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Abstract: We propose a technique for estimating the angular velocity of a rigid body and
the torque applied to it, from vector measurements. Unlike the approaches reported in the
literature, the method does not use attitude information or rate gyros as input data. Instead,
vector measurements are directly filtered through a nonlinear observer. Convergence is proven.
Simulation results illustrate the potential of the method for various aerospace applications,
including estimation of reorientation torques for satellites, estimation of sublimation torques on
an asteroid, estimation of eddy current damping torques on space debris.
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1. INTRODUCTION

With the advances in low-cost sensors, several tasks of
state estimation and, in particular, navigation, now appear
to be feasible at a fraction of the cost of state-of-the-
art high-end solutions. In these approaches, data fusion
and filtering algorithms compensate for the imperfections
of measurements provided by low-cost technologies. This
is the case in many fields of engineering, including air
vehicles, UAVs, guided munitions, sounding rockets and
space applications, see e.g. Hua et al. (2014); Bekkeng and
Psiaki (2008); Springmann and Cutler (2014); Lee et al.
(2008); Shake et al. (2013); Springmann et al. (2012);
Changey et al. (2012, 2014); Changey et al. (2013); Yu
et al. (2016) amid numerous references.

Among state-estimation tasks, a central question is the
reconstruction of the angular velocity as illustrated in
numerous recent works, see e.g. Akella et al. (2015); Rafael
et al. (2016); Wu and Lee (2015); Thienel and Sanner
(2007); Berkane and Tayebi (2016); Magnis and Petit
(2015). In the literature, several methods have been pro-
posed to address this general question. One straightfor-
ward solution is to use a strap-down rate gyro (see Tit-
terton and Weston (2004)) to directly measure angular
velocity; however, since these are relatively fragile and
expensive components, and are prone to drift, some other
type of solution is often preferred. A two-step approach is
commonly employed: the first step is to determine attitude
from vector measurements (i.e., onboard measurement of
reference vectors) within a fixed frame. Vector measure-
ments play a fundamental role in the problem of attitude
determination, as discussed in a recent survey (see Cras-
sidis et al. (2007)). In a nutshell: when two independent
vectors are measured by vector sensors attached to a rigid
body, its attitude is simply defined as the solution of the
classic Wahba’s problem (see Wahba (1965)). This formu-
lates a minimization problem in which the rotation matrix

from a fixed frame to the body frame is the unknown.
The second step is to reconstruct angular velocities from
the attitude. At any instant, full attitude information can
be obtained, as exposed in numerous references in various
contexts such as Shuster (1978, 1990); Bar-Itzhack (1996);
Choukroun (2003); Benziane et al. (2014); Tayebi et al.
(2013); Grip et al. (2012a). Although angular velocity can
be estimated from a time differentiation once the attitude
is known, at least in principle, this process is disturbed
by noise. To deal with this issue, introducing a priori
information in the estimation process is a valuable tech-
nique for filtering noise from the estimates. For this reason,
numerous observers using the Euler equations for a rigid
body have been proposed to estimate angular velocity (or
angular momentum, which is equivalent) from full attitude
information (see Salcudean (1991); Thienel and Sanner
(2007); Sunde (2005); Jorgensen and Gravdahl (2011)).
Aside from this two-step approach, a more direct way of
reconstructing the angular velocity can be considered. This
employs an algorithm that uses vector measurements in a
straightforward manner.

In two recent papers (Magnis and Petit (2017, 2016)) a
nonlinear observer has been proposed. It reconstructs the
angular velocity of a rotating rigid body from vector mea-
surements directly by bypassing the relatively laborious
first step of attitude estimation. The main limitation was
that full knowledge of the torque applied to the rigid body
was assumed. In the present work, we extend this new
observer to allow a slowly varying torque to be estimated,
opening broader possibilities for the above applications.
Some examples are presented to illustrate the approach.
We believe that the contributions presented here will be
valuable to practitioners facing the problems under con-
sideration and pave the way for future extensions and
combinations. These extensions (and their proof of con-
vergence) are not particularly difficult, but the equations,
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which are directly implementable, will hopefully be useful
for direct practical use. As is expected from such observers,
the computational footprint is less compared to extended
Kalman filters (EKF).

