaches an asymmetric
bifurcation, the particles volume fractions in the two daughter branches are
not equal. In detail, for branches of comparable geometrical characteristics

E-mail address: nicolas.petit@minesparis.psl.eu.
1 In such applications, quantities to be handled are very small. Typical channels have square section of 40 μm, lengths of 20mm. Volumes to be treated are

30 μL over 30min and the purification requirements are that concentration must be handled with an accuracy of 1%.

but receiving different flowrates, the volume fraction in particles increases
in the high flowrate branch’’.

The Zweifach-Fung effect has a central role in microvascular net-
works [6–10] and thus has been studied using in vivo, in vitro and
theoretical models [11]. Interestingly, this effect can also serve to
engineer sorting, fractionation or purification devices, see e.g. [12],1
as is done in this article.

Many studies have concentrated on establishing empirical and the-
oretical laws describing the separation of particles in the two daughter
branches of the main channel, using advanced models of computational
fluid dynamics. Depending on various parameters such as widths, an-
gles of the branches and size of particles, several semi-analytical laws
have been proposed to describe the particle volume fraction in the
two branches as a function of the flowrate ratios between them, see
e.g. [13,14]. One can refer to [5] for a comprehensive analysis of these
laws.

In this paper, we present several control problems on such systems.
These problems are formulated on the simplest microfluidic set-up
one can consider, pictured in Fig. 1. A main channel is used to
transport a suspension contained in a (inlet) reservoir. Then, it reaches
a bifurcation consisting of two equal dimension daughter branches. The
bifurcation at stake is a T-shaped bifurcation (or a Y-shape, without
loss of generality, see again [5]). The main channel and its daughter
959-1524/© 2023 Published by Elsevier Ltd.
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Fig. 1. Separation process using the Zweifach-Fung effect. A fluid containing particles flows from the inlet reservoir through a microfluidic device within which it reaches a
bifurcation and finally flows to the outlet reservoirs. The flowrates 𝑄0, 𝑄1, 𝑄2 are controlled by the pressures 𝑃0, 𝑃1, 𝑃2 in the reservoirs.
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ranches are contained in a single microfluidic chip. A two mi-
rofluidic chips setup is also considered in this article, to increase the
ractionation efficiency.

In the control problems formulated in this article, the output of
nterest is the volume fraction in one of the output reservoirs, which
an be controlled by changing the ratio between the flowrates of the
aughter branches.

The paper is organized as follows. In Section 2 briefly details the
odel of the microfluidic chip, and presents a concise set of equations

overning the system. The remarkable features of the dynamics is that
t is nonlinear and subjected to an input-varying delay of hydraulic
ype. In Section 3, we discuss open-loop behavior and closed-loop
tabilization. In Section 4, we consider a two-bifurcation system and
eneralize the findings of the preceding discussions. In Section 5 we
escribe several main challenges for application of optimization based
echniques such as Model Predictive Control. Some conclusions and
erspectives are given in Section 6.

. Model of the dynamics

We first consider the single microfluidic chip system in Fig. 1. Note
0, 𝑄1, 𝑄2 the (volume) flowrates in the input, and two daughter

output) channels (1 and 2, respectively). For flows in microfluidic
evices, liquids are well approximated as incompressible [15]. The
luid (suspension) contained in the reservoir consists of a solvent and
articles. It is desired to increase the volume fraction of the fluid. The
irst branch is considered as a ‘‘waste channel’’ and the second branch
s the ‘‘concentrated channel’’.

The inlet of the main channel and the outlets of the branches are
onnected through capillary tubings to three reservoirs. The reservoirs
re pressurized with a high level of accuracy. The incompressibility
f the fluid allows one to consider that the pressures at the ports
re precisely controlled so that the flowrates can be chosen, almost
nstantly.2 The ratio

=
𝑄1
𝑄0

∈ [0, 1]

is a control variable while 𝑄0 is kept constant. Conservation of volume
implies that 𝑄2 = 𝑄0−𝑄1. When 𝑢 is changed, the volume fraction after
the bifurcation point is altered. Define 𝑐 and 𝑐 𝑓 (𝑢) the volume fraction
in channel 0 and in channel 1 (right after the bifurcation), respectively.
The mapping 𝑢 ↦ 𝑓 (𝑢) is defined from the physical observations
ielding the model below.

2 Simple pressure controllers can be used in coordination with flowrate
ensors for this purpose. The relationship between the flowrate and the
ressure difference at the boundary of a channel is complex, but monotonic
nd smooth. See e.g. for discussions on these matters [16].
2

Fig. 2. The mapping 𝑓 and the rate of particles ratio 𝑁1∕𝑁0.

Note 𝑁0, 𝑁1, 𝑁2 = 𝑁0 − 𝑁1 the number of particles entering
ranches 0, 1 and 2, per unit of time, respectively. From experiments,
ee e.g. [12], one defines the mapping

↦ 𝑁1∕𝑁0 ≜ ℎ(𝑢)

uch as pictured in Fig. 2 from data covering various cases of 𝑄1∕𝑄2 =
∕(1−𝑢). This function stemming from experimental observations is the
eystone to the model obtained below by simple balance and transport
quations. A separation effect takes place because ℎ ≠ Id. This mapping
atisfies

(𝑢) + ℎ(1 − 𝑢) = 1

oting 𝑐 𝑔(𝑢) the volume fraction in branch 2, one has

(𝑢) =
ℎ(𝑢)
𝑢
, 𝑔(𝑢) =

ℎ(1 − 𝑢)
1 − 𝑢

=
1 − 𝑢 𝑓 (𝑢)
1 − 𝑢

= 𝑓 (1 − 𝑢)

from which one readily obtains the conservation law

𝑢𝑓 (𝑢) + (1 − 𝑢)𝑔(𝑢) = 1

The mapping 𝑓 corresponding to the experimental data presented
in [12] is illustrated in Fig. 2.

