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Abstract: Uniform complete observability and controllability are key concepts for the design
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shown that illustrate the improvement over previous results, the fact that the new conditions
are not necessary, and a practical application.
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1. INTRODUCTION

As is evidenced by the massive stream of publications
spread over the past decades, considerable amount of work
has been devoted to the study of linear control systems
and it is unsurprising that these are, by now, well un-
derstood. For linear systems, the tasks of full feedback
stabilization and state reconstruction can be solved with
numerous techniques, vastly exposed in textbooks. These
tasks are dual, as is well-known. These techniques consider
as central assumptions that the property of observability
(and the dual property of controllability) holds. For linear
time invariant systems observability is sufficient to guaran-
tee the existence of observers with globally exponentially
stable error dynamics. But, that is not the case for lin-
ear time-varying (LTV) systems, and stronger forms of
observability are required, in particular uniform complete
observability. While the concept of uniform complete ob-
servability itself is simple and straightforward to define, it
is more often that not very difficult to show that a particu-
lar system is uniformly completely observable (UCO). This

1 This work was supported by the Fundação para a Ciência e a Tec-
nologia (FCT) through ISR under LARSyS UID/EEA/50009/2013,
and through IDMEC, under LAETA UID/EMS/50022/2013 con-
tracts, by the University of Macau Projects MYRG2015-00126-FST
and MYRG2015-00127-FST, and by the Macao Science and Tech-
nology Development Fund under Grant FDCT/048/2014/A1.

is a true limitation as the concept of uniform completely
observability is instrumental in numerous studies. It per-
mits to establish the convergence of the Kalman filter for
LTV systems (see Besançon (2007) and references therein).
It is also recurrent in adaptive control, see e.g. Ioannou
and Sun (1995); Tsakalis and Ioannou (1993); Loŕıa and
Panteley (2002); Fang et al. (2015). The interested reader
can also refer to Morgado et al. (2011) which exposes a
practical applications where UCO is crucial in the design
of observers Zhang and Leonard (2010). UCO also appears
in the design of observers for nonlinear systems, see e.g.
Batista et al. (2011a,b, 2012, 2013) and references therein,
to mention just a few. Finally, the relation between UCO
and uniform complete estimatability is also explored in
Ikeda et al. (1975). Of course, the exact same discussions
hold for the dual control problems, and the dual notion of
uniform complete controllability (UCC).

As mentioned earlier, showing that a particular LTV sys-
tem is UCO may prove cumbersome. There exist several
results in the literature to ease the process. A very popular
one states that UCO is preserved under bounded piece-
wise continuous output feedback, see (Ioannou and Sun,
1995, Lemma 4.8.1) and Zhang and Zhang (2012). An
alternative “folk” result was shown in Bristeau et al.
(2010). In this paper, we present relaxed sufficient con-
ditions that allow to show, in some cases, that a system
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is UCO. The sufficient assumption considered here is that
the maximum time elapsed between time instants where
the observability matrix has a strictly positive pseudo-
inverse should be bounded. This allows to cover cases of
punctual or periodic non observability, among others. A
result is established (Theorem 3). Along with its proof,
which exploits the smoothness of variations of the system
dynamics, this result constitutes the main contribution of
the article. Theorem 3 has a dual formulation for uniform
complete controllability which is given here (Theorem 5).
Interestingly, this result could be applied in many of the
works cited earlier and possibly also to Xu et al. (2007);
Gadre (2007); Bryne et al. (2015); Thienel and Sanner
(2007); Eudes and Morin (2014); Changey et al. (2013)
that all relate to practical applications in the design of
navigation systems. Some illustrative examples detailed in
this article sketches the potential of this result.

2. PRELIMINARY DEFINITIONS

Consider the LTV system given by{
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t)

, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the system
state, input, and output, respectively, and A(t) ∈ Rn×n,
B(t) ∈ Rn×m, and C(t) ∈ Rp×n are bounded continuous
functions of time.

The following definitions introduce the concepts of observ-
ability Gramian and uniform complete observability for
systems with bounded realizations Kalman (1960), Silver-
man and Anderson (1968), Jazwinski (1970), Silverman
and Meadows (1967).

Definition 1. (Observability Gramian). The observability
Gramian associated with the pair (A(t),C(t)) on [t0, tf ] is
defined as

Wo (t0, tf ) :=

∫ tf

t0

φT (t, t0) CT (t)C(t)φ (t, t0) dt,

where φ (t, t0) is the state transition matrix associated
with A(t) from t0 to t.

