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Optimal Control of Systems Subject to
Input-Dependent Hydraulic Delays

Charles-Henri Clerget

Abstracit—In this article, we study the optimal control
of systems subject to input-varying hydraulic delays, i.e.,
systems where the delay on the input depends on the past
values of the input through a specific integral relation. The
calculus of variations of this problem reveals its nondiffer-
entiable nature. Then, a smooth relaxation is proposed to
derive an iterative optimization algorithm. A convergence
proof is detailed. The practical interest of the algorithm is
evidenced on a numerical example.

Index Terms—Input-dependent delays, optimal control,
variable time delays.

[. INTRODUCTION

NE approach to control time-delay systems is to schedule
O the input signals so that the system outputs approach de-
sired setpoints in finite time. Numerous researchers have studied
this topic [1]-[6], by focusing on controllability and trajectory
parameterization, in particular. Furthermore, several works have
considered optimization of the transients, i.e., optimal control
strategies. With constant delays, the mathematical formulations
have long been known (see [7]-[14]). A detailed survey can
be found in [15] and [16]. These works cover cases of multiple
input and state delays, with state constraints, in the framework of
Pontryagin’s maximum principle [17]. On the application side,
model predictive control (MPC) routinely handles linear systems
with fixed delays, and industrial implementations in commercial
software are commonplace in the process industries [18]-[21].
Interestingly enough, it appears that only little attention has
been given to dynamic optimization problems under varying
delays. Since the seminal work of [22], most research efforts
have focused on closed-form solutions to LQR problems for
dynamics impacted by time-varying delays, see [23]. However,
these approaches usually do not consider cases where the delay
variability actually depends on the input or the state. Indeed, in
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most practical applications where delays are a priori known to
be variable, this information is simply ignored and the delays are
assumed to be fixed. A noteworthy exception is the early work
of [24] on state-dependent delays. Unfortunately, it does not
seem to have received the appropriate attention, and its results
have not been implemented in any available software package.
In this article, we consider a class of structured delays denoted
as hydraulic delays. Such delays are defined by the following
relation:
t
¢(u(r))dr =1 (M
ru(t)

where u is a subset of the system control variables (typically
flow rates or valve openings), ¢ is a strictly positive, scalar-
valued smooth function, and r, (t) £ ¢t — D, (t) with D,, () the
delay. This type of delay is the exact solution of a plug-flow
transport equation [25]; hence, its designation is hydraulic [26].
A quasi-steady approximation is sometimes considered in which
the delay is modeled as inversely proportional to a function of
the input (see [27, (16)]). Problems where such delay depen-
dence in the control is important are numerous and of practical
importance in chemical, process, and combustion engineering
(among others) to model mixing, recycle streams, and spatially
distributed cascades of reactions. Examples of such systems
can be found in [28]-[41]. From a historical viewpoint, the
appearance of the integral (1) with a nonlinear function ¢ can
be traced down to the pioneer works on rockets by [42], [43],
where the sensitiveness of the delay to the pressure is identified
as a main source of combustion instability, as noted in several
occasions in [44, ch. 12].

The article is organized as follows. Given a general objective
function to minimize, we carry out the calculus of variations
for an input-independent time-varying delay and an input-
dependent hydraulic delay under weak regularity assumptions in
Section II. Doing so, we stress the structural differences between
these two cases. The conditions on Gateaux-differentiability are
given in Theorem 1. To relate the nondifferentiability to a phys-
ical interpretation, an illustrative example is presented, along
with a schematic picturing the root cause phenomenon. Then, we
propose a regularized approximation of this problem, prove its
smoothness and derive its stationarity conditions. In Section III,
we present an iterative optimization algorithm to solve a subclass
of the problems tackled in Section II with systems exhibiting
input-dependent input delays. We lay out a detailed proof of
convergence in Theorem 2. Finally, in Section IV, we present and
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discuss numerical results, based on a simple benchmark problem
from [32], illustrating the performances of the algorithm.
Notations: Let L>(E,F) be the set of functions of inte-
grable square on E with values in F. With T'> 0, let ¢ €
L2([0; T],R™), we note ||¢||, and ||¢||, the L'-norm 1 and
L?-norm of the function /, respectively. Using Cauchy—Schwarz
inequality, ||£]|; < \/ﬁHEH?.Wenotngw([O;T],]Rp)theclass
of piecewise C! functions from [0; 7] to R?, having a finite
number of jumps in their values or derivatives on their inter-
val of definition. Let D' ([0;77], RP) be the class of functions
from [0; 7] to RP that are differentiable but whose derivative
is not necessarily continuous. We note v € R? the control and
x € R™ the state of the system. Let £ : [0; 7] x R™ x R? — R
and f : [0;T] x R™ x R™ x RP x RP — R™ be smooth func-
tions. Let g € L?(R, R™) and Z be an interval of R. We note g7
the restriction of g to Z. We note 1 the indicator function. Let
h be a function of a real variable, we note the one-sided limit
whose s-argument defines how the ¢-argument is approached

lim A(r)if 0 <s
lim h(1) = { 771"

Tt lim h(7) if 0 > s.
g Tt~

We note the function sign : R — {—1;0; 1} that maps strictly
positive (resp. negative) arguments to 1 (resp. —1) and 0 onto
itself. For notational ease, given a fixed delayed time law r,
we consider [t, z, u| = (¢, (t), z(r(¢)), u(t), u(r(t))) and, sim-
ilarly, [t, 2, ul, = (¢, 2(t), x(ry(t)), u(t), u(ry,(t))).

II. CALCULUS OF VARIATIONS WITH TIME-VARYING AND
INPUT-DEPENDENT DELAYS
A. Fixed Time-Varying Delays

As a preliminary, consider r a smooth, strictly increas-
ing function such that for all ¢, r(¢) < ¢. This function de-
fines a delayed time law. Take (ug,z0) € L?([r(0);0], RP) x
D*([r(0); 0], R?). Consider the following optimal control prob-
lem having r as fixed' time-varying delay:

T
P, : min / Lt 2(t), u(t)) dt + p(x(T)) 2 J, ()
0

S.t. i(t):f([t,gc,u]), Z[r(0);0] = 0, U[r(0);0] = Uo-

We seek to establish necessary stationarity conditions char-
acterizing optimal solutions of P,.. Following, e.g., [45] these
conditions are equivalent to the stationarity conditions of the
augmented functional, where the constraints of the dynamics
have been adjoined, which, using an integration by parts, is

— T .
T(z,u,0) = /O LGt 2(t), u(t)) + ()72 (t)

+ AT f(t, 2z, u]) dt
= ATYTH(T) + A(0)T2(0) + $(x(T)). @)

!fixed means that the function only argument is ¢, it does not depend on the
input, even implicitly.

To compute the Gateaux derivatives of J, ([46]), given any § €
R, z, u, A, let us first consider the cost variation associated with
a variation of its first argument in a direction h

jT(I + 5hau7)") - jr(x7u7)‘) =

T
5/0 %(t,x(t), W) + (O h(t)

N )L(t)T%([t,x,u])h(t)
+ x(t)ngi_([t,x,U])h(r(t))df

— OMT)T'W(T) + 6%(m(T))h(T) + 0(6).