The outlet of channel 1 (waste channel) flows with no back mixing,
into a reservoir. Consistently with the experimental constraints bearing
on biological processes, a sensor measures the volume fraction of the
fluid in this reservoir.3

3 This allows to preserve the sterility of the fluid of interest in channel 2
(concentrated channel).
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The waste channel reservoir contains a volume 𝑣 of particles whose
dynamics is

�̇� = 𝑐 𝑓 (𝑢(𝑡 −𝐷(𝑡)))𝑄0 𝑢 (1)

where 𝐷 is a hydraulic delay corresponding to the volume 𝑉1 of chan-
nel 1 (from the bifurcation to the reservoir, through the capillary
tubing). As for many systems involving transportation of material, see
e.g. [17,18], this delay appears in the right-hand-side of the dynamics
and is defined through an implicit integral equation.4 In Eq. (1), this
delay impacts the volume fraction as this quantity propagates with-
out being altered in the channel (there is no back mixing), but it
does not impact the flowrate which is uniform in the channel due to
incompressibility. The implicit equation is

∫

𝑡

𝑡−𝐷(𝑡)
𝑢(𝜏)𝑑𝜏 =

𝑉1
𝑄0

(2)

The output of interest is the ratio of the volume fraction in the
reservoir over the inlet volume fraction 𝑐. Assuming the reservoir is
mpty at 𝑡 = 0, one has

(𝑡) = 𝑣
𝑐 𝑄0 ∫ 𝑡0 𝑢(𝜏)𝑑𝜏

=
∫ 𝑡0 𝑓 (𝑢(𝜏 −𝐷(𝜏)))𝑢(𝜏)𝑑𝜏

∫ 𝑡0 𝑢(𝜏)𝑑𝜏

In practice, 𝑦 can be measured. Typically, a cytometer is located at
the outlet of channel 1, after the hydraulic delay. Tracking a reference
value (setpoint) for 𝑦 guarantees that the volume fraction in the two
utput reservoirs is maintained about a specific value of interest.

These notations allow us to formulate a first problem of practical
nterest for this microfluidic separation system.

roblem 1 (Tracking of Volume Fraction in the Reservoirs). Consider
he two states system �̇�1(𝑡) = 𝑓 (𝑢(𝑡 − 𝐷(𝑡)))𝑢(𝑡), �̇�2(𝑡) = 𝑢(𝑡), with single

output 𝑦(𝑡) = 𝑥1(𝑡)∕𝑥2(𝑡), single input 𝑢(𝑡) ∈ [0, 1] and 𝐷(𝑡) defined by
Eq. (2), find a closed-loop controller able to asymptotically stabilize any
feasible setpoint 𝑦sp.

Solving this problem has some practical interest in applications
where the volume fraction plays a key role in the fluid dynamics at
stake. These encompass biological suspension cultures [19], study of
emulsion flows and droplet generation [20], high speed screening of
biological reactions [21] among others.

3. Simulation, open-loop and closed-loop control

3.1. Numerical values for the model

The following values are used to produce the presented numerical
results: 𝑉1

𝑄0
= 1, 𝑓 is represented in Fig. 2 and can be reproduced

rom the dataset detailed below in Section 3.2. Initial conditions5 are
1(0) = 𝑥2(0) = 0. Past values of 𝑢(𝑡 < 0) are uniform and set to 0.5.

.2. Definition of 𝑓

The values of 𝑓 over a finite uniform grid are given in Table 1.
hey are obtained from experimental data presented in [12]. When

mplementing these values, consistency with physical laws requires to
orbid the interpolation to take negative values and it is necessary to
nforce 𝑓 (0) = 0, 𝑓 (0.5) = 1, 𝑓 (1) = 1. The mapping 𝑢 ↦ 𝑓 (𝑢) is not
efined outside [0, 1].

4 This equation stems from an exact solution of the transport partial
ifferential equation with variable velocity, [17, Lemma 1.1].

5 Arbitrary small values can be considered to avoid singularity in the
umerical setup.
3

b

Table 1
Values of 𝑓 for interpolation.
𝑥 𝑓 (𝑥) 𝑥 𝑓 (𝑥)

0 0.0
0.0625 0.0077 0.5625 1.0556
0.1250 0.0412 0.6250 1.1000
0.1875 0.2194 0.6875 1.1364
0.2500 0.5011 0.7500 1.1663
0.3125 0.6999 0.8125 1.1801
0.3750 0.8333 0.8750 1.1370
0.4375 0.9285 0.9375 1.0662
0.5000 1.0 1 1.0