Definition 2. (Uniform complete observability). The pair
(A(t),C(t)) is uniformly completely observable (UCO) if
there exist positive constants α > 0 and δ > 0 such that,
for all t ≥ t0,

Wo (t, t+ δ) � αI.

Likewise, the dual definitions for control are as follows.

Definition 3. (Controllability Gramian). The controllabil-
ity Gramian associated with the pair (A(t),C(t)) on
[t0, tf ] is defined as

Wc (t0, tf ) :=

∫ tf

t0

φ (t, t0) B(t)BT (t)φT (t, t0) dt,

where φ (t, t0) is the state transition matrix associated
with A(t) from t0 to t.

Definition 4. (Uniform complete controllability). The pair
(A(t),B(t)) is uniformly completely controllable (UCC) if
there exist positive constants α > 0 and δ > 0 such that,
for all t ≥ t0,

Wc (t, t+ δ) � αI.

Finally, a vector norm inequality is introduced next. Let
x ∈ Rn. Then,

‖x‖∞ ≤ ‖x‖ ≤
√
n ‖x‖∞ , (2)

where ‖x‖ and ‖x‖∞ are the Euclidean and infinity norms
of x, respectively.

3. MAIN RESULT

The LTV system (1) is observable on [t0, tf ] if and only
if the observability Gramian Wo (t0, tf ) is invertible.
The following theorem corresponds to an alternative well
known result on observability that does not require the
computation of the observability Gramian.

Theorem 1. (Rugh (1995)). Suppose that q is a positive
integer such that, for all t ≥ t0, C(t) is a q times
continuously differentiable matrix and A(t) is a (q − 1)
times continuously differentiable matrix. Define

L(t) =

L0(t)
...

Lq(t)

 ,
where{

L0(t) = C(t)

Li(t) = Li−1(t)A(t) + L̇i−1(t), i = 1, . . . , q.

Then, the linear system (1) is observable on [t0, tf ] if, for
some ta ∈ [t0, tf ], rank (L(t)) = n.

For uniform complete observability of a LTV system with
bounded realization, we will consider the following “folk”
result, related to Theorem 1.

Theorem 2. (Bristeau et al. (2010)). The bounded LTV
system (1) is UCO if there exists a positive constant α > 0
and an integer q ∈ N such that, for all t ≥ t0,

LT (t)L(t) � αI, (3)

with L(t) ∈ Rw×n, w ≥ n.

The first result of this paper is a relaxation of the condition
of Theorem 2 so that the lower bound (3) does not need to
hold for all t but only for some time instants, provided that
the maximum time elapsed between these time instants is
bounded. This is established in the following theorem.

Theorem 3. (main result). Suppose that A(t) and C(t)
are bounded and sufficiently smooth matrices such that
L(t) is well-defined and bounded for some q ≥ 0. Further
suppose that Lq(t) satisfies the Lipchitz condition

‖Lq (t1)− Lq (t2)‖ ≤ Cq |t1 − t2| , Cq > 0, (4)

for all t1 ≥ t0 and t2 ≥ t0. If there exist positive constants
α > 0 and δ > 0 such that, for all t ≥ t0, it is possible to
choose ti ∈ [t, t+ δ] such that

LT (ti)L (ti) � αI, (5)

with L(t) ∈ Rw×n, w ≥ n, then the pair (A(t),C(t)) is
UCO.

Proof. Let d ∈ Rn be a unit vector, i.e., ‖d‖ = 1. Then,

dTWo (t, t+ δ) d =

∫ t+δ

t

‖f (τ, t)‖2 dτ,

with
f (τ, t) = C (τ)φ (τ, t) d.
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Notice that

∂j

∂τ j
f (τ, t) = Lj (τ)φ (τ, t) d (6)

for all integers 0 ≤ j ≤ q.
As a preliminary remark, some bounds need to be derived.
From the assumptions of the theorem, define A > 0 such
that

‖A(t)‖ ≤ A
for all t ≥ t0. Notice that there exists a positive constant
Cφ > 0 such that

‖φ (τ, t) d‖ ≤ Cφ
and ∥∥∥∥ ∂∂τ φ (τ, t)

∥∥∥∥ ≤ ACφ
for all τ ∈ [t, t+ δ], t ≥ t0. In addition, by assumption,
there exist positive constants Lj > 0 such that