This immediately leads to the expression of the Gateaux deriva-
tive w.r.t. the z-argument

_ ToL
DhJT(fE) = o aix
r9f

ox
r Of
ox,

(t, 2 (t), u(t))h(t) + ()T h(t)

+A()" 5= ([t, =, u])h(t)

+A(t) ([t, @, u])h(r(t)) dt
o
oz

This last expression is not handy for the coming derivation of
stationarity conditions because the expression under the integral
sign mixes the values of h at both time ¢ and time r(¢). Since h
is an admissible variation, for all ¢ < 0, h(t) = 0. This gives a
first simplification. Then, using a change of variables, one finds

= MD)TWT) + 5 (x(T))M(T).

/ a0 2L (1t 2, e ))
0 axr

r(T)
= /0 )\(r’l(t))Tg—a{; ([T’l(t)m,u]) (r= 1Y (t)h(t) dt.

Finally, this leads to

+ Tjo,r (1) &' @) - AT
_ ([r1<t>,x,u]>> Bt dt

- (—)\(T)T + Zf(x(T))) h(T).

Similarly, we establish the Gateaux derivative w.r.t. the input
Dy J;(u) and the adjoint variables Dj.J,-(A). Any stationary
solution (z*, u*, A*) of .J,. is characterized by the relations

V(hi;ha, h3), DhyJr(27) = Dy Jr(u) = DhgJr(27) = 0.
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Then, using Dubois—Reymond lemma (see [45]), we establish ~ Similarly, for any ¢ € [0; r,,(T)[
the following result. 1 1
Proposition 1: Any locally optimal solution of P, verifies lim u+6h(t) -, (t) _
the following two-point boundary value problem (TPBVP) 620 0
. WLt
#(t) = f(lt,,u), 2(0) = xo S "0 iy ar )
. oL s Of " jlnll(t) o(u(r)) Ji ou
Mt = = 9= (1 0(0), ()" — 32t u)TA()
of T where
- IL[O;T(T)] (t)( ) ( )ax ([ (t)7 LIJ,U]) )‘(r 1(t)) rot(t) 8¢
" s =sign | —s / —(u(7))h(r)dr (6)
3w t 8u
M) = S ()"
or of and if  is continuous at r,,*(¢), the Gateaux derivative is
0= 7(t7x(t)7u(t))T+ 7([t7$>u])T)‘(t) L(t)
. o D) =gt [ S dr
of T " ou(r, (1) Sy Ou '
Fligy (0 (5 (1 @), )) T 207 ()

B. Input-Dependent Delays: A Nonsmooth Problem

From now on, the delay depends on the input signal according
to (1).

1) Géteaux Differentiability: Take (uo, xo) € C.,([ro;0],
R?) x DY ([rg; 0], R?), ry < 0 with

0
/ 6 (up(r)) dr = 1. 3)

Consider the optimal control problem with input-dependent
delays

T
Py - “““/0 £t 2(t), u()) dt + D(@(T)) 2 Jo(u)
£t 2(8), 2(ru(t)), u(t), ulra 1))

= To, U[rq;0] = U0

s.t. o @(t) =
Llro;0]

where 7, is implicitly defined by (1). Before addressing the
derivation of the optimality conditions, we introduce the fol-
lowing handy result.

Proposition 2: Foranyt € [0;T1, (u, h) € C},([0;
and s € {—1;1}, we have

T],RP)?

lim Tutsn(t) = ru(t)
5?0 1)
1 L 9g
- d hr)dr (4
T, o /w) 2 (u(r)hir)dr @

where s’ = sign(s - [ (&) 3 (u(T))(7) d7). In particular, if u
is continuous at r, (t), the Gateaux derivative of r,(t) w.r.t. the

input at point v in the direction h is

9¢

1 t
Dur® = o) /,.m a7

Yh(7)dr.

Proof: From (1), we have

t t

dlu(r))dr = /
T (t) Tutsn(t)

Then, from the smoothness of ¢, one deduces that

Tutsh(t) t 0o
/ o o(u(r))dr =46 o —(u(1))h(r)dr + 0(4).
T (T Tu+8h

t) Ou
)

Since we know a priori that ro < r,45,(t) < T, one no-
tices that the integral in the right-hand side is expressed on
a bounded domain over which its argument is bounded and

f:”&;h(t) o(u(r))dr e 0. Recalling that ¢ > 0, we obtain
" I

the continuity of r,,(¢) w.r.t. the input 7,455 (£) — 7, (t) ﬁ 0.
—

1= d(u(r) + oh(r))dr.

Using this result with (7), we have

1 Tu+tsn(t)
5 /Tu(t) 7)) dr =
Lo
/m(w Fg W) AT +0(1).  (8)
If
b9
[, sremnar 2o o

then (8) guarantees that, in a neighborhood of § = 0,

99 s >>h<r>d7).

(t 3u
Using this, the desired results (4) are finally obtained by taking
alternatively the limit of (8) when § goes to zero from above or
below. Otherwise, when (9) fails, we directly get

1 fruton(t)
5[0 etutr)
Tu(t)

The results regarding the variation of ;! (t) are established
symmetrically after noticing that the definition of the delay

sy (0) = (1) = sien (5 [ t

Vdr = o(1), Tim meron(®) = u(®)

=0.
6—0 1)
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implies that, for all ¢ € [0; min(ry, (¢), rytsn(t))]

ru (L) roen ()
1= / o(u(r)) dr = / o(u(r) + 6h(r)) dr

|
‘We now pursue our analysis. Let us derive the stationary points
of the au gmented functional

+ XT(t)x(t) dt + 27 (0)2(0) — AT (T)x(T) + ¥(x(T)).

By construction, there exists a finite number /N of distinct time
instants 7o < t; < r,(T),_, , at which the control input v is
not smooth. For § small enough, u + dh has the same jumping
points as u, plus those generated by dh, which will all have
negligible contributions. The calculus of the Gateaux derivative
of Jy w.rt. its second argument is decomposed over a mesh
allowing us to cover both cases when the image of the jumps of
u by the inverse perturbed delayed time law, ru 5h (t), are each
approached from below or above. This yields (10) shown at the
bottom of this page, with

20.6) =370+ (22 (i) - e =10
of . Tutsh(t) — 1o (t)
+ ou. ([t,x,u]u) w(ry(t)) - %

aa,j; ([tvx’u]u) ' h(Tu-‘réh(t))>

where ;Tf , af designate the partial derivatives of f w.r.t.
its third and ﬁfth arguments, respectively. Using (5) from
Proposition 2, we know that on a neighborhood of § =0,
if the upper and lower Gateaux derivatives of r,'(t;) are
nonzero at u, we have, with ¢ £ sign(r qu[Sh(t ) — rul(ti)) =

sign(—0 f w () 8¢ (7))h(7) d7). The strict monotonicity of
r, and ru+5h glves that

ru (t ) <t< ru—&-éh(t ) = ru+5h(t) < ti < Tu(t)' (] 1)

and

Toion(ti) St < () = ragsn(t) >t > ru(t). (12)

Both of these inequalities (11) and (12) are instrumental for the
evaluation of the integrals || max() () in (10), by determining the

min(.)

arguments of f as § goes to zero. This gives

1 max(r;l(ti),rul sn(ti))

T
Hlin(rﬂl(ti),’r;iéh(ti))
: (f ([ta T, u+ §h]u+5h) -
1 max(ry! (ti),r;iah(ti))

"9

o(1) +
f(tz,uly)) dt

At)"

Hlin("‘;1 (ti)vT;igh, (tt))

lim

u(T
T?r;l (t:)

: <f (t,x(t)w(ru(t)), )’-}grtll U(T)>

~f (tw(t),w(m(t)),leirgl(t‘)u( ) Thgg u(r ))) dt.