3.3. Numerical simulation

The responses of the system can be easily observed in numerical
experiments, provided special care is taken in setting up the simulation
solvers. To obtain reliable resolution of the input-dependent varying
delay dynamics, special care is required on the numerical side as noted
in [22]. A rich body of literature has long studied the numerical
simulation of delay-differential algebraic equations (DDAE). Useful
references can be found in [23,24] or [25]. A classic idea is to consider
the underlying transport equation governing the system. Formally, this
change of representation does not generate any approximation, Eq. (2)
being the exact solution of the partial differential equation (PDE),
see [26]. In turn this requires the discretization of the transport PDE.67

3.4. Open-loop behavior

Following the classic linear control design methodology (e.g. [28]),
it is straightforward to apply various signals to the system and measure
its open-loop responses. Such tests are reported in Fig. 3. For any input
step-change, the open-loop response is monotonic. The response time
and the delay depend on the final value of the step. In particular, for
low values of the setpoint 𝑦sp, a low value of the input 𝑓−1(𝑦sp) has to
e selected (according to the monotonicity of 𝑓 for values below 0.5),
nd the delay gets large (according to the hydraulic nature of the delay
q. (2)).

On overall, the open-loop responses reported in Fig. 3 are not
atisfactory: the response is slow and the final error at the end of the
onsidered time horizon is often large.

.5. Closed-loop control

We are now interested in solving Problem 1 with closed-loop con-
rollers.

.5.1. Possible experimental apparatus for measurement and control
In practice, volume fraction 𝑦 can be measured using several prin-

iples of detection such as electrical impedance, optical analysis and
mage analysis, [29,30]. These technologies are used in fluid and
ematological analysis, and bacterial enumeration for example. Off the
helves devices are readily available from established manufacturers.
epending on the application and the technology at stake, reliable

6 Good numerical schemes can be obtained using finite volumes methods.
he approach described in [27] based on the use of the Method of Lines
MOL) by discretizing the PDE only with respect to space into a set of ordinary
ifferential equations can be used. Comparable results can be obtained using a
ull discretization approach (both w.r.t. time and space) using a second order
ccurate scheme. It should be remembered that this type of finite volumes
umerical schemes is stable only if the Courant–Friedrichs–Lewy condition is
erified.

7 An easy solution is the Simulink Variable Time/Variable Delay

lock set to ‘‘Variable transport delay’’ delay type.
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Fig. 3. Open-loop response to a step change in the input signal in hope to reach
various references (one per color). Vertical axis 𝑦, lateral axis 𝑡 (in s). The responses
are monotonic. The response times and delays depend on the target reference. The final
error at the end of the considered time horizon is large.

measurements are produced at a relatively high rate. As already dis-
cussed the control variable 𝑢 can be controlled using a flowrate sensor
cascaded onto a pressure controller acting on the reservoirs. Several
choices of sensors can be made, depending on the applications, the
bandwidth requirements and the nature of the fluid (calorimetry-based,
time-of-flight, Coriolis, or integrated optical fiber cantilever). Based on
these principles, we explore the algorithmic solutions and pitfalls.

3.5.2. Stabilization by means of small gains PI
It is tempting to design a linear controller to improve the perfor-

mance of the open-loop compensator. A natural first solution is a PI
controller [31]. An example of performance obtained with a linear
saturated controller (PI) is pictured in Fig. 4 for various step changes of
the output setpoint. A single set of gains is used for all possible targets,
and an anti-windup method [31] is implemented (here conditional inte-
gration). Some trade-off must be considered here to minimize undesired
oscillations while limiting the final error in the response of the closed-
loop system over the whole range of reachable set-points. The results
presented here are one such optimal trade-off.

The results presented above are not fully satisfactory. Clearly, a
single set of gains for the PI controller does not grant a good level
of performance on the whole range of interest. This is mainly due to
the varying nature of the hydraulic delay, the value of which directly
depends on the values of the control itself.

3.5.3. Prediction based control
It is possible to account explicitly for the delay and its dependence,

by means of a predictor, see [32–34]. Following the recent results
in [35,36], one can formulate a general predictor for Problem 1 to
assign the closed-loop behavior of the output of the system. The target
dynamics is exponentially stable in a new time variable, which gives
uniform exponential convergence in the real-world time (where the
dynamics of the presented model are formulated) [36].

In a nutshell, see [36] for details and proof of convergence, with the
notations of Problem 1, one has

�̇� = 𝑢
𝑌

(𝑓 (𝑢(𝑡 −𝐷(𝑡))) − 𝑦) , �̇� = 𝑢 (3)

Consider

𝑌 (𝑡) =
𝑡
𝑢(𝓁)𝑑𝓁 (4)
4

∫0
Fig. 4. Tracking of various references (one per color) with a PI with anti-windup.
Vertical axis 𝑦, lateral axis 𝑡 (in s). (note: the responses corresponding to the four
smallest values of the setpoint are almost identical) A single a tuning gains does not
grant a good level of performance on the whole range of interest.

