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Abstract— This paper describes a novel low-level controller
for the lower-limb exoskeleton Atalante. The controller imple-
mented on the commercialized product Atalante works under
the assumption of full rigidity, performing position control
through decentralized joint PIDs. However, this controller is
unable to tackle the presence of flexibilities in the system, which
cause static errors and undesired oscillations. We modify this
controller by leveraging estimations of the position and velocity
of the flexibilities, readily available on Atalante through the
use of strapdown IMUs. Instead of considering feedback on
the motor position only, we perform feedback on both the
joint position and the flexibility angle, keeping a decentralized
approach. This enables compensation of both the static error
present at rest, and rapid damping of the oscillations. To tune
the gains of the proposed controller, we use a linearized model
of an elastic joint to which we apply a steady-state LQR, which
creates desirable robustness to the flexible model. The proposed
controller is experimentally validated through various single
support experiments on Atalante, either empty or with a user.
In all cases, the proposed controller outperforms the state-of-
the-art controller, providing improved trajectory tracking and
disturbance rejection.

I. INTRODUCTION

The control of a bipedal robot is a challenging task:
for instance, in single support, the center of pressure has
to be kept precisely under the stance foot to prevent the
robot from tipping over. In this context, having an accurate
kinematic model for estimation and control is critical to
remain stable [1]. One source of vast uncertainty is the
presence of mechanical flexibilities [2], typically modeled
as linear springs. Not only do they modify the kinematics,
but they also introduce undesired oscillations that may in
turn destabilize the system.

Compensating joint flexibilities has been broadly studied
on robotic manipulators since the 1980s [3]. One of the first
proposed approaches is feedback linearization: in [4], the
dynamics of a robotic manipulator with linear joint elasticity
is proven to be feedback linearizable. However, this control
method proves to be quite sensitive to model parameters
and uncertainties [5], and is thus difficult to implement
on real hardware, requiring accurate system identification
and modeling. To alleviate this problem, other controllers
have been proposed as a modification of the classical linear
controller for rigid systems: a feedforward term and an
independent joint feedback in the form of a proportional-
derivative (PD) controller. This controller is well-known
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for its robustness [6], and is often used as a low-level
controller for a position-control robot. Such a modification
that compensates the static error due to the deflection of the
flexibilities is presented in [7]: a gravity-compensation term
is used to generate an offset on the feedback PD target. While
this additional term yields the correct steady-state position,
it does not counteract the effects of the dynamics of the
flexibilities. This approach is refined in [8], replacing the
feedforward term by a feedback gravity compensation term,
improving trajectory tracking. Interestingly, these controllers
are designed to work with only motor measurements, without
explicit measurements of the flexibility. The interested reader
may refer to [9] for a comprehensive survey of controlling
manipulators in the presence of flexibilities.

In the context of legged robots, the gravity compensation
approach of [7] has been applied to compensate flexibilities,
notably on DURUS in [1] and on THORMANG in [10].
This strategy has the advantage of being compatible with
existing joint position controllers, common on humanoid
robots, but again does not prevent the robot from oscillating
due to the dynamics of the flexibilities. One approach to
attenuate the oscillations without modifying the robot joint
controllers is presented in [11], where the target position
for each joint is computed through inverse kinematics from
a desired acceleration of the center of mass. The latter, in
turn, is determined by considering it as the actuator of a
simplified linear model of a single flexibility, and applying
LQR design. This cascade approach however assumes that
effective low-level controllers are available for trajectory
tracking: when this is not the case, the performance of the
high-level controller will be severely limited by the low-level
loops. More recently, [12] proposed inverse dynamics as
feedback linearization to compensate joint elasticity on a
torque-controlled humanoid robot.

However, none of the above methods are directly ap-
plicable to the lower limb exoskeleton Atalante, depicted
in Figure 1, which contains flexibilities that are currently
unaccounted for in the control design. Indeed, when working
on an exoskeleton, the presence of a user introduces large
uncertainties in the dynamics. For instance, by moving
his upper body, the user can shift the center of mass of
the system, in a manner that is very difficult to capture
using a model. This model uncertainty severely limits the
performance of an inverse dynamics based framework. It
also hinders the previously presented gravity compensation
technique, since it relies on knowledge of the position of the
center of mass for correcting joint angles.