‖Lj (t)‖ ≤ Lj
for all t ≥ t0, j = 0, . . . , q. Therefore, for j = 0, . . . , q −
1, ∂j

∂τj f (τ, t) is Lipchitz, with Lipchitz constant CφLj+1.
Also, as both Lq (τ) and φ (τ, t) are bounded and Lipchitz

for τ ∈ [t, t+ δ], t ≥ t0, it follows that ∂q

∂τq f (τ, t) is also
Lipchitz for τ ∈ [t, t+ δ], t ≥ t0, with Lipchitz constant
Cφ (ALq + Cq). Define

C := max (CφL1, . . . , CφLq−1, Cφ (ALq + Cq)) .

Under the conditions of the theorem, the system matrix
A(t) is bounded. Hence, it follows from Lemma 2 that
there exists a positive constant c′φ > 0 such that

‖φ (τ, t) d‖ ≥ e−c
′
φ|τ−t| ‖d‖ ≥ e−c

′
φ|τ−t|

for all τ ≥ t ≥ t0. In particular, it follows that

‖φ (τ, t) d‖ ≥ cφ (7)

for all τ ∈ [t, t+ δ], t ≥ t0, with cφ := e−c
′
φδ.

By assumption, there exist α > 0 and δ > 0 such that, for
all t ≥ t0, it is possible to choose ti ∈ [t, t+ δ] such that, for
all unit vectors d′ ∈ Rn, it is true that ‖L (ti) d′‖ ≥

√
α,

i.e.,

√
α ≤

∥∥∥∥∥∥∥
L0 (ti) d′

...
Lq (ti) d′


∥∥∥∥∥∥∥ .

Using the equivalence of norms (2) one may write

√
α ≤

√
p (q + 1)

∥∥∥∥∥∥∥
L0 (ti) d′

...
Lq (ti) d′


∥∥∥∥∥∥∥
∞

.

Thus, for every ti and d′, there exists an integer 0 ≤ j ≤ q
such that

‖Lj (ti) d′‖∞ ≥
√

α

p (q + 1)
,

and, using again the equivalence of norms (2),

‖Lj (ti) d′‖ ≥
√

α

p (q + 1)
. (8)

For any unit vector d, choose

d′ =
φ (ti, t) d

‖φ (ti, t) d‖

and rewrite (6), for τ = ti, as

∂j

∂τ j
f (τ, t)

∣∣∣∣
τ=ti

= ‖φ (ti, t) d‖Lj (ti) d′.

Using (7) and (8) allows to write∥∥∥∥∥ ∂j

∂τ j
f (τ, t)

∣∣∣∣
τ=ti

∥∥∥∥∥ ≥ cφ
√

α

p (q + 1)
. (9)

If j > 0 one may conclude, resorting to Lemma 1, that
there exists a positive constant βj,0 > 0 and a time instant
t′j ∈ [t, t+ δ] such that∥∥∥∥∥

∫ t′j

t

∂j

∂τ j
f (τ, t) dτ

∥∥∥∥∥ ≥ βj,0. (10)

Now, write∥∥∥∥∥ ∂j−1

∂τ j−1
f (τ, t)

∣∣∣∣
τ=t′

j

− ∂j−1

∂τ j−1
f (τ, t)

∣∣∣∣
τ=t

∥∥∥∥∥ =∥∥∥∥∥
∫ t′j

t

∂j

∂τ j
f (τ, t) dτ

∥∥∥∥∥ . (11)

As the right side of (11) satisfies (10), one gets that one

of the two vectors ∂j−1

∂τj−1 f (τ, t)
∣∣∣
τ=t′

j

or ∂j−1

∂τj−1 f (τ, t)
∣∣∣
τ=t

must be, in norm, greater than βj,0/2. Therefore, one has
obtained a time instant ti,1 ∈ [t, t+ δ] such that∥∥∥∥∥ ∂j−1

∂τ j−1
f (τ, t)

∣∣∣∣
τ=ti,1

∥∥∥∥∥ ≥ αj,1,
with

αj,1 := βj,0/2.