Otherwise, if the Gateaux derivative of 7, !
we have

(t;) is equal to zero,

1 max(r; (t;) ,7'5#5,1, (t:))
lim — / )»T(t)‘

6200 Jrnin(rg (t0) 11 55 (8))

(f ([t,z,u+ 6hlysen) — f([t,z,uly)) dt = 0.

Finally, for s € {—1;1}, gathering the smooth and jump parts
of the calculus and using (4) along with (5), we obtain

iy Fo30) = o(w) _
5?0 )
T
/0 (gi(t,x(t) u(t))h(t)+)‘T(t)% ([t, 2, ulu) h(?)
+xT(t)§:£ ([t 2, u)w)
Hrut) 108
P(u(ru(t))) /T'u(t) ou (r)d
+AT(t)§1£ (It,, ulw)
a(ra(t)) [ 09
d(u(ry (1)) / o Ju Yh(T)dr

+ 27t gur ([t,x,u]u)h(ru(t))> dt

jo(u + 5h) — j()(’u)

max(ry ! (t),r, ) 55 (6))

+z/

= oL r0f
5 = | g L) u®)h®) + 20" 5

([t w,ulu) - h(t) dE +

)‘T(t) (f ([ta T,u+ 6h]u+5h) -

min(r;t (1 )7T;}%—5h (t1))
/ A(t,6) dt

0

fA[t, @, ulu)) dt

min(r, ! (t;), u+6h(ti))
min(rgt (ti41),r u+5h(t1+1)) T
. Z/ At 6) dH/ A(t,8) dt + o(1).
max(ryt(t:), u}wh(ti)) max(ril(tN)’T;iéh(min(tN’T“+‘s’L(T))))

(10)
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N (Tu+6h(t))
YA ()" w (russn(®) = 0h(ruson) (1)
=1 u (ru—sn(t)) = 6h(ru-sn)(t)
flrat @), e(ry (), a(t:), lim  u(r), lim u( ) 3 1 —
-,—7”';1 (tz) T —> t; .
2 —+
—f [ rat ) a(ry (), 2(t),  lim u(r), lim u(r) 1
777‘51(%) T_m
e ) 0 } 1%' ; t
‘ Tu 8 ~1(0 (3 1
im u
r—>ru1(t) b Fig. 1. First-order variation of the integral cost with a variation of delay

%

where s, = §'(t;) is given by (6).

Using (13), we can formulate the following result using s =
s"(t;) where s"(t) = sign(— [/ " S (u(7))h(r) d).

Theorem 1: leen (x,u, 1), Jo is Gateaux differentiable
w.rL.t. its second argument at point (x, u, A) in direction A iff (14)
shown at the bottom of this page, holds.

Remark 1: Note that (14) does not trivially hold. When f
is explicitly depending upon its delayed input, the augmented
cost associated cannot be guaranteed to be differentiable w.r.t.

due to a perturbation of u shows a dissymmetry due to the nondifferen-
tiability of ,,%(0).

along with the following functional Jy(u fo

where ¢ is the identity, ¢(u) = u, [, ) u(T )dT = l.By choos-
ing the discontinuities of w at £ =0 and ¢ = 0.5 such that
7,1(0) = 0.5, we create a nondifferentiability of r,! with re-
spectto u. This phenomenais illustrated in Fig. 1. More formally,

. . Lo . . . ru1(0) r51(0.5) 1
the input a.t any given point if the fgncﬂqn uis npt continuous To(u) = Ldt + 9dt + 3dr = 2
for ¢ > 0 (interestingly, however, discontinuities in the control 0 r21(0) r21(0.5)
prior to £ = 0 do not raise issues) and counter examples are ' '
straightforward to build (see Remark 2). where Tal(()) =0.5, r;1(0.5) 2 If § < 0, then Tu+6h(t) >

Remark 2: Consider (u, h) such that . 1(t) and

1ift € [-1;0] - 1
) 1 (0) (1)
u(t) = { 2if t €1]0;0.5] / w(russn(t) / 1dt +/ T ra
3ift €]0.5;1] 0 0 1 (0)
and 7,'(0.5) won(0:5) 1
+/ 2dt+/ 2dt+/ 3dt
YVt e [0;1], h(t) =1 (0 21(0.5) L5,(05)
N -
Z)»(r;l(ti))T Flrt ),z (t), 2(t;), lim  w(r), lim u(r)
i=1 Tl (89) T
1 1 1 1 s () 9 hir) d
- w (Ei),x(ry (t:)), x(t;), i , i —_—
|t et e, tim uto), lim o) || s | G dr
! 5 ‘r:)'r‘u L(ty)
N
= Z)‘*( ;1(ti))T f ;l(ti)7x( ;1(t2))7m(ti)’ lim U(T)7 lim u(7)
i=1 T (8 Tt
—f e ), (b (), 2(t),  lim w(7), lim wu(7) i /TUl(t 8¢( (m))h(r)dr
u \Ui)s w \li))s i ’T—)I/T'Zl(ti) 77_}/“ hrrll( )d)(u(T)) t ou
-’ 5% 7=y (L

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 20,2023 at 07:37:58 UTC from IEEE Xplore. Restrictions apply.



250 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 1, JANUARY 2021

and

T;iéh(o)
Jo(u+6h)—J0(u):/ (1-2)dt

.1 (0)

. ksn(0:5) 1
+/ (2 —3) dt+5/ h(ru () dt + o(8).
T 0

u'(0.5)
Taking s = —1in (5)

—1 -1 ot
g Trpen 7 O 1 /um1m
lim  w(r) J,

6—0 1)
s T%/ril (t)

with s’ = sign( 10y dr) = 1. Finally

Sft

Jo(u + 6h) — o(u)

b 5
0 =0, 105 -05 1
= 5 . :
1 1 1 31
=7T9t5 = 15
179727 3% (s
Conversely, if § > 0, then r, ¢ 4, (£) < r,*(t) and
. (0)
Jo(u+ o) = do(w = [T @
T;i&h(o)
.1 (0.5) s
+/ (3-2) dt+ 7 +0(0)
I (U))
and
lim Jo(u + dh) — Jo(u)
50+ 1)
_ 0 =0 rt05) 05 1
-3 3 2
1 1 1 7 31
=+ -+ o=-< (16)

6 9 2 9 36

There is indeed a mismatch between the left and the right limits
(15) and (16).

Consequently, Py is actually a nonsmooth optimization prob-
lem and its optimal solutions cannot be characterized using the
standard technique of imposing that all the variations of the
augmented cost be equal to zero. This result also has impor-
tant practical consequences. Indeed, any standard optimization
technique requiring first (or second)-order regularity properties
is expected to have difficulty solving Py. In particular, when
trying to solve the problem using a discretization of the transport
equation, it is expected that the Hessian should diverge as the
spatial discretization is refined and the intrinsic nondifferentia-
bility of the optimization problem is exposed.