The main contribution of this paper is the design of a
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specific flexibility compensation controller for Atalante. We
use a decentralized control approach to obtain robustness
to uncertainties in the dynamics. To improve performance,
we leverage estimates of the angle and velocity of the
flexibilities, provided by inertial measurement units (IMUs).
We formulate a local feedback controller on a fourth-order
linear model of an elastic joint, and use LQR design to
compute the feedback gains. This controller is experimentally
benchmarked in single support against a joint PID controller
that ignores the flexibilities, and is shown to provide both
better disturbance rejection and trajectory tracking.

The paper is organized as follows. In Section II we
give a description of Atalante, and model its dynamics. In
Section III, we analyze existing state-of-the-art controllers
and present our flexibility compensation controller. Finally,
Section IV reports experimental results which stress the
performance of this controller, both on an empty exoskeleton
and with a user.

II. DESCRIPTION OF ATALANTE

Atalante contains 12 actuated degrees of freedom, each
instrumented by a joint encoder. In the context of this paper,
we consider that the robot is standing in single support,
with a stance foot flat on the ground: then, the system
becomes similar to a fixed-base robotic manipulator. The
system is position controlled using independent joint PID
controllers [13]. This is a classical choice for controlling
rigid robots [6], as it proves robust to uncertainties and
changes in the dynamics. It is also easier to develop and
tune than a whole-body controller [14], as each joint can be
individually tuned on a test bench. Indeed, the current PID-
based controller has been successfully tuned to enable stable
dynamic walking of Atalante.

However, like many humanoid robots, Atalante is not fully
rigid. This can be seen in Figure 1: while each motor reaches
its target position θ∗, the resulting exoskeleton position (in
orange, measured by motion capture) does not match the
expected position (in blue, predicted by a fully rigid model):
there is a mismatch of about 4 cm in the position of the
flying foot. Furthermore, when a disturbance is applied - for
instance by the user moving inside the exoskeleton - the robot
oscillates, indicating the presence of an elastic behavior. To
enhance user experience, we need to improve the tracking
performance of Atalante, and in particular, quickly damp
the oscillating behavior. Thus, we are interested not only in
compensating the static effect of a deformation, but also the
induced dynamics - while providing tracking performance at
least equivalent to that the current PID controller.

Motion capture analysis shows that the deformations hap-
pen not in the structure of the exoskeleton, but is rather
localized at the robot joints. Thus, we model Atalante as a set
of rigid bodies having flexible revolute joints. Following [16],
we denote q the link angle (i.e. the angle taken after the
flexibility), and θ the motor angle: the deformation induced
by the flexibility is thus defined as

α , q − θ (1)

x

y
z

Fig. 1. From [15]: picture of the exoskeleton Atalante. On the right, CAD
reconstruction under the assumption of full rigidity (blue), and ground truth
from motion capture (orange).

The angles θ are accurately measured by joint encoders.
Since we desire to control the dynamics of the flexiblity α,
we further instrument the system by using several IMUs to
provide an estimate of the link variables q and q̇. Indeed,
IMU sensors are now cheap (those used on Atalante are low-
grade MEMS sensors costing no more than a few dollars),
and easy to integrate in a robot hardware. More details on
performing flexibility estimation using IMUs are given in
Section IV, the important point to keep in mind for controller
design being that the full state (q, q̇, θ, θ̇) is available for
feedback.

To derive the dynamics of the flexibilities, we utilize the
fact that each rotor is symmetric about its rotation axis. Then,
the dynamics of the robot in single support writes [3](

M(q) 0
0 Im

)(
q̈

θ̈

)
+

(
C(q, q̇)q̇ + g(q)

0

)
+

(
−τf (α, α̇)
τf (α, α̇)

)
=

(
0
u

) (2)

where M(q) is the link inertia matrix, Im the diagonal
matrix of rotor inertia, C(q, q̇)q̇ contains Coriolis and
centrifugal torques, and g(q) is the torque due to gravity.
Finally, τf (α, α̇) is the torque generated by the joint
flexibility, located between the rotor and the robot links. It
results from the deformation of the transmission elements,
classically modeled as a pure elasticity, or a spring-damper
system, and writes

τf (α, α̇) = −Kα− να̇ (3)

Note that on Atalante, this naive linear model is inaccurate:
the real dynamics of the flexibilities is poorly known. This
limits its relevance for the control design, as explained in the
following section.