Eq. (4) gives the delay through 𝑟(𝑡) = 𝑡 −𝐷(𝑡), with

− 𝑌 ◦𝑟 =
𝑉1
𝑄0

(5)

so that

𝑟 = 𝑌 −1◦(𝑌 −
𝑉1
𝑄0

), 𝑟−1 = 𝑌 ◦(𝑌 +
𝑉1
𝑄0

)

According to Eq. (3), for any 𝑘 > 0, the following nonlinear feedback
ives exponential convergence (provided that 𝑢 remains above some
trictly positive constant) of 𝑦 towards 𝑦sp:

◦𝑟 = 𝑓−1 (𝑦 − 𝑘 𝑌 (𝑦 − 𝑦sp)
)

iving �̇� = −𝑘 𝑢 (𝑦 − 𝑦sp). This feedback has to be implemented in a
ausal form, in which it appears to be a predictor

= 𝑓−1 (𝑦◦𝑟−1 − 𝑘 𝑌 ◦𝑟−1 (𝑦◦𝑟−1 − 𝑦sp)
)

rom Eq. (5), one has 𝑌 ◦𝑟−1 = 𝑌 + 𝑉1
𝑄0

. The prediction 𝑦◦𝑟−1 ≜ 𝑃 can
be computed as follows. Conveniently, one can remark that

�̇� = 𝑑𝑟−1

𝑑𝑡
𝑢◦𝑟−1

𝑌 ◦𝑟−1
(

𝑓 (𝑢) − 𝑦◦𝑟−1
)

Again, using Eq. (5), one has

𝑑𝑟−1

𝑑𝑡
𝑢◦𝑟−1 = 𝑢

Therefore, one simply gets

�̇� = 𝑢
𝑌 + 𝑉1

𝑄0

(𝑓 (𝑢) − 𝑃 )

Finally, for improved numerical stability in the implementation, the
predictor takes the following form (where 𝑊 is an intermediate vari-
able)

�̇� = (𝑓 (𝑢(𝑡)) − 𝑓 (𝑢(𝑡 −𝐷(𝑡)))) 𝑢(𝑡)

�̇� = 𝑢(𝑡)

𝑃 (𝑡) =
𝑦(𝑡)𝑌 (𝑡) +𝑊 (𝑡)

𝑌 (𝑡) + 𝑉1
𝑄0

𝑢(𝑡) = 𝑓−1
(

𝑃 (𝑡) − 𝑘
(

𝑌 (𝑡) +
𝑉1
𝑄0

)

(

𝑃 (𝑡) − 𝑦sp)
)
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Fig. 5. Tracking of various references (one per color) with a predictor. Vertical axis
𝑦, lateral axis 𝑡 (in s). A single value for the predictor gain grants a good level of
performance on the whole range of interest.

When implemented, the predictor formula giving 𝑢 is saturated.
Using this predictor, one obtains the closed-loop behavior8 reported

in Fig. 5. These results are significantly better compared to the ones
obtained with a simple PI controller reported in Fig. 4.

3.5.4. Sampled measurement feedback
In view of future applications, a practical problem, simply stated be-

low, is worth mentioning. The volume fraction measurement apparatus
described above in Section 3.5.1 may have relatively long processing
times, and can only treat fluid samples outside of the reservoir, causing
an additional lag. Therefore, a formula representing these specifities
and limitation is to model the measurement of 𝑦 as follows

𝑦meas(𝑡𝑖) = 𝑦(𝑡𝑖 −𝐷𝑚(𝑡𝑖)) + 𝜀𝑖

where information is only available at instants 𝑡𝑖 (forming an increasing
sequence going to ∞, almost ideally spaced over a regular time grid)
and 𝐷𝑚(𝑡𝑖) is a measurement delay, which can be considered as ran-
domly distributed as in [37] or depending on the value of 𝑦 itself as
in [38,39]. A stochastic framework to model the noise 𝜀𝑖 is required,
see e.g. [40]. The fact that the delay in the dynamics changes when the
control changes complexifies significantly the analysis beyond what is
usually considered, see e.g. [41].

4. Extension to multi-channel filtering

4.1. Model for two cascaded bifurcations

To maximize the fractionation capabilities, it is possible to cascade
a second bifurcation at the outlet of the first one. The fluidic scheme is
represented in Fig. 6 and schematized in Fig. 7.

The conservation laws serve to define the (volume) flow rates using
three variables 𝑄0, 𝑄1 and 𝑄2. The flow rates 𝑄1 and 𝑄2 are controlled
via the ratios

𝑢1 =
𝑄1
𝑄0

and 𝑢2 =
𝑄2

𝑄0 −𝑄1

8 The open-loop behavior being Eq. (3).
5

f

where 𝑄0 is (usually) a constant. These flow rates define three hy-
draulic delays

∫

𝑡

𝑟1(𝑡)
𝑄0𝑢1(𝜏)𝑑𝜏 = 𝑉1, ∫

𝑡

𝑟12(𝑡)
(𝑄0 −𝑄1(𝜏))𝑑𝜏 = 𝑉12, ∫

𝑡

𝑟2(𝑡)
𝑄2(𝜏)𝑑𝜏 = 𝑉2

here 𝑉1 and 𝑉2 are the volume of the outlet branches after the first
nd second bifurcation, and 𝑉12 is the volume of the branch connecting

the two bifurcations. One can make the dependency of the delays w.r.t.
𝑢1 and 𝑢2 more explicit

∫

𝑡

𝑟12(𝑡)
(1 − 𝑢1(𝜏))𝑑𝜏 = 𝑉12∕𝑄0, ∫

𝑡

𝑟2(𝑡)
𝑢2(𝜏)(1 − 𝑢1(𝜏))𝑑𝜏 = 𝑉2∕𝑄0

The volume fraction upstream and downstream the first bifurcation are,
as in the case of a single bifurcation, the triplet