The paper is organized as follows. In Section 2, we intro-
duce the notations and the problem statement. We analyze
the attitude dynamics (rotation and Euler equations) and
relate the analysis to measurements. In Section 3, we
define a nonlinear observer with extended state and output
injection and prove its convergence. Illustrative simulation
results are given in Section 4. The scenarios under consid-
eration include impulsive torques such as those generated
by reaction control systems (RCS) for satellite attitude
control, sublimation torques on an asteroid, and eddy cur-
rent damping torques on space debris. In these scenarios,
the assumption of piecewise constant or slowly varying
torque is instrumental in the reconstruction. Conclusions
are given in Section 5.

2. NOTATIONS AND PROBLEM STATEMENT

2.1 Notations

All frames considered in the following are orthonormal
bases of R3. Vectors in R3 are written in lower-case x.
|x| is the Euclidean norm of x. [x×] is the skew-symmetric
cross-product matrix associated with x, i.e. [x×]y = x× y,
namely,

[x×] ,

(
0 −x3 x2
x3 0 −x1
−x2 x1 0

)
where x1, x2, x3 are the coordinates of x in the standard
basis of R3. Vectors in higher dimension are written in
upper-case X. |X| designates the Euclidean norm of X.
For any matrix A ∈ Rn×n, ‖A‖ is the norm induced by
the Euclidean norm in Rn, namely,

‖A‖ = max
X∈Rn, |X|=1

|AX|.

For a vector valued function f : Rn → Rn, ∇f is the
Jacobian matrix of f . For real-valued functions V (t,X) of
time t and space X, ∇V is the gradient with respect to
the space variable (i.e. ∇V = ∂V

∂X ) and V̇ is the derivative
of t 7→ V (t,X(t)) when X(t) satisfies some differential
equation.

2.2 Problem statement

Figure 1 shows the system being considered. Consider a
rigid body rotating with respect to an inertial frame Ri.
Note R is the rotation matrix from Ri to a body frame
Rb attached to the rigid body and ω is the corresponding
angular velocity vector, expressed in Rb. Assuming that
the body rotates under the influence of an external torque
τ (which is null in the case of free rotation), the variables R
and ω are governed by the following differential equations:

Ṙ = R[ω×] (1)

ω̇ = J−1 (Jω × ω + τ) (2)

where J = diag(J1, J2, J3) is the inertia matrix 1 . This
matrix is assumed to be known. In the literature, Eq. (2)

1 Without restriction, we consider that the axes of Rb are aligned
with the principal axes of inertia of the rigid body.

Fig. 1. Inertial frame, reference vectors, rigid body and
body frame. Control torques can be generated by
reaction thrusters, for example.

is referred to as the set of Euler equations for a rotating
rigid body (see Landau and Lifchitz (1982)). The torque
τ may result from control inputs or disturbances 2 . For
clarity we note

E(ω) , J−1 (Jω × ω) , p , J−1τ

so that the Euler equations are simply written as

ω̇ = E(ω) + p.

We assume that there are two linearly independent ref-

erence unit vectors å, b̊ constant in Ri, and that sensors
arranged on the rigid body allow the measurement of the
corresponding unit vectors expressed in Rb. Namely, the
measurements are

a(t) , R(t)T å, b(t) , R(t)T b̊ (3)

which satisfy, by construction,

ȧ = a× ω, ḃ = b× ω. (4)

For implementation, the sensors might be, for example,
Sun sensors, magnetometers or accelerometers, among
others; the actual choices depend on the application under
consideration. We now formulate some assumptions and a
problem statement.

Assumption 1. τ is slowly varying 3 (so is p). It is not
known but it generates a rotation such that ω is bounded:
|ω(t)| ≤ ωmax at all times t.