III. CONTROLLER DESIGN

A. Discussion on state-of-the-art controllers

As mentioned earlier, several solutions for controlling a
system characterized by (2) and (3) have already been pro-
posed. A first family of solutions uses feedback linearization.
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In the absence of viscous damping in (3), a feedback lin-
earization controller is proposed in [9, Equation (13.45)] as

u = ImK
−1
(
M(q)v + M̈(q)q̈ + 2Ṁ(q)q(3)

+
d2

dt2
(C(q, q̇)q̇ + g(q))

)
+ (M(q) + Im) q̈ +C(q, q̇)q̇ + g(q)

(4)

where v is the new control input.
However, feedback linearization controllers are known

to be quite sensitive to modeling errors [5]: for instance,
computing the control law (4) requires the second derivative
of the terms of (2). This computation is not suitable in the
case of an exoskeleton, where motion of the user introduces
large unknown variations in the dynamics. Furthermore, part
of the feedback term is multiplied by the inverse of the joint
torque model, K−1. Yet on Atalante, modeling a flexibility as
a linear spring is vastly erroneous. When trying to identify a
stiffness parameter based on the frequency of the oscillations,
the identified value changes based on the configuration of
the robot, and also from one prototype to the other. This
uncertainty makes this method difficult to implement even
on an empty exoskeleton.

Another widely used approach, mentioned earlier, is grav-
ity compensation, which aims at correcting only the static
effect of the flexibilities when the system is at rest. Con-
sidering an existing, stabilizing decentralized PD controllers
on each joint, the idea is to modify the feedforward term
to reach the correct equilibrium position. Indeed, at rest, (2)
yields

g(q) = τf (αe, 0) (5)

and thus using the linear spring model (3) yields the follow-
ing deformation at rest

αe(q) = −K−1g(q) (6)

Thus, considering a target link position q∗, one can simply
give as target to a motor PD controller the gravity-biased
value q∗ − αe instead of q∗. This is originally proposed
in [7, Equation (21)] as

u = −Kp(θ−(q∗−αe(q∗)))−Kdθ̇+g(q
∗−αe(q∗)) (7)

A similar approach has been used on humanoid robots
in [1] and [10]. Note however that this controller (7) also
relies on the inverse K−1: although this is less critical than
for the feedback linearization controller (4), as it does not
impact the stability, an incorrect value of K introduces a bias
in the feedforward term αe(q

∗). A similar bias is obtained
if the value of the gravity torque g(q∗) is incorrect. This is
often the case on an exoskeleton, as by moving his torso the
user displaces the center of mass of the system by several
centimeters, drastically changing the value and even the sign
of the gravity torque. Thus, computation of an accurate bias
angle αe(q∗) would at least require instrumentation of the
user. More importantly, this methodology only works to
correct the static bias due to the flexibilities. It does not
handle the dynamic oscillation that may occur in motion, or

when applying a disturbance. A reason for this limitation is
that the controller (7) does not use any measurement of the
flexible state α: it is designed to work with existing hardware
where no instrumentation of the flexibility is available. By
contrast, we have assumed that this state can be estimated
by IMUs, which allows for an alternative controller design.

B. Proposed control structure and feedforward term

The above discussion stresses the need to design a new
controller taking into account the specificities of our prob-
lem, which are: uncertainty in the stiffness, and parameters of
the dynamics in general, availability of extra measurements,
and the need to compensate the dynamic effects of the
flexibility as well as the static error. To solve this problem,
we decide to keep a decentralized control approach, both for
robustness and ease of design. Thus, we propose a low-level
controller consisting of a feedforward term and a decoupled
feedback term. Instead of doing feedback on θ only, we
propose to feedback both q and α, and their first derivatives,
thereby doing full state feedback. An integral term on q
is added, to cancel the static error that would arise due
to modeling errors in the feedforward term. This controller
writes

u =−Kq(q − q∗)−Kdq(q̇ − q̇∗)−Ki

∫
(q − q∗)

−Kα(α−α∗)−Kdα(α̇− α̇∗)

+ uff

(8)

where Kq , Kdq , Kα, Kdα and Ki are diagonal gain matrices,
q∗ is the target link position, α∗ the target spring angle, and
uff the feedforward term.