𝑐𝑖𝑛1 ≜ 𝑐, 𝑐𝑖𝑛1 𝑓 (𝑢1), 𝑐𝑜𝑢𝑡1 ≜ 𝑐𝑖𝑛1 ×
(

1 − 𝑢1𝑓 (𝑢1)
1 − 𝑢1

)

Upstream and downstream the second bifurcation they are

𝑐𝑖𝑛2 ≜ 𝑐𝑜𝑢𝑡1 ◦𝑟12, 𝑐𝑖𝑛2 𝑓 (𝑢2), 𝑐𝑜𝑢𝑡2 ≜ 𝑐𝑖𝑛2 ×
(

1 − 𝑢2𝑓 (𝑢2)
1 − 𝑢2

)

The two upper branches of the bifurcations are connected to a
single reservoir which contains a volume 𝑣 of particles. By summing
up the flow rates of particles of the two branches, 𝑐𝑖𝑛1 𝑓 (𝑢1)◦𝑟1 ×𝑄1 and
(

𝑐𝑖𝑛2 𝑓 (𝑢2)
)

◦𝑟2 ×𝑄2 one obtains the variations of 𝑣 as

�̇� = 𝑐 𝑓 (𝑢1◦𝑟1) 𝑢1𝑄0 + 𝑐 ×
(

1 − 𝑢1 𝑓 (𝑢1)
1 − 𝑢1

)

◦𝑟12◦𝑟2 × 𝑓 (𝑢2◦𝑟2) 𝑢2 (1 − 𝑢1)𝑄0

The output of interest is the ratio of the volume fraction in the
eservoir over the inlet volume fraction 𝑐. Assuming the reservoir is
mpty at 𝑡 = 0, one has

(𝑡) =
𝑣(𝑡)

𝑐 𝑄0 ∫ 𝑡0 (𝑢1 + 𝑢2 − 𝑢1 𝑢2)(𝜏)𝑑𝜏

4.2. Definition of a working point

For practical convenience, a single pressure controller is used in
each outlet reservoir, which introduces a coupling of the flow in the
two branches9 𝑄1 and 𝑄2 and

𝑢1 = 𝑢2 ≜ 𝑢

The flow rate of practical interest is 𝑄𝑓 = 𝑄0 − 𝑄1 − 𝑄2. At
equilibrium,

𝑄𝑓 = 𝑄0 (1 − 𝑢)2

and the asymptotic separation properties of the system are defined by
the ratio between the inlet volume fraction 𝑐 and the outlet volume
fraction

𝑐 ×
(

1 − 𝑢 𝑓 (𝑢)
1 − 𝑢

)2

The choice of a working point can be organized as follows, in
ccordance to Fig. 8. Considering that the production of interest of the
ystem is a product with a higher volume fraction, a set of values for
he concentration factor and flowrate are chosen by a user. This defines

unique value for 𝑢, from which the equilibrium of the measured
utput is determined. In the example pictured in Fig. 8 one has the
ollowing values, reported in Table 2.

9 The microfluidic chips have different resistivity properties, to compensate
or head losses.



Journal of Process Control 132 (2023) 103124N. Petit

∫

N
u

Fig. 6. Separation process using the Zweifach-Fung effect in two cascaded microfluidic chips to maximize the fractionation effect.
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Fig. 7. Schematic representation of a dual bifurcation system.

Table 2
A fractionation working point for a dual bifurcation
system.

Concentration factor 1.28
Flowrate (normalized) 46.2%
Waste flowrate (normalized) 53.8%

u 0.32
Measured output 0.76

4.3. Closed-loop control

These equations serve to define the following control problem.

Problem 2 (Tracking of Volume Fraction for a Two-Bifurcation Device).
Consider the two states system �̇�1 = 𝑓 (𝑢◦𝑟1) 𝑢 +

(

1−𝑢 𝑓 (𝑢)
1−𝑢

)

◦𝑟12◦𝑟2 ×
𝑓 (𝑢◦𝑟2) 𝑢 (1 − 𝑢), �̇�2(𝑡) = 2𝑢(𝑡) − 𝑢(𝑡)2, with single output 𝑦(𝑡) = 𝑥1(𝑡)∕𝑥2(𝑡)
and single input 𝑢(𝑡) ∈ [0, 1], and input varying delays ∫ 𝑡𝑟1(𝑡) 𝑢(𝜏)𝑑𝜏 =

𝑉1
𝑄0

,
𝑡
𝑟12(𝑡)

(1 − 𝑢(𝜏))𝑑𝜏 = 𝑉12
𝑄0

, ∫ 𝑡𝑟2(𝑡) 𝑢(𝜏)(1 − 𝑢(𝜏))𝑑𝜏 = 𝑉2
𝑄0

, find a closed-loop
controller able to asymptotically stabilize any feasible setpoint 𝑦sp.

umerical values for the model. In this section the following values are
sed in complement of the previous data. 𝑉1

𝑄0
= 𝑉12

𝑄0
= 𝑉2

𝑄0
= 1, 𝑓 is

(unchanged and) represented in Fig. 2 and can be reproduced from
6

the dataset reproduced in Section 3.2. Initial conditions10 are 𝑥1(0) =
2(0) = 0. Past values of 𝑢(𝑡 < 0) are uniform and set to 0.5.