Following the same train of thought and proceeding with
j iterations, one concludes that there exists a positive
constant αj,j > 0 and a time instant ti,j ∈ [t, t+ δ] such
that

‖f (ti,j , t)‖ ≥ αj,j . (12)

From (9) and (12), one may conclude that there exists a
positive constant α′ and a time instant t1 ∈ [t, t+ δ] such
that

‖f (t1, t)‖ ≥ α′.
The construction of α′ proceeds as follows. It has been
shown that, under the assumptions of the theorem, there
exists α′ > 0 and δ > 0 such that, for all t ≥ t0 and all
unit vectors d, one can construct t1 ∈ [t, t+ δ] such that
‖f (t1, t)‖ ≥ α′. According to Lemma 1, define

l (δ, C, α) :=
1

4
min

(
δ,

α
√
pC

)
α
√
p
> 0

for α > 0. From

β0 := l

(
δ, C, cφ

√
α

p (q + 1)

)
> 0

iterate

βk := l

(
δ, C,

βk−1
2

)
q times, and take

α′ = min
j=0,...,q

βk > 0. (13)

By applying Lemma 1 again, it follows that there exists
a time instant t2 ∈ [t, t+ δ] and a positive constant

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3663



α′′ > 0, α′′ = l
(
δ, C, (α′)

2
)

, which, according to (13)

solely depends on δ, C, α and the bounds on the system
matrices A(t) and C(t), such that

Wo (t, t+ t2) � α′′I.
Finally, this implies the desired result, i.e., for all t ≥ t0,

Wo (t, t+ δ) � α′′I,
which means that the pair (A(t),C(t)) is UCO.

The second result of the paper is the dual result for
uniform complete controllability. First, the controllability
equivalent to Theorem 1 is introduced.

Theorem 4. (Rugh (1995)). Suppose that q is a positive
integer such that, for all t ≥ t0, B(t) is a q times
continuously differentiable matrix and A(t) is a (q − 1)
times continuously differentiable matrix. Define

M(t) = [ M0(t) . . . Mq(t) ] ,

where{
M0(t) = B(t)

Mi(t) = −A(t)Mi−1(t) + Ṁi−1(t), i = 1, . . . , q.

Then, the linear system (1) is controllable on [t0, tf ] if, for
some ta ∈ [t0, tf ], rank (M(t)) = n.

The following theorem is the controllability equivalent to
Theorem 3.

Theorem 5. (extension). Suppose that A(t) and B(t) are
bounded and sufficiently smooth matrices such that it
is possible to compute M(t), for some q ≥ 0. Further
suppose that M(t) is bounded and that Mq(t) satisfies
the Lipchitz condition

‖Mq (t1)−Mq (t2)‖ ≤ CL |t1 − t2| , CL > 0,

for all t1 ≥ t0 and t2 ≥ t0. If there exist positive constants
α > 0 and δ > 0 such that, for all t ≥ t0, it is possible to
choose ti ∈ [t, t+ δ] such that

M (ti)MT (ti) � αI,

with M(t) ∈ Rw×n, w ≥ n, then the pair (A(t),B(t)) is
UCC.

Proof. The proof is the dual of Theorem 3 for controlla-
bility and therefore it is omitted.

4. EXAMPLES OF APPLICATION

This section presents some examples of application of the
previous results.

4.1 Improvement on previous results

Consider the linear system{
ẋ(t) = 0
y(t) = C(t)x(t)

, (14)

with

C(t) =
0, 2kT ≤ t− t0 < (2k + 1)T
t− (2k + 1)T

T/2
I, (2k + 1)T ≤ t− t0 < (2k + 1)T + T/2

(2k + 2)T − t

T/2
I, (2k + 1)T + T/2 ≤ t− t0 < (2k + 2)T

,

T > 0, k ∈ N0. Computing L(t) for this system simply
gives

L(t) = C(t)

as C(t) is not differentiable for all t ≥ t0. In this case,
Theorem 2 cannot be invoked to show that the system
is uniformly completely observable. Indeed, for any unit
vector d ∈ Rn,

L(t)d = 0

for all 2kT ≤ t < (2k + 1)T , which implies that (3) does
not hold for all t ≥ t0. Yet, (14) is uniformly completely
observable, which can be shown invoking Theorem 3, with
α = 1, δ = 2T . Indeed, for all t ≥ t0, it is possible to
choose ti ∈ [t, t+ δ], ti = t0 + (2k + 1)T + T/2 such that

L (ti) = I,

meaning that (5) is verified, while the Lipchitz condition
(4) is also verified, with CL = 2/T . This example shows the
improvement obtained with the relaxed condition derived
in this paper over previous existing results.

