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Abstract—This article applies the Support Vector
Data Description (SVDD) algorithm to approximate
the graph of differential inclusions. It is proven that
Gaussian SVDD can recover any compact graph if a
large enough dataset is available. This data-driven ap-
proach can be used to identify discrete-valued param-
eters of nonlinear dynamical systems with unknown
input signal. For illustration, the presented method
is applied here both on real and synthetic data for
detection of transportation modes based on linear
velocity measurements.

I. Introduction

Numerous recent studies have envisioned extending
Machine Learning (ML) techniques to the automatic
control domain ([1], [2]). Profitable pairing has already
been achieved for anomaly detection [3] and system
identification [4], among others. This article follows this
trend, and, for its part, relates one aspect of the vast
question of nonlinear dynamical system identification to
a ML task in the framework of set-valued analysis.

The studied problem is as follows. Consider N0 > 1
forced dynamical systems, each denoted by (fj , Uj), for
some index j = 1, ..., N0 that can be interpreted as
a discrete-valued parameter (or as a label in the ML
terminology). The systems have as governing equations

q′(t) = fj(q(t), u(t))

where the state vector is q ∈ Rn, with the particularity
that the input signal u(·) ∈ Uj is unknown. Each set Uj
is defined as the set of functions containing every input
signal that is possible given the value of j. For example,
without further restriction, the sets Uj can be subsets
of some functional space (e.g. C0, L2) with bounded
values in Rm. As stated above, the forcing signal u(·) is
unknown. Further, despite being unambiguously defined,
the sets Uj are unknown as well. To account for this
lack of information, the governing equations above are
rewritten as differential inclusions:

q′(t) ∈ Fj(q(t)) , {fj(q(t), u(t)) |u(·) ∈ Uj} (1)
Kj , {(q, q′) | q′ ∈ Fj(q)} ⊂ Rn × Rn
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where the set-valued map Fj is identified with its graph1

Kj .
In this article, it is assumed that for each value of j,

some properly labeled values (samples) of (q(·), q′(·))
are available, forming N0 datasets. We first build ap-
proximations of the graphs Kj from these data. Once
these approximations are available, they can be used
for parameter estimation when presented with unlabeled
recordings of samples of (q(·), q′(·)). This central question
here boils down to determining the possible values of j.
Classically (see e.g. [5]), most techniques in parameter

estimation assume a smooth and known dependence of
the measurements on the unknown i, and consider the
data as (ordered) time series. In many cases, estimation is
treated as an extended-state reconstruction problem, us-
ing for instance Kalman filters or state observers with un-
known inputs. Numerous references develop techniques of
this type (see [6] and references therein), however we do
not make these assumptions. Consequently, the proposed
approach is not to be mistaken up with extensions of the
Kalman perspective to set-valued mappings ([7], [8]).

The framework advocated here considers the data as
labeled clouds of points (q, q′) 2, each cloud correspond-
ing to an unknown subset of the unknown Uj . Graphi-
cally, constructing an approximation of Kj amounts to
delineating a subset of R2n based on the data (learning
step). Once the learning step is achieved, when (new)
unlabeled data become available, identifying j amounts
to testing the membership of the new data to the N0
learned subsets (testing step).
To define approximations of the sets (Kj)j , we ap-

ply the Support Vector Data Description (SVDD [14])
algorithm. SVDD is a kernel method that computes a
minimal enclosing ball around the data. The output of
the algorithm is an indicator function, the evaluation of
which allows to readily test membership. In this article,
it is shown that the output function for the Gaussian
kernel can estimate any compact set of R2n (we refer
to this property by “set-consistency”). Two indexes i0
and i1 can then be distinguished if the approximations
of their Kj differ (which depends on both fj and Uj). For
applications, both learning and testing have to be compu-

1The graph is bounded whenever the state and its derivatives are
bounded for u(·) ∈ Uj .