C. Formulation of a Regularized Approximated Problem
for Input-Dependent Delays

To overcome the mathematical difficulty stressed by Theo-
rem 1, we consider a regularized version of Py where the input
u of the system having z as state is itself made to be the state

of a pure integrator of an underlying input v. Take (vg, ug) €
L*([ro; 0], RP) x D([ro;0],RP), ro < 0 with (3) and

t

Vit € [ro; 0], uo(t) = uo(0) + / wimdr. (7
0

Let P € M, (R) be symmetric definite positive. The regularized

optimal control problem is

P min/0 L(t,z(t),u(t)) + %v(t)TPv(t) dt £ J(v)

st i(t) = f(t2(t), w(ra(t)), ult), u(r, (1))

Lro;0] = L0s Urg;0] = U0s V[rg;0] = V0-

Carrying computations similar to those of Section II-B, we
establish the following theorem.

Proposition 3: The stationarity conditions of P are given by
the following TPBVP:

x(t) = f([taxau]u)a .%(0) = 2o
at) = o(t)
Ulrg;0] = U0
MO = = S 20,0l — 2L (2,01 )
~ Lpsgirattor) (') (2)
af -1 T -1
AL 0T 267 )
M) = 2 a(m))”

1) = — (1 (1) ) — 2 (12,1
)

— Lppinceorry) () () (8

;i({ t), @ ul)T AT (1))
rt(min(t,r, (T)))

,/t A(r)T
OF gy BT g 06 T
B, % ) ity 7 e )

ryt (min(t,r, (T)))
— / A(r)T
t

. af T, T, U 7U(TU(T)) Ta¢ u
o ™ ) Gty 1 2 MO

v(T)=0, 0= Pu(t)+v(t).

IIl. NUMERICAL RESOLUTION ALGORITHM

Let zp € R™ and P € M,(R) be symmetric definite posi-
tive. Take (vo,ug) € L?([ro; 0], RP) x D([ro;0],RP), ro <0
with (3) and (17). Consider the following optimization problem,
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part of a subclass of the approximate regularized problem cov-
ered in Proposition 3 (no dependence on the past values of the
state and, without loss of generality, no terminal cost)

T 1 .
P min /O £t 2(6), u(t)) + 5o(t)" Polt) dt £ J(0)

st @(t) = ft,z(t), ult), u(r,(t)))
a(t)

where 7, is implicitly defined by the relation and in
particular 7o = r,(0). Let us consider the operator 3 :

L2([0; T],RP) — D' ([0; T],R?) x D'([0;T],R™)” such that
B(v) = (u, z, 1, v) is defined, according to Proposition 3, by

’U(t), I(O) = 20, Ulry;0] = U0, V[ry;0] = V0

u(t) = v(t), U0 = o (18)
i(t) = f(t,2(t), u(t), u(ru(t))), z(0) = zo (19)
MO = =5 (10, u(e)”
~ 2L (12 (0) (), ulra ()20 20)
AT) =0, v(T) =0 1)
(1) = ~ 22 1, a(0), u(t)"
= 2 (t,2(0), u(0) u(ru ()20
— Lo, () (1) (1) ()
of . 1 ~1
o @) 1),
(g (), ()T -2 ()
ryt (min(t,7, (T)))
— /t A(T)T
o1
oL a(r)ulr), (7))
o) 06
Sura(m) o @2

Using these notations, the stationarity conditions of P are
given by

(u,z, A, v) =B(v), Pv+rv=0.

A

Solving P directly is difficult. Defining (wy,, Ty, An, Vi) =
PB(v,,) we would rather solve a sequence of simpler auxiliary
problems (P,,), such that for all n. > 1, P, is defined accord-
ing to (23) and (24) shown at the bottom of this page, is one of the
two extra terms highlighted in Section II-C and is the sensitivity
of the objective w.r.t. the change of the delay law caused by
a change of the control input as derived from the calculus of
variations.

It will become apparent from the subsequent analysis that if
the sequence (P,,) admits a fixed point, itis necessarily a solution
of Proposition 3. Introducing S,, term allows us to recover an
unbiased approximation of the solution to the original problem
P by solving (P,,). On the other hand, the problems P,, are
much easier to solve than P because the delay law is fixed a
priori and one can easily apply powerful existing optimization
techniques, such as direct collocations, on these intermediate
problems. Based on this insight, our goal throughout the rest of
the discussion is to establish the conditions for the convergence
of this sequence. The following assumptions are considered.

Assumption 1: L is  twice continuously differen-
tiable while f, ¢ are continuously differentiable, and
there exists K >0 such that V(¢,z,u) € [0;T] %
R™ x RP, ||V2L(t,z,u)||l; < K and V(t, z,u,uy) €
[0; 7] x R™ x R? x RP, [|[Vf(t,z,u,u)|1 < K and
Vu € RP, |[Vo(u)|1 < K and, V2 L, Vf, V¢ are K-Lipschitz
continuous.

Assumption 2: There exists
L2(0: 7)), J* < J(v).

Assumption 3: There exists ¢min > 0 such that Yu €
]Rv ¢min < ¢(U)

Remark 3: Assumptions 1 and 2 are classically considered in
the optimization literature. Assumption 3 is usually considered
for systems with input-varying delays of hydraulic type [26]
so that 7/, be bounded away from zero and the input keeps on
reaching the plant.

Definition 1: Given « > 0, a sequence (vy,)nen- 18 called
a-admissible if for all n > 2, v,, is a solution (possibly local) of
Pn.

Let us define

J*€R such that Vv €

X 2 {ve L*([0;T)), 3R, € R, Yw € L*([0;T)),
J(w) < J(v) = [Jw]2 < R} (25)

the set of L? functions such that their .J-level set is included in
aball of L? and note g, £ Pv + v. The main result concerning
the sequence (P, ) is as follows.

T
1
Pria: min/ L(t, X1 (1), ung1 (8) + 5041 (8 Popga () + Sa(t) (w1 (t) — un(t)) + g””ﬂ—f—l(t) - Un(t)Hg dt (23)
0

2

Un+1

2

st Xni1 = f(t, Xng1 (1), unt1(1); uns1(ru, (1))

Up+1 = Upt1

Xnt1(0) = 20, Un+1(ry0) = U0; Vnt 1y, (0)0) = V0

Salt) = 9/

An(T)

/ru; (min(t,ry, (T)))

t

%(T»%(T%Un(ﬂaUn(Tun(T)))m T%(Un(t))

U (1o, (7)) d 0¢

(24)

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 20,2023 at 07:37:58 UTC from IEEE Xplore. Restrictions apply.



252 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 1, JANUARY 2021

Theorem 2: Under Assumptions 1, 2 and 3, given any
a-admissible sequence (v, )nen+ such that vq € X, if « is
large enough then (v,) satisfies lim, o ||gy, |2 =0 and
liInn—)oo ||Un+1 - vn||2 =0.