Problem 1. Under Assumption 1, find estimates (ω̂, p̂) of
(ω, p) from the vector measurements a, b defined in Eq. (3).

3. OBSERVER DESIGN AND ANALYSIS OF
CONVERGENCE

3.1 Observer definition

When the torque p is known, a nonlinear observer of ω
can be designed (see Magnis and Petit (2017)). Building

2 In the case of a satellite, for instance, the torque could be gener-
ated by, among other possibilities, inertia wheels, magnetorquers or
reaction thrusters as represented in Fig. 1.
3 This assumption will be used to model these variables as constants,
as is often done in linear observer design. Here “slow” means with
respect to “fast” variables which are the other variables (directions),
in the mathematical sense of singular perturbations of Kokotovic
and Khalil (1986), e.g. . If needed, e. g. if these inputs signals are
constantly and vastly changing, this assumption can be alleviated
by considering that these variables are modeled as the response
of a suitably chosen dynamical system or that only some high-
order derivatives of these variables are constants, so that a finite
number of state extension are required as exposed in the seminal
work of Hostetter and Meditch (1973).
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on this previous work, we here solve the general problem
using the following extended observer

˙̂a = a× ω̂ + k(a− â)

˙̂
b = b× ω̂ + k(b− b̂)
˙̂ω = E(ω̂) + p̂+ k2

(
a× â+ b× b̂

)
˙̂$ = E(ω̂) + γ1

√
k(ω̂ − $̂) + p̂

˙̂p = γ2k(ω̂ − $̂)


(5)

where k, γ1, γ2 > 0 are constant tuning parameters. The
inputs of this observer are the two vector measurements a
and b; the outputs are ŵ and p̂, which are estimates of the
angular velocity w and the applied torque p.

3.2 Error dynamics

To study the convergence of this observer, we introduce
the scaled errors

X =

 a− â
b− b̂
ω − ω̂
k

 ,

(
X1

X2

X3

)
∈ R9

Y =

 ω − $̂
k

p− p̂
k
√
k

 ,

(
Y1
Y2

)
∈ R6

(6)

which are governed, with the assumption ṗ = 0, using
ω̂ − $̂ = −kX3 + kY1, by

Ẋ1 = −kX1 + ka×X3

Ẋ2 = −kX2 + kb×X3

Ẋ3 = k (a×X1 + b×X2) +
E(ω)− E(ω̂)

k
+
√
kY2

Ẏ1 = −γ1
√
kY1 +

√
kY2 + γ1

√
kX3 +

E(ω)− E(ω̂)

k

Ẏ2 = −γ2
√
kY1 + γ2

√
kX3


(7)

In the next section, we show that, for sufficiently large
gain k, system (7) has local uniform exponential stability,
thus providing a solution to Problem 1. Indeed, when X3

and Y2 go to 0, we have

ω(t)− ω̂(t)→ 0, p− p̂(t)→ 0, as t→ +∞.
Following (Khalil, 1996, Th. 3.13), we establish the ex-
ponential stability of the linearization about the origin
X = 0, Y = 0 and conclude on the nonlinear dynamics.
Linearization yields

Ẋ = kA1(t)X + ξ

Ẏ =
√
kA2Y + ζ

}
(8)

with

A1(t) ,

( −I 0 [a(t)×]
0 −I [b(t)×]

[a(t)×] [b(t)×] 0

)

ξ ,

 0
0

∇E(ω)X3 +
√
kY2


A2 ,

(
−γ1 1
−γ2 0

)
, ζ ,

(
γ1
√
kX3 +∇E(ω)X3

γ2
√
kX3

)
.

Thus, (8) appears as the interconnection of two systems

Ẋ = kA1(t)X (9)

Ẏ =
√
kA2Y (10)

perturbed by the respective input term ξ, ζ, as pictured in
Fig. 2.

ξ(
√
k,X, Y )

ζ(
√
k,X)

Ẋ = kA1(t)X + ξ

Ẏ =
√
kA2Y + ζ

X

ζY

ξ

Fig. 2. Interconnection of systems (9)-(10)

3.3 Convergence proof

The proof is organized in distinct steps detailed below,
resulting in the statement of Theorem 1.