4.2 Example of conservativeness

Consider the linear system{
ẋ(t) = 0
y(t) = C(t)x(t)

, (15)

where

CT (t) =

[
t− 2kT

T/2
0

]
, 2kT ≤ t− t0 < 2kT + T/2

[
(2k + 1)T − t

T/2
0

]
, 2kT + T/2 ≤ t− t0 < (2k + 1)T

[
0

t− (2k + 1)T

T/2

]
, (2k + 1)T ≤ t− t0 < (2k + 1)T + T/2

[
0

(2k + 2)T − t

T/2

]
, (2k + 1)T + T/2 ≤ t− t0 < (2k + 2)T

,

T > 0, k ∈ N0. Computing L(t) for this system simply
gives

L(t) = C(t)

as C(t) is not differentiable for all t ≥ t0. In this case,
Theorem 3 cannot be invoked to show that the system
is uniformly completely observable. Yet, the system is
uniformly completely observable. Indeed, for this system,
the transition matrix is a simple identity and hence it can
be written, for all unit vectors

d =

[
dx
dy

]
∈ R2

and all t ≥ t0

dTWo (t, t+ 2T ) d =

∫ t+2T

t

‖C(σ)d‖2 dσ.

As C(t) is periodic, with period 2T , it is possible to write
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dTWo (t, t+ 2T ) d =

∫ t−t0+2T

t−t0
‖C(σ)d‖2 dσ

=

∫ 2kT+T/2

2kT

(
σ − 2kT

T/2
dx

)2

dσ

+

∫ (2k+1)T

2kT+T/2

(
(2k + 1)T − σ

T/2
dx

)2

dσ

+

∫ (2k+1)T+T/2

(2k+1)T

(
σ − (2k + 1)T

T/2
dy

)2

dσ

+

∫ (2k+2)T

(2k+1)T+T/2

(
(2k + 2)T − σ

T/2
dy

)2

dσ

=
T

3
d2x +

T

3
d2y =

T

3
for all t ≥ t0 and all unit vectors d, which allows to
conclude that

Wo (t, t+ 2T ) � T

3
I

and hence the system (15) is uniformly completely observ-
able. This example shows that there is still conservative-
ness in the relaxed condition derived in this paper.

4.3 Order of quantifiers

The main condition of Theorem 3 may be written as

∃
α>0
δ>0

∀
t≥t0

∃
ti∈[t,t+δ]

∀
d∈Rn
‖d‖=1

‖L (ti) d‖2 ≥ α. (16)

If Theorem 3 remained true if one changed the order of
the last two quantifies in (16), then it would be possible to
show that the system presented in the previous example
was uniformly completely observable invoking the theorem
presented in this paper, which would reduce even further
the conservativeness of the result. However, it is not
possible to change the order of the two quantifiers, i.e.,
a system can satisfy

∃
α>0
δ>0

∀
t≥t0

∀
d∈Rn
‖d‖=1

∃
ti∈[t,t+δ]

‖L (ti) d‖2 ≥ α. (17)

and yet not be uniformly completely observable, as the
next example demonstrates.

Consider the linear system{
ẋ(t) = Ax(t)
y(t) = C(t)x(t)

, (18)

where

A =

[
0 −W
W 0

]
∈ R2, W > 0,

and
C(t) = [ 1 0 ] R(t),

where R(t) is the rotation matrix that satisfies

Ṙ(t) = R(t)A.

In this case,

L(t) =

[
[ 1 0 ] R(t)

0

]
∈ R2×2

and it is not possible to invoke Theorem 3 as

L(t)RT (t)

[
0
1

]
= 0

for all t ≥ t0. However, condition (17) is verified, with
α = 1 and δ = 2π/W . Notice that W corresponds to

Sun direction

Star d
ire

ctio
n

Fig. 1. A spun satellite in orbit, using two vector measure-
ments to determine its angular velocity.

the angular velocity, which is constant, and therefore, for
all t ≥ t0 and all unit vectors d, it is possible to choose
ti ∈ [t, t+ δ] such that

R (ti) d = [ 1 0 ]

and hence
‖L (ti) d‖2 = 1.

Yet, the system (18) is not uniformly completely observ-
able. In fact it is not even observable. Indeed, the transi-
tion matrix associated with this system is

φ (τ, t) = RT (τ) R(t)

and the observability Gramian is given by

Wo (t, t+ δ) = δRT (t)

[
1 0
0 0

]
R(t),

which is not full rank.