Proof: Given n € N*, let us assume that v, € X (which
is true for n = 1 by assumption) and, by extension of (25),
define X, = {v e L*([0;T]), J(v) < J(v,)} C X, which
is a bounded set in the sense of the L2 norm, i.e., there
exists R, >0 such that Yv € &, |[v]l2 < R,. Consider
Q : L2([0;T],R?)*> — D([0; T],R?)* x DY([0;T],R™)*
with Q(v,w) = (u, q, z, 1) defined as

a(t) = v(t), upg0) = o

q(t) = U}(t), d[ry;0] = U0 (26)
o(t) = [t x(t),u(t), ulre(t))), =(0) = zo 27)
. or .,
Mt) = =5t 2(t), u(t)
af T
= 5 (b e, ul), ulrg(t))" A1), M(T) = 0. (28)

Note the slight (but important) differences between ‘33 defined
by (18)-(22) and Q. The second argument of £ is used to
define the time-varying delay appearing in the right-hand side
of (27) and (28). Based on Assumption 1 and Cauchy exis-
tence and uniqueness theorem, £ is clearly defined. Given the
couples of arguments (v, w;), (ve,ws) and (v,w), we de-
fine (u1,q1,21,41) = Q(v1,w1), 11 = 1q,, (U2, G2, T2, h2) =
(v, ws), 12 £ 1y, and (u, g, z,1) = Q(v,w), 7 = r, which
are used to formulate the subsequent lemma.

Lemma 1 (Lipschitz continuity of Q): The two following in-
equalities hold, for all ¢ € [0; T7:

ua(t) —ur(t)]l1 < Vptl|va — v1l2 (29)
|u(t) — uollr < v/pt[v]|2. (30

There exists some (k‘l, ko, k3, k‘4) >0, (ll, lo, 13, l4) > 0 inde-
pendent of « such that, for all ¢ € [0; 7]

[2(t) — z1(t)[[1 < kallvz — valf2
+ k2 (1+ [loall2) - (14 [[wall2 + [Jwe|2)[|we — w1ll2
[(t) = zollr < k3 + kal|v]l2
[A2(t) = A1 (@) [lr < L (1 + [Jvil[2)[lva — v1ll2

+ (1 + [Jwillo + lwal2) (1 + [v1]|2)?[we —will2 (32)
Al < I3 + Lalv]2. (33)

Proof: See Appendix A. ]

The newly defined operator £ plays a key role w.r.t. the
sequence (v, ). Indeed, the stationarity conditions of P, 11 are
given by

3D

(un+17 Xn+17 An—i—l) = Q(Un+1; Un)

Noar(8) = — 22t Xar(8), s ()7

ou
- % (tv Xn+1 (t)v Un+1 (t), Up+1 (run (t)))TAnJrl(t)

— Loy, (o (D) (1) (B)

' ;Z: (rah(8), X1 (g (), g (r H(8)), g1 (£) T

Apga (1, () = Sa()”
0=Puyr1+ Nyy1 + a(vn-i-l - Un); Nn-l—l(T) = 0.

(34)

From this, we directly deduce that the solutions of P,, and P, 11
are related by

1 1

Unt+1 = Un — —Gu, + —€nt1 (35)
« Q

with €,,11 = —P(vp+1 — ) — (Npa1 — vy,). In turn, the cost
variation between v,, and v,, 11 is given by J(v,41) — J(vy,) =
fol G'(s)ds where G(s) = J(v, + (Vi1 —vn)s). Using
the adjoint state method (e.g., [47]), one computes,
after a few lines of calculus, J(vpy1)— J(vn) =
1T .
fo fo gvn+(”7L+17'Un)5(t)T(,Un+1(t) — v (1)) dtds, which
gives J(vny1) = J(vn) = _é”gvn % + é<g'[’n’ €n+t1) +
1 .
f() <gvn+(vn+1fvn)s — Gv, s Un+1 — vn> ds. Flnally

1 1
T(ng1) = J(Wn) < ==lg0, |13+ < llgwall2llensall>

1
+/ ||gvn+(vn+17vn)s — Gv, 2H'Un+1 - UnHQ ds. (36)
0

To go further into the convergence analysis, we need to establish
a bound for ||€,,+1]|2 given in the following proposition.

Proposition 4: There exists some (K1, ko, k3, £4) > 0 inde-
pendent of « such that, for all ¢ € [0; T

[Nnt1(t) = va(®)]l1 < (51 + Raflvnll2)[onsr = vnlla (B7)

and
[vn (D)1 < K3 + Kallvn[2- (38)

Proof: See Appendix B. |

Recalling (35), we have |[vni1 —vnll2 < 2(||go, |2 +
IPlalltnsr — vall2 + [Nagy - vll2).  Then, s
ing 37 lvngr —vnll2 < Zllgu, |2+ 2(1Pll2 + 51+
K2 ||vn|l2)|[vn+1 — vn |2 As a consequence, if

1P|z + k1 + kaRp < 39)

(which is always possible for « large enough as the left-hand
side of (39) is independent of «), we find that

1
a—|Pllz = r1 = Ko Rn

[vn+1 = vnll2 < v, ll2- (40)

In particular, we deduce an a priori bound on the norm of
. PloRp+r3+raR
Un+1, using (38) ||vpr1lle < Ry + 1Pz BntrstraRy

— 3o Inciden-
: a—||Pll2—k1—k2 Ry,
tally, this also leads to

HPHQ + K1+ Han
o — ||P||2 — K1 — Han

lentallz < lgv.ll2- (4D

To go further into the analysis of (36), we now have to prove
the Lipschitz continuity of g, = Pv + v w.r.t. v. To do this,
consider (v, v2) and the associated functions (uy, z1, A1, v1) =

B(v1) and (ug, T2, A2, v9) = P(v2).
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Proposition 5: There exists a continuous function i : ]Ri —
R increasing with each of its arguments and independent of «
such that, for all ¢ € [0; T

lva(t) —vi(®)llr < K([Jvoll2, lv1ll2, [[v2ll2) [lva — vill2- (42)

Proof: See Appendix C. |
One can then investigate further the decrease of cost for-
mulated in (36). Using (41) and (42), ones gets J(vn41) —

P K1+ro R, Fn(a
J(v) < —1(1 - Lkt g 24 Fuled |y, —
v, |13, where
Fn(a) = K(””OH%Rn;Rn
|Pll2Rr + k3 + KaRp
)+ 1Pl

a—|Pllz = r1 = Ko Ry

Then, using J(vns1) — J(vp) < —1(1 -

IPlla+r1+roRn aFn (o) 9 .
S TP raft, — @ P rma B2 190 ll2- - Since F,
is a decreasing function of «, there exists a value of « large

enough such that

(40)

IPll2 + k1 + K2Ry
a—||Pll2 — k1 — kaRp,
aF, (@)
 2(a—||Plla — #1 — Ko Ry)?