Step 1: recall on the asymptotic behavior of the X-
subsystem A detailed analysis of the time varying matrix
A1(t) presented in Magnis and Petit (2017) shows the
existence of a Lyapunov function V1(t,X) and constants

0 < α1 ≤ β1 (11)

depending only on the (constant) value of the scalar

product åT b̊, such that for all (t,X)

α1|X|2 ≤ V1(t,X) ≤ β1|X|2

|∇V1(t,X)| ≤ 2β1|X|
V̇ (t,X) = −k|X|2

where the total derivative is taken along the trajectories
of system (9).

Step 2: study of the Y -system For any choice of γ1, γ2 >
0, A2 has eigenvalues λ1, λ2 with strictly negative real
parts <(.). We assume that γ21 6= 4γ2 such that λ1 6=
λ2. Note v1, v2 are two associated eigenvectors, P =
[v1 v2] is the corresponding invertible matrix and λ =
−max(<(λ1),<(λ2)). We have, for all Y ∈ R2,

e
√
kA2tY = P

(
e
√
kλ1t 0

0 e
√
kλ2t

)
P−1Y

from which we deduce

|e
√
kA2tY | ≤ ‖P‖

∥∥P−1∥∥ e−√kλt|Y |
Defining V2 as

V2(Y ) ,
√
k Y T

∫ ∞
0

e
√
kAT

2 te
√
kA2tdt Y

=
√
k

∫ ∞
0

|e
√
kAT

2 tY |2dt
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we have, for all Y (see e.g. Khalil (1996)),

V2(Y ) ≥ 1

2 ‖A2‖
|Y |2 , α2|Y |2 (12)

and also

V2(Y ) ≤
‖P‖2

∥∥P−1∥∥2
2λ

, β2|Y |2. (13)

Finally, by upper bounding the gradient of the quadratic
function V2, we obtain

|∇V2(Y )| ≤ 2β2|Y |.
Moreover, along the trajectories of (10),

V̇2(Y ) = −
√
k|Y |2.

Step 3: connecting the subsystems We now investigate
the convergence of the interconnection. Consider the can-
didate Lyapunov function

V (t, (X,Y )) , V1(t,X) + V2(Y ).

Note

α , min(α1, α2), β , max(β1, β2), Z ,

(
X
Y

)
We have

α|Z|2 ≤ V (t, Z) ≤ β|Z|2

and the derivative of V along the trajectories of (7)
satisfies

V̇ (t, Z) = −k|X|2 +∇V1(t,X)ξ −
√
k|Y |2 +∇V2(Y )ζ.

As shown by direct calculation in Magnis and Petit (2017),
we have

‖∇E(ω)‖ ≤
√

2ωmax.

Hence, the perturbation (coupling) terms are bounded by

|ξ| ≤
√

2ωmax|X|+
√
k|Y |

|ζ| ≤
(√

2ωmax + (γ1 + γ2)
√
k
)
|X|.

It follows that

V̇ (t, Z) ≤ −k|X|2 + 2β1
√

2ωmax|X|2 (14)

+ 2
√
kβ1|X||Y | −

√
k|Y |2

+ 2β2

(√
2ωmax + (γ1 + γ2)

√
k
)
|X||Y |

=
√
kZT

(
−
√
k β1 + β2(γ1 + γ2)

β1 + β2(γ1 + γ2) −1

)
Z

+ 2β1
√

2ωmax|X|2 + 2β2
√

2ωmax|X||Y |. (15)

Interestingly, for sufficiently large k, the symmetric matrix

M ,

(
−
√
k β1 + β2(γ1 + γ2)

β1 + β2(γ1 + γ2) −1

)
is definite negative. Therefore, by choosing sufficiently
large k, the first term in (15) is made dominant over the

other terms that are not scaled by
√
k. Under these con-

ditions, V̇ is definite negative and system (7) is uniformly
exponentially stable.