This feedforward term is computed using the full dynamics
of the system (2). Neglecting the torque due to the rotor
acceleration Imθ̈ as compared to the torque due to the much
heavier links, the feedforward term writes

uff ,M(q∗)q̈∗ + C(q∗, q̇∗)q̇∗ + g(q∗) (9)

One challenge in implementing (8) lies in computing the
value of α∗. Using the linear spring model (3), a natural
choice would be to use the equilibrium value (6). However,
as already mentioned, this value is erroneous on Atalante, or
generally on an exoskeleton with a user. Instead, we make
a simpler approximation by setting α∗ to zero. While this
provides the wrong feedforward term in our controller, this
effect is compensated by the integrator. Thus, our proposed
flexibility compensation controller writes

u =−Kq(q − q∗)−Kdq(q̇ − q̇∗)−Ki

∫
(q − q∗)

−Kαα−Kdαα̇

+ uff

(10)

C. Feedback gain design

To compute the gain matrices of (10), we use a simplified
model for each joint. We consider the robot standing still
in single support, and we model the dynamics of joint i to
compute the corresponding gain. Given that the controller
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structure (10) does not include any coupling between joints,
we simplify the dynamics by considering that all other joints
are fixed. Thus, the model reduces to a simple planar series-
elastic actuator: motor i is fixed, and is linked to a single
body B, aggregating all links downstream of joint i, through
a spring damper. This single joint model is represented in
Figure 2.

IMU

q

θ

α

Motor

Flexible element

Link B

mg

Fig. 2. Model of a single joint of the robot: a flexible element links a
body of mass m to the rotor shaft.

Let α be the flexibility angle (i.e. the ith component of
α), and q the angle between the vertical axis and the center
of mass of B, that is, the link angle qi plus a constant angle.
The dynamics of the system writes

Jα̈ =− u+ νm(q̇ − α̇)− k(1 + J

I
)α

− ν(1 + J

I
)α̇+

J

I
mlg sin (q)

Iq̈ =− kα− να̇+mlg sin(q)

(11)

where J is the rotor inertia, m and I the mass and inertia of
body B, k the spring stiffness, and ν, νm viscous friction
coefficients for respectively the flexibility and the motor
joint.

We choose a reference single support pose q for the robot.
Let q0 be the corresponding reference position for the joint
angle in our simplified model (q0 is in general different
from 0). The associated equilibrium state of (11) isα0 =

mlg sin q0
k

u0 = −mlg sin q0
(12)

Linearizing (11) about this equilibrium yields a linear
time-invariant system

δẋ = Aδx+Bδu (13)

where
x ,

(
δq δ̇q δα ˙δα

)T
(14)

A ,


0 1 0 0

mlg cos q0
I 0 −kI −νI
0 0 0 1

mlg cos q0
I

νm
J −k

(
1
I +

1
J

)
−ν
(
1
I +

1
J

)
− νm

J


(15)

B ,
(
0 0 0 − 1

J

)T
(16)

The given linear system is controllable, except in the
singular case Ik2 6= mlg cos q0ν

2. Since the state δx can
be fully estimated, as detailed in the next section, a classical
solution to design robust controller is using a steady-state
LQR [17]. We use diagonal weighing matrices, which are
manually tuned to obtain the desired response for each axis.

IV. EXPERIMENTAL RESULTS

The proposed flexibility compensation controller (10) is
experimentally tested on Atalante, in various single support
task, and compared with a simple motor PID controller. This
controller assumes a rigid system, and thus simply uses the
target link position q∗ as target for the motor variable θ.
This writes

u = −Kp(θ − q∗)−Kd(θ̇ − q̇∗)−Ki

∫
(θ − q∗) (17)

We call (17) the rigid controller, and (10) the flexibility
compensation controller. Recall that (17) is the controller
currently implemented on the commercialized product Ata-
lante1, and thus is tuned to provide a sufficiently accurate
tracking to perform complex motion such as walking or
turning.