Cla,Ry) 21—

>0

(43)

and J(vpy1) — J(vn) < 0. In particular, this guarantees
that v,41 € &,. By induction, this implies that if one
picks a value « = ay such that («q, R;) satisfy (39) and
(43), then for all rank n, v, € X7 and (39) and (43)
hold. Then, Vn € N*, J(vp41) — J(v,) < —<lerfljg, 2.
This leads to Y2 [|gv, |3 < otarmy (J(vo) — J (Unt1)). Fi-
3 < oy (J(vo) — J*) and
o = 0 which concludes the proof. |

nally, we derive S ||gu,

limy, 00 [|Go,,

IV. NUMERICAL EXAMPLE

We now illustrate the solution method studied in Theo-
rem 2 using an example studied in [32]. Consider a second-
order unstable linear system with dynamics given by Z(t) —
2(t) + 2(t) = u(ry(t)), u(t) = v(t)having the following ini-
tial conditions: 2(0) =1, 2(0) =0, U0 = 1, Vpres0) =
0, and f:u(t)u(T) dr = 1. This can equivalently be recast
as X(t) = AX(t) + Bu(ry(t)), a(t)=wv(t), where X =
(2), A= (Pl 11), B = (?) Here, we seek to demonstrate the
results of our approach by achieving the tracking of a time-
varying reference. The optimal control problem is

v

T
Pomin [ 10) = 2015 + wo0) o
st X(t) = AX(t) + Bu(r,(t)), a(t) = v(t)

with 7' =10, w, = 0.01, and z,(¢) =1+ 3 sin(Z max(t —

2,0)). Given « = 5, we approach iteratively a solution of P by

initialize

Un, Un

1

integrate
-1
Ty Ty

—

solve P,
Ty An

l

compute

1

update to
Un41, Un41 IPOPT

solve P41

IPOPT

termination
criteria
reached?

Fig. 2. Flowchart of the algorithm.

constructing an a-admissible sequence? (v,, ). We pick the trivial
initialization value v1 = 0 and for all n > 1 apply the algorithm
whose flowchart is presented in Fig. 2. First, given v,,, compute
Up, and the delay law r,,, second, compute (z,,, A,,) and deduce
Sy, third, solve P,, .1 and obtain v,,41. The algorithm is ter-
minated when the variation of cost between two iterations goes
below a given tolerance. At each step, r,, can be derived from
(1) (either directly solving the integral equation or integrating
the associated delay differential equation), while (z,,, A,,) are
computed by solving P,, and retrieving its optimal primal and
adjoint states

T
min /0 12(8) = 2 (D)3 +wollo(®) 15 dt

st. X(t) = AX(t) + Bu(r,, (1), u(t) = v(t).

Practically, the resolution of P, and P, are performed us-
ing a direct collocation transcription method [48] with AMPL as
algebraic modeling language and IPOPT 3.11.8 as NLP solver.
The time horizon is divided into 100 finite elements of equal
size, each of them containing three Radau collocation points.
Figs. 3-5 report the optimal trajectory and the associated delay
law.

2This value was chosen using a trial and error approach, knowing a priori
that some large enough value of o would actually provide convergence.
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Input
Fig. 3. Optimal trajectory computed for P.
o 1 2 3 4 in 6 7 8 9 10
Output
Fig. 4. Optimal trajectory computed for P.
0 1 2 3 4 i 6 7 8 9 10
Fig. 5. Delay law of the optimal trajectory, as a function of time.

V. CONCLUSION

We carried the calculus of variations of the optimal control
problem for a system subject to an input-dependent hydraulic
delay. This establishes the noteworthy result that the straight-
forward formulation one could consider is ill-posed in the sense
that it does not yield a smooth problem. On the other hand, fixed
(i.e. not depending on the input) time-varying delays are much
simpler to treat, and do not generate the discussed nondifferen-
tiability in the Gateaux sense. Following this, we introduced
a regularization technique and an iterative algorithm, which
only requires to solve a sequence of auxiliary problems with
fixed time-varying delay laws, i.e., depending on the preceding

input in the sequence. This allows us to use state-of-the-art op-
timization methods in the resolution of each auxiliary problem,
while retrieving an unbiased solution. A convergence proof was
detailed, showing that, similarly to a trust region method, our
algorithm becomes equivalent to a gradient descent in the limit,
where the allowed step-size goes to zero. Numerical results were
given to illustrate the practical interest of the method.

An exciting problem raised by this article is the possibility of
extending our approach to a second-order method. This would
indeed greatly improve convergence performances in the neigh-
borhood of the solutions. Itis, however, not clear that the problem
has sufficient regularity to directly allow such an extension.
Establishing or disproving this would require the computation
of the problem second variation.

Another straightforward development could be to extend the
iterative optimization algorithm to the case of systems with hy-
draulic input-dependent state delays. This case is of importance
since it is instrumental in the modeling of recycling loops or
cascades of reacting units. The differentiability study presented
here already covers these cases, but the numerical resolution
algorithm does not.

This article has focused on the open-loop generation of opti-
mal trajectories for the system. A valuable improvement would
be to study the closed-loop behavior of such a methodology
used in a receding horizon framework for real-time control
applications. Stability conditions for such an MPC scheme could
be productively investigated, following recent trends on the
application of MPC to time-varying delays [49]-[52].

APPENDIX A
PROOF OF LEMMA 1

Proof: Using Cauchy—Schwarz inequality

fus(®) = s (0l = | [ ) - a(r) o

1

< Vptllvz —vi2 (44)
and similarly
[u(t) = uo(0)[l1 < Vpt|[v]2. (45)

We also have

laa(t) — (D)) = H [ 5r2(r),ua(o).uatralr)

—f(rz1(7), ua (1), ua (r1(7))) dr

It follows that
leat) — ar(8)]1 <
/0 K||ea(r) — 21(r) | dr + / KJua(r) — un ()| dr
+f ' Klua(ra(r) - wra()l

+ / KJus (ra(r)) — w1 (r1 (7)) 1 dr.
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Hence, a is a scalar function whose rate of change is lower bounded by
. the minimum of the two expressions of the previous equation.
[z2(t) = 21 ()1 < K/ lz2(7) = 21 (7)1 d7 As a consequence
0
: Pmin - |Y2 — 1
+ K/ [[ur (ra(7)) — ur (ra (7))l d7 $(uo(0)) + K(VPT(will2 + [[wzl2) + v/Prollvoll2)
0
<la —a . 47
+2 KT/pT|jvs — w12 46) < la(y2) — a(y1)| 47)

Then, since |a(y2) — a(y1)] = |a(yr) — b(y1)| = |r2(y1) —

Furthermore, we have
r1(y1)|, one has

t
t
[ aoated) = sl o [ st = sl dr <
/ || / 5)ds|)y dr < / / for(s)ldsdr o 0(u0(0)) + K(BT(lwrllo +lwalle) + yrollvoll)
r(7) ¢min
where a(s) £ min(ry(s), ra(s)) and b(s) & csup |ra(s) — ()] - (loall + llvolly)-
max(r1(s),r2(s)). Since 1 and ro are strictly increasing 5€[0;T]

functions, a and b also are invertible. From their respective def-

. t ¢
initions, it is also clear that a(t) < b(t) and a(0) = b(0) = ro. Using (1), we havef #qr(r))dr — frz(t) #(ga(7)) dr =0.