Theorem 1. (Solution to Problem 1). Consider Problem 1
where the unknown torque to be estimated is constant.
For any choice of γ1, γ2 > 0, the observer (5) defines an
error (6) which, for sufficiently large k > 0, converges
locally uniformly exponentially to 0.

Remark 1. As α, β do not depend on k, the convergence is
arbitrarily rapid when k grows to infinity. For practical
applications, choosing large values for k increases the

sensitivity to noise, so a natural recommendation is to
consider only reasonable values for k. Implicitly, large
value of k allow to converge over short horizons, over
which the assumption of constant torque is numerically
legit thanks to Assumption 1 of slow variations.

Remark 2. In (12), (13), α2, β2 depend only on the choice
of γ1, γ2.

Remark 3. To account for more general torque models
(e.g. piecewise affine time-varying signals, as considered
below)

ṗ = p1, ṗ1 = 0
the observer can be further extended in the form

˙̂a = a× ω̂ + k(a− â)

˙̂
b = b× ω̂ + k(b− b̂)
˙̂ω = E(ω̂) + p̂+ k2

(
a× â+ b× b̂

)
˙̂$ = E(ω̂) + γ1

√
k(ω̂ − $̂) + p̂

˙̂p = p̂1 + γ2k(ω̂ − $̂)

˙̂p1 = γ3k
3
2 (ω̂ − $̂)


(16)

with k, γ1, γ2, γ3 > 0. The convergence analysis is identical.
The generalization to signals having a zero n-th order
derivative ṗ = p1, ṗ1 = p2, . . . , ṗn = 0 is straight-
forward.

4. SIMULATION RESULTS AND APPLICATIONS

In this section, we consider several illustrative examples.
For the sake of accuracy of implementation, the reference
dynamics (2)-(4) and state observer (5) are simulated
using the Runge-Kutta 4 method. This is an important
point, as the integration of Euler equations E(.) requires
a good level of accuracy to avoid numerical divergence.
The sampling (measurement) period is specified in each
example.

4.1 Estimating torques during a reorientation maneuver
(Heaviside step torques)

The first problem we consider is the estimation of torques
during a satellite reorientation maneuver. We consider a
satellite which is a parallelepiped of size 90 × 130 ×
170 [cm3] and mass 150 [kg] homogeneously distributed.
The general behavior of the observer is represented in
Fig. 3. In this simulation, the torques are Heaviside step
inputs. Such signals are employed in optimal reorientation
maneuvers (as described in Shen and Tsiotras (1999); Bai
and Junkins (2009)). The sampling time is 0.1 s. The
proposed observer produces converging estimates for the
(vector) angular velocity and for the torques. Each step
variation of the torque induces a transient error for τ̂ and
ω̂. Even then, the angular velocity error does not exceed
5 [◦/s] for a nominal value of ω of about 250 [◦/s]. The
role of the tuning gain k is seen in Fig. 4, which shows the
observer performance for increasing values of k and fixed
values γ1 = 1, γ2 = 0.2. As expected, the convergence is
better for larger values of the gain. Thus, the tuning of k
will result from a trade-off between performance and noise
reduction. Finally, Fig. 5 stresses the role of the discussed
observer extension. Torque signals that are not piecewise
constant but slowly varying are estimated well using the
extension, by reducing asymptotic bias.
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Fig. 3. Convergence of the observer. Top: angular veloc-
ity error. Bottom: torque (solid line) and estimated
torque (dashed line).
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Fig. 4. Convergence of estimated torque improves with
increasing k.

4.2 Estimating sublimation torques (impulsive and noisy
torques)

In this second example, we wish to estimate a torque
signal with no particular signature except that it is non-
zero for short periods only. This property is representative
of torques produced by sublimation on asteroids, that is,
the sudden transformation into water vapor of ice on the
surface of an asteroid upon exposure to sunlight.

Very generally, the monitoring of rotation states of aster-
oids and comets has been the subject of numerous studies.
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τ
,τ̂

t [s]

k =4, γ1 =1.5, γ2 = 1, γ3 = 0.15

Fig. 5. Top: Observer (5) tracks slowly varying torques
with phase shift. Bottom: Extended observer (16)
reduces the residual error.