4.4 Rigid body in rotation

Consider a rigid body in rotation equipped with two di-
rection sensors. One such system is a spinning satellite
equipped with Sun sensors, a star tracker or magnetome-
ters (among other sensing technologies). Estimating the
angular velocity of the rigid body is a question of practi-
cal importance, especially for orientation control, because
most methods employed for controlling the second order
rotation dynamics (e.g. Lyapunov control design, feedback
linearization, or computed torque) require angular velocity
information Magnis and Petit (2016).

Consider the case when the satellite is travelling along an
orbit and can only obtain the two vector measurements
(e.g. Sun direction and another star direction) when it is
in direct visibility of it. The Earth is a major obstruct-
ing object, see Figure 1. Considering that the orbit of
the satellite is T -periodic (according to Newton’s law of
universal gravitation in the simplest gravity model), then
the measurements can be performed on kT -long regularly
spaced periods (with 0 ≤ k ≤ 1/2) , say [0, kT ], [T, (k +
1)T ],... This scenario can be addressed by Theorem 3 as
shown below.

Let å and b̊ denote the two reference (three dimensional)
unit vectors expressed in an inertial frame. Denote by
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ω the (three dimensional) angular velocity vector cor-
responding to the rotation matrix R from this inertial
body frame to a body frame attached to the rigid body,
expressed in this frame. The two reference unit vectors are
measured with sensors arranged on the rigid body, produc-

ing a vector of measurements y(t) = R(t)

[
å

b̊

]
=

[
a(t)
b(t)

]
at each instant. Then, one has

ȧ(t) = a(t)× ω = [a(t)×]ω (19)

where × denotes the cross-product, and [a×] is the skew-
symmetric cross-product matrix associated to a.

The right-handside of (19) is bilinear in the measure-
ment a and ω. In Magnis and Petit (2016), it was proposed
to model the unknown ω by introducing its governing
equation (the Euler equation of free rotation). Here, we
follow a simpler method, commonly employed in Kalman
filtering, which is to model ω as an unknown constant
(or slowly varying) variable driven by noise. With this
assumption, the nominal (noise-less) equation governing
ω is simply

ω̇(t) = 0

Note the state vector x =

(
a
b
ω

)
. One has

ẋ =

(
a× ω
b× ω

0

)
= A(t)x, y = Cx

with

A(t) =

(
0 0 [a(t)×]
0 0 [b(t)×]
0 0 0

)
and

C =

(
I 0 0
0 I 0

)
With the notations of Theorem 3, consider q = 1. Then,

LT (t)L(t) =

(
I 0 0
0 I 0

0 0 [a(t)×]T [a(t)×] + [b(t)×]T [b(t)×]

)
.

Interestingly, the time-varying 3× 3 matrix

[a(t)×]T [a(t)×] + [b(t)×]T [b(t)×]

has 3 constant eigenvalues
{

1± åT b̊, 2
}

This fact can

be easily proven, after some lines of calculus, by consid-

ering the orthogonal basis
{

å− rb̊, b̊− r̊a, b̊× å
}

where

b̊× å is an eigenvector with 2 as eigenvalue, and r is a root

of the polynomial åT b̊x2 − 2r + åT b̊ = 0.

It follows that (5) holds provided that the two unit vectors

å and b̊ are not aligned, with δ = T , α = 1−|̊aT b̊|. Besides,
A(t) is bounded and Lipschitz because ω is bounded
2 , while C is constant. This guarantees the Lipschitz
condition (4).

In conclusion, the system is UCO if å and b̊ are not
aligned. This assumption, and the result, will seem familiar

2 The interested reader will note that the angular velocity of any
rigid body in free rotation (i.e. without any external torque) is
bounded at all times Magnis and Petit (2016).

to the reader aware of the classic results on Wahba’s
problem Wahba (1965). Here we deduce that the angular
velocity can be estimated even in the case of periodic
obstruction from the Earth using two distinct vector
measurements.

5. CONCLUSIONS

Uniform completely controllability and observability are
key concepts that often play roles not restricted to the
design of controllers and observers for LTV systems. While
simple, it often proves cumbersome to show that a par-
ticular system is UCO or UCC. This paper presented
novel sufficient conditions that allow, in some cases, to
show UCO and UCC. These are relaxed conditions of a
previous recent result and examples of application show
the improvement over existing results, as well as their
applicability.