Then, using Fubini’s theorem Hence, |f7;1((tt)) d(ga(T ))d7'| < K [} |lg2(7) — q1(7)]1 d7 and
then [r(2) — 71 (8)] < K85 1, — wy | and

/ |t (ra(7)) — wi (r (7)) A7 t
lur(r2(7)) — ur(ri(7)) 1 dr <

a(t) b(t)
/ / llv1(s)]l1 des+/ / [lv1(s)]l1 d7ds. 0
2 KT\/pT

H
 $(u0(0) + K(VPT([[wrl2 + w2 ]l2) + v/Brollvoll2)
2
[ latra(r) = wraol e O
0 “(lvalla + llvoll1) [[we — w12 (48)
< sup (a7 '(s) =b(s))+ sup (t—Db1(s)) Substituting in (46), this leads to
s€lro;a(t)] sela(t);b(t)]

[#2(t) — @1 (t)]1 <

“(Jlorllx + llvolly) .
K/ 22(7) — 21(7) |1 d7 + 2 KT\/pT|[vs — v1|2
0

where |vg||; is used to denote |lvg||, = fr(l llvo(7)||, d7 and

L 0
similarly [|vol|, = fro ||U0(7')||§ dr. Then P(uo(0)) + K(vpT (lwi]2 + [[wall2) + \/Prollvol|2)
+ 52
It = e 2 K2 TVRT (o + ool e — o
L L L L Using Gronwall’s lemma
< | sup (a7 (s) b (s)) +a(a(t)) = b (a(t))
s€lrosa(®)] [22(t) = 21 ()[1 <
~(loalla + llvolly)- (¢(u0(0)) + K(VpT (|Jwil2 + |lwal[2) + v/Prollvol2)
Forany s € [ro; a(t)],a (s) — b~ 1(s) = y2 — y1 where y; and Donin
y2 are uniquely defined by s = a(y2) = b(y1). On the other 2 K270l lly + v W — W
hand, Vi € {1, 2}, using the Lipschitz continuity of ¢, (17), (26), PLlorll + ffeoll)lhwz = walfe
and integrating ¢ either backward or forward, we find +2 KT /pTva —u H2) oKt
ri(t) = M Synthetically, a conservative estimate is as follows:
¢(qi(ri(t)))
§ bonin [22(t) — 21 (D)1 < Fallvz — v
~ P(uo(0)) + K(VpTllwilly + /Prollvoll2) + k(14 [Jwillz + [[well2) (1 + [[v1]|2) [lwe — wall2.
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We also have for all ¢ € [0; T,

() — ol < /Hfm

Using the Lipschitz continuity of f

u(7), u(rg(7)))[l1 dr.

[[(t) = 2oy S/O 170, 20, u0(0), uo(ro))llr + K7

+ Kllz(7) = 2oll1 + KlJu(7) — uo(0)[l1
+ Kllu(r(r)) — uo(ro)||1 dr.
With Gronwall’s lemma and (45), we find

KT

l2() = zolls < T(I£(0, 2o, uo(0), uo(ro)) I+ + =~

+2 K\/pT||v|l2 + K/prol|ve||2)e™ ™

This is rewritten as
[2(t) — zoll1 < k3 + kal[v|2.
Let us define p : t — A(T —

(49)

t). Then, integrating backward,

one gets
£ oL
IOl < [ 15T = e =)0 = 7)
+ g—i(T —7,2(T = 7),u(T — 7),u(ry (T — 7)) pu(7)||1 dr.

Using the Lipschitz continuity of ‘9—5, the boundedness of g—i,
(44) and (49), we find

ol < & [ uolar + 7 (G2 0.0,00(0) + KT

+ K (ks + kalloll2) + K /pTloll2) -

We deduce that the norm of the adjoint state is bounded

oL
30l =T (G0 00.u0) + KT

+ K (ks + kaljv]|2) + K\/ﬁllsz) T

and
Ay < s+ La]jv]]2. (50)
We also have
[p2(t) — pa(t)[la
Lo
g/o a—i(T—T,IQ(T—T),uQ(T—T))
0
a—i(TfT,xl(T—T),ul(TfT)) : dr
o
+/0 %(T7T,I’Q(T7T),UQ(T*T),UQ(TQ(T*T)))T
pa(T) %(T—T,l‘l(T—T),ul(T—T)
ur(ri(T =)' - (r)| dr.
1

Consequently

2 () = pa (B2

gKAHm@—ﬂ—m@—ﬂm

+ ||uz(T —7) —ur (T — 7)1 d7

+ [ Klalr) = o)l

" H (gi(T — t,25(T — 7),ua(T — 1), us(ra(T — 7)))7
af

_ agj(T_t7x1(T_T)’ul(T_T)’u1(7'1(T—T)))T>
pp(7) || dr

Then

12(t) — pa ()11
< K1 +13+ Uvi]l2)

/ lea(T = 7) — 22 (T = 7)1
+||ue(T —7) —ur (T — 7)1 d7
p (7)1

+ ua(ra(T = 1)) = wa (r (T = ) ]| 2 (7) |1 d.

And, reusing (48), we obtain

ll2(t)

t
- / o — o2 + Ea(L + [lwn 2 + [lwa]l2)
0

— ()] < K1+ 13+ lavi]2)

(L floll2)lwz — will2 + /pT|lvg — vi 2 dT

t
K [ alr) = i (@) + VT on = e
0

+ (I3 + lufvi||2)2 K* T/pT
(uo) + K(VPT(|lwi 2 + [Jwz]l2) + /PTollvoll2)

2
min

“(loalls + llvoll 1) lws — wall2-
Again, using Gronwall’s lemma, one finds

[A2(t) — A1 (B)|lr < (1 + [[vr][2) vz — v1ll2

+ (1 + [Jwill2 + lwall2) (X + [vill2)*lws — wi |2
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APPENDIX B
PROOF OF PROPOSITION 4

Proof: We have

APPENDIX C
PROOF OF PROPOSITION 5

Proof: From (22), one has

N () = va(6)s Jv(t) = (0
T T
< [ |5 X - G| <] [ G m@) - S . n)
| Xt s a5 () A ) 7720, 12 (7). 3(72() ()
o
O () 0 ) (7)) ()| = pa (MM w()w (M) A()
' of 1 S 4 T
w1 o | F ol (g (7)ol (7)), walr (7)), ()
+ (2 () X (' (7). u
/min(t”""(T))‘ 8(% o) o) . ha(ry (1)) - oy (1) (7) (75 (7)
Upy1 (77, (7))s Ung1 (7)) Ay A
o R - L @ 7 ) 07 ) ()
~u, () AT ) Ly () ()
un(r,;l(T)),Un(T)))Ln(Tgl(T)) 1 (T'r_tl)/(T) dr. +/7‘2 (mm(T,m(T))))LZ(S)T

of
. P (s,22(5),uz(s), uz(ra(s)))
M s@u T z
onalra(s)) 727

r1H(min(7,r1(7T)))
- / A(s)”

Using a change of variables in the second integral, we find
[Nnt1(t) = vn(t)l1

T
< K/t [Xn41(7) = 2n (7)1 + tnta(T) = ual7)lh

F [ An41(7) = An (7)1 of
+ [An ()l (1 Xn1(7) = 2 (7)1 " Bu, (1) unls) wlr(s))
+ [lunt1(7) = un(7)lly vi(ri(s)) 99 T
" ds—(u1(7))" dr
+ [[tn 1 (7o (7)) = tun (o (7)) 1) dr Hur(r1(s))) — Ou !
T . . . .
LK 1A (7) = An(P)] Hence, using a change of variable in two of the integrals above,

and after a Cauchy—Schwarz inequality, one gets

() —ni(t)|h
/ (’9_L (7, 2 (7), up(1))* — g—ﬁ(Tvxl(T>vul(T>)T

! (min(t,r, (T)))
(Il (X1 (1) = 2 (7)1 I
g1 () = wn (7)l4
t tn 1 (7)) = i (7 (7)) [11) A7 ‘