For all the experimental curves displayed below, the link
positions plotted are the one estimated by the onboard IMUs,
as detailed in Section IV-A. Plots are done in the fixed
world frame, with z the upward vertical axis and x the
forward-pointing axis, as depicted in Figure 1. Videos of
the experiments are available online at [18].

A. Controller implementation

Our flexibility compensation controller relies on measure-
ments or estimates of the full state of the system, that is
(q, q̇,θ, θ̇). As classically done in robotics, motor angles θ
are measured by joint encoders, and their derivative θ̇
computed through numerical derivation. Instrumentation of
the flexibilities is done using several IMUs, composed each
of a triaxial gyroscope and accelerometer. Details of the state
estimation procedure, and validation against motion capture,
can be found in [15]. Since the three hip joints are orthog-
onal, there exist a unique decomposition of the spherical
deformation measured by the IMU into joint deformation,
performed using Euler angles. Likewise, a single IMU placed

1Note that on the commercial product, for walking gaits, which are
outside of the scope of this paper, other balance-control strategies are
implemented on top of this low-level controller to prevent the robot from
falling.
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Fig. 3. Position of the flying foot, when using the rigd controller
(first experiment, blue) or the flexibility compensation controller (second
experiment, orange). The target position is the same, and in both experiment
an external force is applied to the flying foot at t=1s.

in the tibia is sufficient to estimate the deformations around
both ankle axis. Finally, as shown in [15], the deformation at
the knee joint is negligible, as reconstruction using only hips
and ankle deformation is enough to match motion capture
ground truth. Thus, only three IMUs (one for the support
ankle, and one for each hip) are sufficient to provide an
estimate of q and q̇.

Gain tuning for the flexibility compensation controller is
done using the method presented in Section III-C, taking
as model the empty exoskeleton in a standstill single sup-
port position. We use the theoretical values of mass and
inertia m, I , J given by the CAD model, and identified
values of stiffness and damping parameters k, ν and νm.
This identification is performed on a single experiment,
by pushing the exoskeleton and measuring at the resulting
oscillation frequency and damping. For the knee joints and
the flying ankle, where the deformations are negligible, the
rigid controller is kept as-is.

When tuning the gains, two unmodeled phenomena have
to be taken into account. First, some of the exoskeleton
joint feature a large amount of dry friction. In order to
prevent stick-slip from causing oscillations, a deadzone is
implemented on the integral term. Second, delays in the
control loop could render some joint controllers unstable.
This is handled by making sure in simulation that the gains
computed by the LQR have a sufficiently large delay margin
to be implemented on the hardware safely.

Note that while the controller for each joint is tuned to
be stable and robust on the linear single joint system, this
does not guarantee that the resulting controller (10), applied
on the whole system, remains stable. To numerically validate
our controller, we linearize the dynamics (2) and check that
the resulting close-loop dynamics is indeed stable, despite
having neglected joint coupling for gain tuning.

B. Disturbance rejection

In a first test case, we assess how each controller reacts
to external perturbations. We place the empty exoskeleton in
single support on its right leg. We then apply perturbations
by manually pushing the exoskeleton, at two different points:
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CoM x position (cm), experiment
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0
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q, experiment (◦)

0 2 4 6

0

2

q, simulation (◦)
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time (s)

0
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α , experiment (◦)
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time (s)
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α , simulation (◦)

Sagittal ankle angle,
in experiment and in simulation.

Rigid controller
Flexibility compensation
Target

Fig. 4. Sagittal ankle joint position (top) and flexibity angle (bottom). The
right column shows experimental results, the left simulation results of the
proposed linear model. In both cases, an external force is applied at t=1s.

pushing the flying foot downward and pushing the back of
the exoskeleton forward. A similar experiment is carried
out for both the rigid controller (17) and the flexibility
compensation controller (10).

Figure 3 shows the comparison of both of these experi-
ments when a push is applied to the flying foot. Because the
deflection due to the flexibilities are not taken into account,
the rigid controller suffers from a large static error, despite
accurate tracking on the motor side. This error is mostly
compensated by our flexibility controller, with a residual
error coming from the fact that the kinematic model used
for the observer, spherical deformations at the hip, does not
exactly match the model used for control, which considers
three successive deformations at the hip motors.