This subject is of importance as the spin of an asteroid can
affect its orbit in quite a subtle way due to the Yarkovsky
effect (see Rubincam (2000)), causing uncertainty in the
prediction of future trajectories. Usually, the time-series
analysis of emitted light, or “light curves” (see Lorenz
(2006)), is employed to determine the spin. The frequent
cases of pure long-axis mode (LAM) rotation is a (to
some extent) resolved problem; however, numerous recent
studies have reported that several comets and asteroids
have more complex rotations (e.g., 1P/Halley, and (4179)
Toutatis –see Mueller et al. (2002); Samarasinha and Bel-
ton (1995)). In such cases, the light curves are difficult
to analyze. Following the ideas developed in this article,
a suggested alternative technique is as follows: assuming
that a set of suitable sensors could be attached to the
object (as achieved by the Rosetta lander –see Ulamec
et al. (2015)) and that their measurements could be pro-
cessed, at least for some time interval, it would be possible
to reconstruct the torques produced by cometary activity,
in particular the sublimation-induced torques, using the
approach proposed here.

Figure 6 shows the estimated torque for a simulated
Halley-like comet considered here as an ellipsoid with semi-
axes 16×8×7.999 km3 and mass 2.1014 kg homogeneously
distributed, and an initial rotation period of 12 hours. The
magnitude of the torque was chosen in accordance with the
calculations described in Samarasinha and Belton (1995).
For realism, some measurement noise was added, which
explains the shape of the dashed curve.
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Fig. 6. Estimation of sublimation torques for a Halley-like
comet.

4.3 Estimating eddy-current braking, i.e. induced linear
damping torques

This third example considers a slowly varying torque,
proportional to the angular velocity. This is representative
of torques produced by magnetic braking inside space
debris.

Space debris orbiting in the magnetosphere are subject to
magnetic braking stemming from eddy currents created in
their spinning bodies. As developed in Praly et al. (2011,
2012), the torques driving the spin motion of an empty,
thin-walled body (e.g., the H10 stage of the Ariane 4
rocket), are of the form

τ ≈

(
c1 0 0
0 c2 0
0 0 c3

)
w

where c1, c2, c3 are positive parameters proportional to the
magnitude of the local magnetic field. These parameters
also depend on the rotational axis of the long-term rotation
of the object (axial spin or flat spin). Along typical orbits,
the torques defined above yield a quasi-linear asymptotic
decay, with decay times ranging from 20 days (axial
spin) to 250 days (flat spin). In Praly et al. (2011),
a finite element method simulation was conducted to
estimate the induction phenomenon, in which the model
of the spinning object was simplified to a symmetrical
cylinder with semi-spherical ends. Certainly, some error
was generated by this approximation, and it would be
interesting to use experimental data to improve the model.
The observer proposed in this article can be used for
such an objective. The error we take into consideration
appears in the torque-generation law, where we assume
that the torque is actually linearly dependent on the
angular velocity through an unknown matrix T

τ = Tw

We can modify the above observer to estimate the whole
matrix T , or equivalently P , J−1T . To address this
problem, a further extension of the proposed observer is
needed, with the idea of interconnecting the X system (9)
with another exponentially stable system. In detail, while
the Euler equations become

ω̇ = E(ω) + Pω

we propose the following observer

0 0.5 1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5

10

t [hours]

lo
g
|P

−
P̂
|/
|P

|

k =3, γ1 =1, γ2 =0.2

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

t [hours]

lo
g
|P

−
P̂
|/
|P

|

k =3, γ1 =1, γ2 =0.2, 10−7 noise

Fig. 7. Estimation of P without noise (top) and with 10−7

noise level (bottom). (log10 scale).