The stabilization problem is to track a desired volume fraction in
he waste reservoir using the single control variable 𝑢. As previously, a
I controller is used. In Fig. 9, we report a closed-loop behavior. The
ransient is similar to the one observed in Fig. 4 for a single bifurcation,
ut more erratic in appearance. Certainly, despite a careful tuning, the
I controller employed here is not the most appropriate to handle this
ystem governed by the two hydraulic delays. By contrast, in Fig. 10

predictor is used. To obtain the presented results, a very simple
redictor was used, aiming at compensating only the first hydraulic

delay (𝑡 − 𝑟1(𝑡)). It writes

�̇� =
(

𝑓 (𝑢(𝑡)) − 𝑓 (𝑢◦𝑟1(𝑡))
)

𝑢(𝑡)

�̇� =
(

𝑓 (𝑢◦𝑟1(𝑡)) − 𝑌
) 𝑢(𝑡)
𝑋

�̇� = 𝑢(𝑡)

𝑃 (𝑡) =
𝑌 (𝑡)𝑋(𝑡) +𝑊 (𝑡)
𝑋(𝑡) + 𝑉1∕𝑄0

𝑢(𝑡) = 𝑓−1 (𝑃 (𝑡) − 𝑘
(

𝑋(𝑡) + 𝑉1∕𝑄0
) (

𝑃 (𝑡) − 𝑦sp))

where 𝑘 is a positive parameter defining the exponential convergence
discussed above and 𝑦sp is the output setpoint.11 Other choices are
possible. It is expected that a more complex prediction scheme com-
pensating the three hydraulic delays of Problem 2 should be preferable.
The formal analysis of the obtained tracking performance remains to be
explored.

5. Optimization based-control

Optimization of the transient response of the system is motivated
by the potentially extremely high value of the fluids that are processed
by the device. A prime example of such case is when stem-cells are
handled [42–44]. In many instances, the separation process is situated
upstream the other operations. Very often the volume fraction is a
critical parameter for subsequent operations. The fluid produced during
the transient is not suitable for experiments and is considered lost. Ex-
amples of such situations include encapsulation processes [45], droplet
generation [46], particle production [47] among others.

To minimize the loss, an optimal control approach seems like a
natural solution.

10 Arbitrary small values can be considered to avoid singularity in the
numerical setup.

11 When implemented, the predictor formula giving 𝑢 is saturated.
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Fig. 8. Fractionation diagram for the single and dual bifurcation systems. The dual system offers a higher concentration factor.
a
P
o

Fig. 9. Closed-loop performance on two bifurcations. Tracking of various references
(one per color) with a PI with anti-windup. Vertical axis 𝑦, lateral axis 𝑡 (in s). The
transients have some spurious oscillations. A single set of tuning gains does not grant
a good level of performance on the whole range of interest.

Considering the concise formulation of Problem 1, it is tempting to
try to solve it with a classic Model Predictive Control methodology, see
for example [48] for a typical application to a related problem. Besides
the nonlinearity and controllability which is not straightforward as
discussed below in Section 5.1, a more hidden pitfall is that any general
optimal control problem formulated for the dynamics of Problem 1 is
likely to be non smooth and will therefore reveal particularly trouble-
some for numerical solvers in its present form. This point is covered in
Section 5.3.

5.1. Motion planning

The separation dynamics under consideration has some modeling
similarities with the dynamics of dilution dynamics studied in other
contexts [49]: hydraulic delays, binary graph as flow chart. Adding
functions composition and inversion to the usual algebraic computation
rules, it was shown in [49] that dilution systems are controllable in the
sense of [50], i.e. that their trajectories can be explicitly parameterized
in the sense of flat systems (see [51]) so that from a prescribed past
trajectory on ] − ∞, 0] a trajectory can be constructed on [0, 𝑇 ] for
7

Fig. 10. Closed-loop performance on two bifurcations. Tracking of various references
(one per color) with a predictor compensating only one of the delays. Vertical axis
𝑦, lateral axis 𝑡 (in s). A single value for the predictor gain grants a good level of
performance on the whole range of interest.

some 𝑇 > 0 connecting to a future trajectory over [𝑇 , +∞[. In dilution
systems, the flat output under consideration is 𝑌 (𝑡) defined in (4).

For the separation systems studied in this paper, this variable also
plays a key role to parameterize several of the variables at stake here.
Indeed, in Problem 1, using Eq. (2), one gets 𝑌 (𝑡) − 𝑌 (𝑡 − 𝐷(𝑡)) = 𝑉1

𝑄0
which gives

𝐷(𝑡) = 𝑡 − 𝑌 (−1)(𝑌 (𝑡) −
𝑉1
𝑄0

)

which is valid as 𝑌 can be assumed strictly monotonic when 𝑢 > 0,
nd thus is invertible. Here, the two additional states 𝑥1 and 𝑥2 of
roblem 1 can be defined by integration (up to some initial condition)
f right-hand sides solely defined by past values of 𝑌 .

�̇�1 = 𝑓 (�̇� (𝑌 (−1)(𝑌 (𝑡) −
𝑉1
𝑄0

))) �̇� (𝑡), �̇�2 = �̇� (𝑡)

to account for the initial conditions in the reservoir. Motion planning
can be readily addressed by scheduling a smooth and monotonic
trajectory for 𝑌 , the end points and the transient of which being
determined according to the desired target in the reservoir.