2If q′ is not directly available from measurements, it can be
estimated through filtering [9], [10], Kriging [11], numerical differ-
entiation [12] or high gains observers [13] among other possibilities,
possibly with a non-negligible level of noise.
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tationally tractable and robust to noise. As highlighted in
the article, SVDD satisfies both conditions. To show the
applicability and relevance of the method, we consider
the problem of detecting transportation modes. This
topic has recently attracted much attention ([15],[16]),
especially using smartphone inertial data, with reference
datasets such as Geolife [17].

The paper is organized as follows. In Section II, the
problem under consideration is stated, the SVDD al-
gorithm is presented, and illustrated on GPS-measured
linear velocity data for transportation mode detection.
The main theoretical contribution (Proposition 1 on the
set-consistency of Gaussian SVDD) is to be found in Sec-
tion III. Finally, a simulation is performed in Section IV
to discuss the numerical behavior of the algorithm.

II. Approximating discrete sets with SVDD
A. Notations

Let F be a closed set-valued map defining a differential
inclusion (1). Its graph K can be represented by an
indicator function φ, taking non-positive values only
in K. We denote KN by an approximation of K based
on a labeled dataset XN , {(qi, q′i)}i≤N composed of N
couples xi = (qi, q′i) ∈ Rd with d = 2n.

B. Theoretical framework of the SVDD algorithm
The graph estimation problem for K can be tackled

through the SVDD algorithm, which is a nonlinear ver-
sion of the minimal enclosing ball problem (MEB [18]).
The latter defines the ball of smallest volume of Rd con-
taining the set XN . The center of the MEB and its radius
are the solutions of the following convex optimization
problem:

min
c∈Rd,R∈R

R2 s.t. ∀i ≤ N, ‖xi − c‖Rd ≤ R (2)

The SVDD algorithm offers the flexibility and nonlin-
earity required to fit general sets (as shown later in
Proposition 1). Rather than looking for a ball in Rd
endowed with its usual topology, Rd is here embedded
in a reproducing kernel Hilbert space (RKHS) Hk(Rd)
where one seeks a minimal enclosing ball. For clarity, we
first sketch RKHS theory before describing further the
SVDD problem and its solution.

Definition 1. An RKHS (Hk, (·, ·)Hk) defined on a setX
is a Hilbert space of real-valued functions on X such that
there exists a reproducing kernel k : X ×X → R, i.e. a
function satisfying:
- ∀x ∈ X, kx(·) ∈ Hk(X) where kx :

{
X → R
y 7→ k(x, y)

- ∀x ∈ X, ∀ f ∈ Hk(X), f(x) = (f, kx)Hk
The following summarized fundamental characteriza-

tion allows for all the computations performed below.

Theorem 1 (Aronszajn [19]). If a Hilbert space of
functions on X is an RKHS Hk(X), then k(·, ·) is a
positive definite kernel, i.e. a kernel being both:

-positive: ∀m, ∀(ai, xi) ∈ (R×X)m ,
∑
aiajk(xi, xj) ≥ 0

-and symmetrical: ∀x, y ∈ X, k(x, y) = k(y, x)
Conversely a positive definite kernel k on X is re-

producing for a unique Hk(X). Or, equivalently, there
exists a Hilbert space H of real-valued functions and an
embedding Φk : X → H s.t. ∀x, x′ ∈ X, k(x, x′) =
(Φk(x),Φk(x′))H.

Choosing a positive definite kernel k on X, one can
represent any point x ∈ X as a function kx(·) ∈ Hk(X).
Some classical examples of positive definite kernels on Rd
include the Gaussian, Laplacian and linear kernels:

kσ(x, y) = exp
(
−‖x− y‖2

Rd/(2σ
2)
)
for σ > 0, (3)

kλ(x, y) = exp(−λ‖x− y‖Rd) for λ ≥ 0 (4)
klin(x, y) = (x, y)Rd (5)

C. The SVDD algorithm

The SVDD algorithm recasts the MEB problem (2) in
an RKHS 3 and considers

min
f∈Hk,R∈R

R2 s.t. ∀ i ≤ N, ‖k(xi, ·)− f(·)‖Hk ≤ R (6)