Appendix A. TWO TECHNICAL RESULTS

Lemma 1. Let f : [t0, tf ] ⊂ R → Rn be a continuous
function on I := [t0, tf ], tf > t0. Let

C := max
τ1,τ2∈I
τ1 6=τ2

‖f (τ2)− f (τ1)‖
|τ2 − τ1|

.

If there exists α > 0 and t1 ∈ I such that ‖f (t1)‖ ≥ α,

then there exists t2 ∈ I such that
∥∥∥∫ t2t0 f (τ) dτ

∥∥∥ ≥ β, with

β :=
1

4
min

(
T,

α√
nC

)
α√
n
,

where T := tf − t0.

Proof. Suppose that the hypothesis of the theorem holds,
i.e., suppose that there exists α > 0 and t1 ∈ I such that
‖f (t1)‖ ≥ α. Using the norm inequality (2) one gets

‖f (t1)‖∞ ≥
α√
n
.

Set 1 ≤ k ≤ n such that

fk (t1) =
α√
n
,

where

f (t1) =


f1 (t1)
f2 (t1)

...
fn (t1)

 .
Using the assumptions of the lemma and the equivalence
of norms (2), one may conclude that

|fk(t)− fk (t1)| ≤ C |t− t1|
for all t ∈ I, which in turn allows to write

fk (t) ≥ fk (t1)− C |t− t1|
for all t ∈ I. Now, without loss of generality, suppose that
fk (t1) > 0. Then, there exists an interval I1 := [t3, t4] ⊂ I,
t3 < t4, of length

T1 = t4 − t3 = min

(
T,

α√
nC

)
such that fk(t) > 0 for all t ∈ I1 and consequently∫

I1
fk(t)dt ≥ β′, (A.1)
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with

β′ :=
T1
2

α√
n
.

Notice that the construction of the interval I1 is conser-
vative to cover all possible cases when the intersection

of straight lines of slope ±C from
(
t1,

α√
n

)
crosses the

abscissa axis outside or strictly within the interval I. Now,
write∣∣∣∣∫ t4

t0

fk(t)dt−
∫ t3

t0

fk(t)dt

∣∣∣∣ =

∣∣∣∣∫
I1
fk(t)dt

∣∣∣∣ . (A.2)

As the right side of (A.2) satisfies (A.1), one gets that one

of the two terms
∫ t4
t0
fk(t)dt or

∫ t3
t0
fk(t)dt must be greater,

in modulus, than β′

2 . As such, there always exists t2 ∈ I
such that

∣∣∣∫ t2t0 fk(t)dt
∣∣∣ ≥ β, with

β := β′/2 =
1

4
min

(
T,

α√
nC

)
α√
n
,

which concludes the proof.

Lemma 2. Let φ (t, t0) denote the transition matrix from
t0 to t, t ≥ t0, associated with the linear system

ẋ(t) = A(t)x(t),

where A(t) is continuous. Suppose that A(t) is bounded
and define

A := max
τ∈[t0,t]

‖A (τ)‖ .

Then,
‖φ (t, t0)‖ ≥ e−A(t−t0).

Proof. Define
r(t) := ‖x(t)‖2 .

Then,
ṙ(t) = xT (t)

[
A(t) + AT (t)

]
x(t)

and, using

xT (t)
[
A(t) + AT (t)

]
x(t) ≥ −

∥∥A(t) + AT (t)
∥∥ ‖x(t)‖2

and the definition of r(t), one may conclude that

ṙ(t) ≥ −
∥∥A(t) + AT (t)

∥∥ r(t).
Due to the boundedness of A(t), it is possible to further
write

ṙ(t) ≥ −2Ar(t). (A.3)
Now, define

s(t) := r (T − t)
for some T > 0. Using the chain rule and (A.3), one
concludes that

ṡ(t) ≤ 2As(t),
from which follows, using the Gronwall-Bellman inequality,
that

s(t) ≤ s (t0) e2A(t−t0).
Now, using the definition of s(t), further write

r (T − t) ≤ r (T − t0) e2A(t−t0)

and, with T = t0 + t > 0, one gets

r (t0) ≤ r(t)e2A(t−t0)

or, equivalently,

‖x(t)‖ ≥ ‖x (t0)‖ e−A(t−t0).

Finally, as

‖x(t)‖ = ‖φ (t, t0) x (t0)‖ ≤ ‖φ (t, t0)‖ ‖x (t0)‖ ,
one gets the desired result, thus concluding the proof.
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