Furthermore, our controller provides a much better damp-
ing of the oscillates, which are mostly absorbed in a single
period, whereas the rigid controller oscillates for several sec-
onds, and slows down mostly thanks to the natural damping
of the system.

Since the disturbances applied are pushes in the sagittal
plane, the joint with the most impact on the overall response
of the system is the sagittal ankle, which bears the largest
load. Figure 4 shows the response of the sagittal ankle
flexible joint, when pushing the back of the exoskeleton.
Notice that the curve of the center of mass indeed closely
matches the oscillations observed at the ankle, proof that
this is the predominant dynamics in this experiment. The
response in joint angle and flexibility angle of the sagittal
ankle are compared with simulation of both controllers on
the linearized joint model (13) used for gain synthesis. This
illustrates that our linear model manages to capture the
overall dynamics of the system, by predicting a qualitatively
correct response. The main difference that can be seen is the
value of the flexibility at rest: while a linear spring models
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Fig. 5. Tracking of the flying foot in a dynamic single support trajec-
tory.Both controllers are started 5 s before the start of motion.

predicts only 0.16◦ of deflection, the real deformation is
estimated to be 1.25◦. The model of linear elasticity, though
sufficient to obtain an oscillation at the correct frequency, is
thus inaccurate: a non-linear stiffness plus backlash would
be necessary to bring the model closer to reality.

C. Trajectory tracking

The trajectory tracking ability of the flexibility compensa-
tion controller is also evaluated. For that purpose, we gen-
erate offline a dynamically stable trajectory that makes the
flying foot oscillate between several set-points, to generate
a step-like motion, while keeping the center of pressure
within the support foot. In Figure 5, we compare the tracking
performance of both controllers. As before, compensating the
flexibility leads to a significant reduction of the error, with a
average error of 1.7 cm against 5.1 cm for the rigid controller.
Recall that a large static error for the PID is to be expected,
as the integrator is applied to the rigid state θ rather than q.
Both controllers share similar deviation around the reference
trajectory: the standard deviation of the error is 0.5 cm for
our controller, against 0.7 cm for the rigid controller. Thus,
the proposed controller is able to achieve better tracking than
the original controller, even on dynamic trajectories.

D. Stepping with a user

Finally, we consider a more realistic scenario: a stepping
trajectory with a user inside. Atalante is of course not
meant to be used empty, but together with patients with
varying morphology. A very convenient property of the rigid
controller is the fact that the same controller can be used
both on the empty exoskeleton and when bearing any user.
This robustness is of great practical importance, as doing
individual gain tuning for each user would be impractical in
a real world scenario.

The same robustness is achieved with our flexibility com-
pensation controller. This is illustrated in the experiment de-
picted in Figure 6, where we perform a slow stepping motion.
This experiment is conducted with both a dummy and a valid

0.0
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Height and force on the flying foot, stepping.
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Fig. 6. Height of the flying foot during a stepping trajectory with a dummy,
and flying foot force sensor readings showing ground impact. Due to early
ground strike, the exoskeleton falls (the force goes back to zero) when using
the rigid controller.

user, who is asked to remain still in the exoskeleton (see
video at [18]). In both cases, the exact same controller is
used, with no further gain tuning compared to the empty
exoskeleton case (thus, our controller is completely agnostic
of the mass of the user). Not only is the controller still stable,
but it again outperforms by far the rigid controller.

Both experiments start with the exoskeleton in single sup-
port, with the rigid controller enabled. In the first experiment
(in blue in Figure 6), this controller is kept active, whereas
in the second (orange) one we switch at t = 0 to the
flexibility compensation controller. For the first 5 seconds
of the experiments, the target position remains constant, in
order to allow the integrator in (10) to cancel the static
error created by the flexibility. Then, a stepping trajectory
is performed: the motion is slowed down compared to a real
walking pattern to enable smooth landing, since our current
control framework does not handle impact. To keep the single
support assumption valid, weight transfer onto the left foot
is not fully performed either.

When using the rigid controller, a large static error remains
throughout the trajectory. In particular, the foot is approxi-
mately 2.5 cm lower than it should be. This discrepancy
causes the robot to strike the ground much earlier than
expected, after only 2.5 s of stride. As the target continues
to push the foot lower, the exoskeleton tips over and falls.