As an illustration, Figs. 11 and 12 report open-loop histories ob-
tained for a transient between two steady-states of the system over a
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w

Fig. 11. Motion planning between two steady-states. The output 𝑦 reaches a desired
setpoint in finite-time.

Fig. 12. Motion planning between two steady-states. The input 𝑢 and the time
varying-delay histories are reported.

finite time interval [0, 𝑇 ]. The matching condition

𝑥1(𝑇 ) = 𝑓 (𝑢(𝑇 −𝐷(𝑇 )))𝑥2(𝑇 )

is necessary to reach a steady-state. Numerous numerical methods can
be employed to design an open-loop trajectory satisfying this condition,
e.g. a Newton method on this condition using one or two parameters
defining a set of candidate solutions.12

In practice this simple approach is only a first step, and optimal
transients are desired. This is discussed next.

5.2. Two optimal control problems of practical interest

A first problem of practical interest is to reach a desired concentra-
tion in the reservoir in minimum time.

Problem 3 (Reaching a Desired Reservoir Volume Fraction in Minimum
Time). Consider the input–output description of Problem 1 and some
initial conditions for 𝑥1, 𝑥2, and some past values for 𝑢 and 𝑦sp, solve
min 𝑇 , where 𝑇 is s.t. 𝑦(𝑇 ) = 𝑦sp.

12 For reference, the numerical results where obtained for a value of 𝑉1
𝑄0

= 1
with the same exact model previously defined, 𝑇 = 20, 𝑦(0) = 1, 𝑦(𝑇 ) = 1.08.
8

A second problem of interest expresses an optimal output tracking
problem while limiting the variations of the control to account for
the actuators limitations (pressure controllers are very fast but not
infinitely fast). To formulate this, a state extension is considered.

Problem 4 (Smoothly Reaching a Desired Reservoir Volume Fraction in
Minimum Time). Consider the input–output description of Problem 1
and some initial conditions for 𝑥1, 𝑥2, and some past values for 𝑢 and
𝑦sp. Further consider the extra dynamic �̇� = 𝜔. Solve min𝜔 ∫

𝑇
0 ||𝑦(𝑡) −

𝑦sp
||

2 + 𝜖||𝜔(𝑡)||2𝑑𝑡 for some fixed parameters 𝜖 > 0 and 𝑇 > 0.

5.3. Non smoothness related to hydraulic delays

Usually, potential solutions to optimal control problems are char-
acterized by stationarity conditions. These conditions stem from the
calculus of variations. The study of the calculus of variations for op-
timal control problems subject to time-varying delays in the dynamics
is not a new subject. Main results are presented in [52,53], and can
be seen as an extension to [54] given for fixed delays. Despite their
generality, these results can not be applied to solve Problems 3 and 4.
Indeed these works derive necessary stationarity conditions for delays
depending once for all on 𝑡 only and not on the state nor the control as
is the case here.

The dependency of the delay on the input makes these results
incomplete and some extra terms, possibly non-smooth appear. By
expressing all the mutual interactions between the variables, it was
shown in [55] under which conditions such an optimal control problem
for a system subjected to a hydraulic delay is Gâteaux differentiable
(see definition below in Proposition 1). It was also shown that this
input dependency of the delay generally makes the system violate these
conditions .

The general optimal control problem formulated in [56] is as fol-
lows. It covers Problems 3 and 4. We recall it to highlight the role of
the delay dependency.

Let 𝜙 ∶ R𝑝 → R∗
+ be a smooth function, where 𝑝 denotes the

dimension of the variables. Without loss of generality, take some initial
conditions (over a finite past) (𝑢0, 𝑥0) ∈ 𝐶1

𝑝𝑤([𝑟0; 0],R
𝑝) × 𝐷1([𝑟0; 0],R𝑝)

the class of piecewise continuously differentiable functions having a
finite number of jumps in their values or derivatives on their interval of
definition and the class of differentiable functions but whose derivative
is not necessarily continuous, 𝑟0 < 0 with ∫ 0

𝑟0
𝜙
(

𝑢0(𝜏)
)

d𝜏 = 1. Consider
the optimal control problem with input-dependent delays

min
𝑢 ∫

𝑇

0
𝐿(𝑡, 𝑥(𝑡), 𝑢(𝑡)) d𝑡 + 𝜓(𝑥(𝑇 )) ≜ 𝐽0(𝑢)

𝑠.𝑡. ∀𝑡 ∈ [0; 𝑇 ], �̇�(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑥(𝑟𝑢(𝑡)), 𝑢(𝑡), 𝑢(𝑟𝑢(𝑡)))

𝑥[𝑟0;0] = 𝑥0, 𝑢[𝑟0;0] = 𝑢0

here 𝑟𝑢 is defined by the relation ∫ 𝑡𝑟𝑢(𝑡) 𝜙(𝑢(𝜏)) d𝜏 = 1. The following
result stresses the main issue of general non-differentiability. This
property has to be understood in the sense of Gâteaux, recalled below,
and requires the control to be continuous, which is sometimes in
conflict with optimality. Below, for any function ℎ of a real variable,
we consider the one-sided limit whose 𝑠-argument defines how the
𝑡-argument is approached

lim
𝜏→
𝑠
𝑡
ℎ(𝜏) =

{

lim𝜏→𝑡+ ℎ(𝜏) if 0 ≤ 𝑠
lim𝜏→𝑡− ℎ(𝜏) if 0 > 𝑠

Proposition 1. Sensitivity of hydraulic delay w.r.t. input variations [56]
For any 𝑡 ∈ [0; 𝑇 ], (𝑢, ℎ) ∈ 𝐶1