˙̂a = a× ω̂ + k(a− â)
˙̂
b = b× ω̂ + k(b− b̂)
˙̂ω = E(ω̂) + P̂ ω̂ + k2

(
a× â+ b× b̂

)
˙̂$ = E(ω̂) + P̂ ω̂ + γ1(ω̂ − $̂)
˙̂
P = γ2(ω̂ − $̂)ω̂T


(17)

with k, γ1, γ2 > 0. Consider the observer error

X ,

 a− â
b− b̂
ω − ω̂
k

 ,

(
X1

X2

X3

)
∈ R9,

Y ,
1

k

(
ω − $̂
P − P̂

)
,

(
Y1
Y2

)
∈ R3 ×R3×3.

Note that Y2 is a 3×3 matrix. The linearized error system
around X = 0, Y = 0 is

Ẋ = kA(t)X +

(
0
0

∇E(ω)X3 + PX3 + Y2ω

)
Ẏ1 = −γ1Y1 + Y2ω +∇E(ω)X3 + PX3 + γ1X3

Ẏ2 = −γ2Y1ωT + γ2X3ω
T .

In this form, the error system appears as an interconnec-
tion of the exponentially stable system (9) with the Y
system

Ẏ1 = −γ1Y1 + Y2ω, Ẏ2 = −γ2Y2ωT . (18)

The convergence analysis is similar: establish the expo-
nential stability of the Y system, and derive conditions
such that the interconnection maintains stability. Briefly,
a candidate Lyapunov function for system (18) would be

V (Y ) =
γ2
2
|Y1|2 +

γ1
2

Tr
(
Y T2 Y2

)
(where Tr (.) is the trace operator) which is positive defi-

nite and satisfies V̇ (Y ) = −γ1γ2|Y1|2 along the trajectories
of (18). Uniform exponential stability requires a persistent
excitation-like assumption on ω guaranteeing that ω(t)
persistently reaches all the directions in R3.

This modified observer was tested in a simulation with
sampling time 0.2 s, the following inertia and damping
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matrices

J =

(
1442 19 31
19 10799 113
31 113 10755

)
[kg.m2]

P = 10−8

(−39.7 0.06 0.1
0.07 −4.5 0.05
0.1 0.05 −4.5

)
[s−1]

and |ω(0)| ' 60 [◦/s]. The results of the estimation of P
are represented in Figure 7. In the absence of measurement
noise, the relative error for P decreases from 106 to 10−10

within a few hours. With a noise level of 10−7, the relative
error reaches the asymptotic value of 10−1, meaning that
the coefficient of the P matrix (or T ) is reconstructed with
a 10% error.

Remark 4. Since the exponential stability comes from a
persistent excitation assumption, arbitrarily fast conver-
gence of the error system cannot be guaranteed when k
increases to infinity.

5. CONCLUSIONS

In this article we have proposed a method of directly
estimating the angular velocity and torques applied to a
rigid body, from vector measurements. The method takes
the form of a simple, nonlinear observer that produces real-
time estimates of these variables. It represents a possible
alternative to a gyroscope.

The computational footprint of the proposed observer is
very limited compared to state-of-the-art alternatives such
as EKF. This is an appealing feature if one wishes to
employ low-power embedded systems with very limited
computation capabilities. In other cases, we would recom-
mend to compare the obtained results with an EKF. In
this context, what the contributions of this article provide
is a formal proof that the systems proposed for the various
task of state reconstruction are indeed observable, in the
sense that an observer with guaranteed convergence has
been given. This is a handy result before any EKF can be
implemented and tested.

Further extensions are possible. This observer can be
adapted to various situations where uncertainties come
into play, such as unknown coefficients in the governing
equations, or randomness of torque signals. A subject di-
rectly connected to the presented results is the estimation
of gyros biases and drift, which is a subject of great im-
portance when gyros are present as explained in numerous
contributions Choukroun et al. (2011); Metni et al. (2006);
Bergamini et al. (2014); Grip et al. (2012b); Hamel and
Mahony (2006); Mahony et al. (2008); Martin and Sarras
(2016); Batista et al. (2011); Fourati and Belkhiat (2016)
among others.
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