T
Finally, using the various Lipschitz continuity results established + ou (T 22(7), u2(7), uz(r2(7)))" A2(7)
in Lemma 1, we find o

= L () (), ()T () dr

1

[Nas1(®) = vl < KT (VT + k1 + 2021+ [on]2) ,
of T
+ o (T @2(7); ua(7), u2(r2(7)))
2(ls + Isllvnl|) VDT + k1)) lons1 = a2 73 (minra (1)) O
Ao(T)dT
This can be rewritten as ||[N,1(t) — ()| < (k1 + T of
Ka|lvnl|2)]|vnt1 — vnll2. Ttis also straightforward to show that, - / o —— (7,21 (7), w1 (1), u1 (r1 (1)) T
for some positive constants x3, k4, one has ||, (t)||1 < k3 + ri* (min(t,ry (1)) OUr
Kallvn][2- [ | a(r)dr
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T r;l(min(T,T‘z(T))) ')»1(7') dTH]
+ / / ra(s)T
t T 24
8f (min(7,72(
67%(3,562(5)7U2(8)7u2(7‘2(8))) )\.Q(S)T
r1 Y (min(r,m1 (7))

Suslrato) “au ) D 5), 1), )
@) )
A1 (s) va(ra(s)) . 99

Hualra(s))) P ou 2T AT

1

of
’ aiur(saxl(S)vul(S),Ul(Tl(S)))
_u(r(s) s% ui (N dr ryt (min(r,r1 (7)) .
Hun () o) A7) 3a(s)
Noting that . %(57-752(3),UQ(S),’UQ(’I“Q(S)))

T Va2 (T2(S
/ 2L ) ua(r), o) A 452 ()

31 (min(t,rs(T))) Otir

Ao(T)dT —a(s)T- ;{T (s,21(8),u1(s),u1(r1(s)))
_/T or = (7, 21(7), ua (7), ur (r1(7)))" vi(ri(s)) | 99
ry (mm(t rl(T))) 8ur m dsaf(ul(T)) dT X .
A (T)dr £c
1 We have

</t

of T
~ou (7, 21(7), ua (), ur (r1(7))) " A1 (7)

of . 75t (min(t,r2(T)))
g (7o2(7), ua(7), ua(ra () T 22(7) A< / K(ls + lallva]lz2) d7
r1 Y (min(t,r1(T)))

dr The definition of the delay (1) gives us
1

/rzl(min(t,r2(T))) af ( ( ) ( ) ( ( )))T /r21(m1n(t ro(T))) (b(u?(T))dT
+ T, 21(T ), u1(T), ur(r1(7 min(t.r
ri (min(t,r1 (7)) aur (t,r2(T))
/rll(min(t,rl(T))) ( ( ))
= d(up (1)) dr.
~ha(r)dr min(t,r1(T))
' It follows that
We get

r;l (min(t,r2(T)))
/ O (7)) dr =
r;l (min(t,r1(T)))

Jostt) 2 ()1 o
<K(T 1) swp (lealr) — ma(D)s + () — ()], [ ) — ot e

7El0:T] win(t,r (1))
+2 || A2(7) = A1 (7)]1) min(t,r1 (T))
+ 2K(T — t)(I3 + laflv1]]2) - /min(t,rg(T)) Pluz(r) dr. Gl
Moreover, (1) also implies
(T:E?T](IISEQ(T) —21(7) 1 4 2[uz(7) —ur (7))

min(t,r1(T)) ri(T)
/ bluz(r)) dr] < | $(ua(7)) dr

hin(t,ro (T)) r2(T)

T
+ / |u1<r2<t>>—u1<n<t>>1dr>

T
/ B(uz(r)) — (s (7)) dr

1(T)

r;l(min(t,m(T)))
* / o —=(r,21(7), w1 (1), wr (r1(7))) "

L (min(t,r (1)) OUr < K(T — 7o)/ pT||v2 — vill5-
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Then, using (51) and performing the same calculation
ot (min(t, ro(T))) — ry H(min(t, 1 (T)))

_ 2K (T )i
o d)mm

[vg — 1|y

Finally, we have

20 _
42K a; ro) VBT

To treat B, we note

(I3 + lal[vl|2) [lv2 — val,-

a: [ro;max(ri(T),r2(T))] — [0;T]
¢+ min (r; ' (min(r, 71 (7)), r5  (min(r, r2(7))))
and
b: [ro;min(ri(T),ro(T))] — [0;T]
t = max (ry ' (min(r, 71 (7)), 75" (min(r, 72(T)))) .
Since 7 and 7, * are both strictly increasing functions, a and
b both are invertible functions and

b(t)
oe /a(t) /t I22(s gi(8’x2(5)’“2(8)’“2(7“2(8)))

) va(ra(s)) 09
P(uz(r2(s))) Ou
1( a'f
/b(t) /b 1(s) ‘ ' Ouy
. va(ra(s)) O
P(uz(r2(s))) Ou

drds
1

= (ua(7))

(s,22(s), u2(s), uz(ra2(s)))

dr ds.
1

5 (ua(7))

Then, by the Lipschitz continuity of % and the boundedness of
af

ou,.

Bg< sup (a7 M(s)—t)+ sup <a1<s>b1<s>>>
[a(t);b(2)]

s€[b(t);T]

2
¢min
Besides, by the Cauchy—Schwarz inequality

/0 |v2<r2<s>>|1dss¢ﬁ\/ / s (ra(s)) 3 s

’I‘z(T)
<VpT / llva(s
r2(0)

- \/pT(sb(uO(O)) + KvVpT||ve|l2 + K /Prollvoll2)
a ¢min

(I3 + laf[va][2)

T
/ loa(ra(s)) 1 ds.
0

50 (r2!)(s)ds

“(llv2ll2 + llvoll2)

and since a < b

sup
s€[b(t);T]

B< (al(b(t)) = b7 (b(1)) + (a™'(s) - bl(S)))

2
s+ lileal) ¢ Tieal0h 4 EpTlret

“(llvzll2 + llvoll2)-

Finally, after a few lines of calculus similar to (47), we get
2

K
B <2(l3 + l4||v2\|2)¢ “([lvall2 + llvoll2) [[ve — v l2

min

| \/pm(uo(o» + K/pT|vs]l2) + K /B |vo |2

¢min
ETVPT(¢(u0(0)) + KvpT|or]l2 + K /Prolvoll2)

Using the same kind of computations on C, we show that, for
all t € [0; 77,

[v2(t) =1 (®)]lx < K(llvollz, [[v1]l2, lvz2]l2) lvz — v1ll2
where K : Ri — R is a continuous function such that for all ¢
r; <z = K(xl,.%‘g,l‘g) < IC(Zl,ZQ,Zg)

which gives the conclusion. |
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