𝑝𝑤([0; 𝑇 ],R
𝑝)2 and 𝑠 ∈ {−1; 1}, we have

lim
𝛿→0

𝑟𝑢+𝛿ℎ(𝑡) − 𝑟𝑢(𝑡)
𝛿

= 1
lim𝜏→𝑟 (𝑡) 𝜙(𝑢(𝜏)) ∫

𝑡

𝑟 (𝑡)

𝜕𝜙
𝜕𝑢

(𝑢(𝜏))ℎ(𝜏) d𝜏

𝑠

𝑠′
𝑢 𝑢
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I
t

𝐷

a
i

𝐷

where

𝑠′ = sign

(

𝑠 ⋅ ∫

𝑡

𝑟𝑢(𝑡)

𝜕𝜙
𝜕𝑢

(𝑢(𝜏))ℎ(𝜏) d𝜏

)

n particular, if 𝑢 is continuous at 𝑟𝑢(𝑡), the Gâteaux derivative of 𝑟𝑢(𝑡) w.r.t.
he input at point 𝑢 in the direction ℎ is

ℎ𝑟𝑢(𝑡) ≜ lim
𝛿→0

𝑟𝑢+𝛿ℎ(𝑡) − 𝑟𝑢(𝑡)
𝛿

= 1
𝜙(𝑢(𝑟𝑢(𝑡))) ∫

𝑡

𝑟𝑢(𝑡)

𝜕𝜙
𝜕𝑢

(𝑢(𝜏))ℎ(𝜏) d𝜏

Similarly, for any 𝑡 ∈ [0; 𝑟𝑢(𝑇 )[

lim
𝛿→
𝑠
0

𝑟−1𝑢+𝛿ℎ(𝑡) − 𝑟
−1
𝑢 (𝑡)

𝛿
= − 1

lim𝜏→
𝑠′
𝑟−1𝑢 (𝑡) 𝜙(𝑢(𝜏)) ∫

𝑟−1𝑢 (𝑡)

𝑡

𝜕𝜙
𝜕𝑢

(𝑢(𝜏))ℎ(𝜏) d𝜏

where

𝑠′ = sign

(

−𝑠 ⋅ ∫

𝑟−1𝑢 (𝑡)

𝑡

𝜕𝜙
𝜕𝑢

(𝑢(𝜏))ℎ(𝜏) d𝜏

)

nd if 𝑢 is continuous at 𝑟−1𝑢 (𝑡) (which is not needed), the Gâteaux derivative
s given by

ℎ𝑟
−1
𝑢 (𝑡) = − 1

𝜙(𝑢(𝑟−1𝑢 (𝑡))) ∫

𝑟−1𝑢 (𝑡)

𝑡

𝜕𝜙
𝜕𝑢

(𝑢(𝜏))ℎ(𝜏) d𝜏

with 𝑟𝑢(𝑡) = 𝑡 −𝐷(𝑡).

This last expression can be checked to see the jumps. To circumvent
the non-smoothness, it was suggested to introduce a regularized version
of the problem and derive its stationarity conditions. The regularization
can be shown to produce a sequence of solutions converging in a func-
tional sense to the actual non-smooth solution when the regularization
parameter is gradually reduced. Interestingly, this latter result can be
seen as a refinement of the results of the pioneer work of [53] to
the case of an hydraulic delay, under regularization. The sequence
consists of fixed time-varying delayed optimal control problems. Each
of these problems is defined using a sensitivity analysis stemming
from the adjoint equations defined by the calculus of variations. A
penalty term prevents the control from deviating too much between
the two consecutive problems in the sequence, and a strong convexity
results guarantees convergence. On the algorithm side, the resolution
of the successive problems can be performed using a direct collocation
transcription method (see e.g. [57]), with AMPL as algebraic model-
ing language and IPOPT as NLP solver (see details in [22]). Adjoint
equations are resolved through a discretization scheme and used to
formulate the next problem in the sequence.

Application of this technique to Problems 3 and 4 remains to be
done.

6. Conclusion and perspectives

The purpose of this paper is to highlight a simple yet surprisingly
rich and difficult to control class of nonlinear dynamics under input
varying delay of hydraulic type. These microfluidic systems have some
great interest in the community of lab-on-chips and there is little doubt
that controlling it with a high level of performance, fast transients
and strong disturbance rejection capabilities could be very beneficial
in many situations where the handled fluids have very high costs. The
predictor approach proposed in [35] provides very satisfying results.
Formal analysis is out of the scope of the paper, we refer the interested
reader to [35,36] for this point. In view of applications, it would be
valuable to handle some uncertainty on the function 𝑓 itself (while
maintaining its constitutive properties of being positive, equal to 0
at 𝑥 = 0 and equal to 1 at 𝑥 = 0.5 and 𝑥 = 1). Further, it is
believed that a sophisticated predictor-based controller could be used
for a cascade of such devices (a generalization of Problem 2), as the
presented preliminary results suggest it, without proving it, and that
predictors could be generalized to a cascade of arbitrary length of
microfluidic chips. This will be the subject of further research.
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