On the contrary, the flexible controller greatly reduces the
static error and improves trajectory tracking. Even though
the position of the flying foot is not perfectly compensated,
this correction makes the exoskeleton strike the ground as
planned at t = 9 s. The exoskeleton then no longer falls,
and is able to complete the step up to the start of the double
support phase.

V. CONCLUSION

This paper presents and experimentally validates an al-
ternative low-level controller for the exoskeleton Atalante.
This controller compensates both the static deflection and the
dynamic effects of joint flexibilities, using full-state feedback
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provided by joint encoders and low-cost MEMS IMUs. Since
the presence of a user introduces large uncertainties in the
dynamics, we avoid the pitfall of using any model-inversion
technique. Robustness is achieved by our controller through
the use of decentralized control and LQR design for the gain
tuning. This controller is experimentally validated both on
an empty exoskeleton and with a user, showing improved
trajectory tracking and disturbance rejection when compared
to a simple joint PID controller.

Future work includes further study of the theoretical
stability of our controller, which has only been numerically
evaluated on the nominal system: parametrizing the error in
(15) and using LMI could be used to prove its stability even
in extreme cases. Furthermore, the proposed controller is
designed with single support in mind. In order to generalize
this controller, and make it applicable to full walking gaits,
double support and phase transition need to be considered,
for instance by switching gain values based on the current
stance state.
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[6] V. Santibañez and R. Kelly, “PD control with feedforward compensa-
tion for robot manipulators: analysis and experimentation,” Robotica,
vol. 19, no. 1, pp. 11–19, Jan. 2001.

[7] P. Tomei, “A simple PD controller for robots with elastic joints,” IEEE
Transactions on Automatic Control, vol. 36, no. 10, pp. 1208–1213,
Oct. 1991.

[8] A. De Luca, B. Siciliano, and L. Zollo, “PD Control with On-line
Gravity Compensation for Robots with Elastic Joints: Theory and
Experiments,” Automatica, vol. 41, no. 10, pp. 1809–1819, Oct. 2005.

[9] A. De Luca and W. Book, “Robots with Flexible Elements,” in
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 287–319.

[10] J. Kim, M. Kim, and J. Park, “Improvement of humanoid walking
control by compensating actuator elasticity,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), Nov.
2016, pp. 29–34.

[11] M. Benallegue and F. Lamiraux, “Estimation and Stabilization of
Humanoid Flexibility Deformation Using Only Inertial Measurement
Units and Contact Information,” International Journal of Humanoid
Robotics, vol. 12, no. 3, Sept. 2015.

[12] J. Jung, D. Kim, and J. Park, “Operational Space Control Framework
for Torque Controlled Humanoid Robots with Joint Elasticity,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Macau, China: IEEE, Nov. 2019, pp. 3063–3069.

[13] O. Harib, A. Hereid, A. Agrawal, et al., “Feedback Control of an
Exoskeleton for Paraplegics: Toward Robustly Stable, Hands-Free
Dynamic Walking,” IEEE Control Systems Magazine, vol. 38, no. 6,
pp. 61–87, Dec. 2018.

[14] N. Paine, J. S. Mehling, J. Holley, et al., “Actuator Control for
the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics
Approach for Torque Control of Series Elastic Robots,” Journal of
Field Robotics, vol. 32, no. 3, pp. 378–396, 2015.

[15] M. Vigne, A. El Khoury, F. Di Meglio, et al., “Imu-based state estima-
tion for a legged robot with multiple flexibilities,” in 2019 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids),
Oct. 2019.

[16] M. W. Spong, “Control of Flexible Joint Robots: a Survey,” p. 31,
1990.

[17] L. Lublin and M. Athans, “Linear Quadratic Regulator Control,” in The
Control Systems Handbook, Second Edition, ser. Electrical Engineering
Handbook, W. Levine, Ed. CRC Press, Dec. 2010, vol. 20103237.

[18] M. Vigne, A. El Khoury, F. D. Meglio, et al. Video of the experiments
on Atalante. [Online]. Available: https://youtu.be/eg6J04WnutI

3443