As shown in [14], the solution (fk, Rk) of (6) is of the
form fk(·) ,

∑N
i=1 αik(xi, ·), where (αi)i solves the dual

problem of (6), which can be solved through quadratic
programming:

min
α∈RN+

αTGα− αTdiag(G) s.t.
N∑
i=1

αi = 1 (7)

where the matrix G is the Gram matrix of the (xi)i≤N
(i.e. G , (k(xi, xj))i,j≤N ) and diag(G) is the diagonal
matrix extracted from G. Based on fk, one can readily
define a membership function φk on Rd:

φk(x) , ‖kx(·)− fk(·)‖2
Hk −R

2
k (8)

= k(x, x)−R2
k +

∑
i,j≤N

αiαjk(xi, xj)− 2
∑
i≤N

αik(xi, x)

In turn, the function φk defines the sought-after closed
set KN :

KN , {x ∈ Rd | φk(x) ≤ 0}

Interestingly, the complementarity slackness of the
Karush–Kuhn–Tucker (KKT) conditions of (7) ensure
that for xi interior to KN , we have αi = 0. Thus, except
for the so-called support vectors xi on the boundary
of KN , most coefficients are null in (8), which leads
to a sparse representation of the set KN by means
of an indicator function that is quick to evaluate. By
construction, XN ⊂ KN .

3The MEB in Rd corresponds to SVDD with the linear kernel
klin.
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D. Extension of SVDD to noisy data
Because outliers can be present in the data 4, not all

the points should be included in the estimate KN . Fol-
lowing [14], problem (6) can be adapted by introducing
some slack variables ξi ≥ 0 :

min
f∈Hk, R∈R, ξ∈RN+

∀ i≤N,‖k(xi,·)−f(·)‖2
Hk
≤R2+M+ξi

(
R2 + 1

νN

N∑
i=1

ξi

)
(9)

where the parameter ν ∈]0, 1] and the margin M ∈
R allow to adjust the level of conservatism. The dual
problem of (9) writes in a form similar to (7):

min
α∈RN

∀i≤N, 1
νN≥αi≥0

αTGα−αT ·diag(G) s.t.
N∑
i=1

αi = 1 (10)

The value of the parameter ν can be related to the
quantiles and minimum volume sets of the distribution
of points. For 1 ≥ νN , every point is considered as a
true point. Moreover the solution α is piecewise linear
in ν as shown in [20], and ν is an upper bound on the
proportion of outliers [21]. Some sparsity is necessarily
lost as the set of support vectors is enlarged compared
to the noiseless case.
E. Discussion on application of SVDD and illustration
on real data

Among the available set approximation procedures,
SVDD has many pros making it a suitable choice for
the problem of identification of control systems, among
which the detection of transportation modes, further
exposed in Section IV. The sparsity of the solution,
mentioned in § II-C, holds for all support vector machines
and allows for the quick computation of the indicator
functions (8), irrespective of the offline training cost.
SVDD is non-parametric (with the obvious exception of
the choice of kernels) as the model class is a Hilbert space
of functions, so it can be applied to compare systems
with the same variables but vastly different governing
equations.

However, SVDD has some classical pitfalls. Some of
them have been circumscribed as follows: limiting the
effect of noise on the training step by taking out sheer
outliers through an L0-penalty [22]; accelerating the
computation for online training [23]; performing inter-
pretation of the output fk by converting the membership
scores to probabilities [24]. Interestingly, none of these
problems occurs in our context. Although, the considered
time-series are ridden with noise, sheer anomalies can be
smoothed out through continuity assumptions bearing
on the underlying dynamics. In contrast, the low-power
additive noise, due to sensors or to numerical differenti-
ation, has little impact on the SVDD output. Below, we
used a Savistky-Golay filter to smooth the data q(·) and
compute its derivative.

4especially if the filtering employed to generate the q′ samples
are dealing with missing or incorrectly time-stamped data
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Fig. 1: Graph approximations obtained on a reference
dataset [16]. The envelopes of various modes of trans-
portation are computed through SVDD in the (speed-
acceleration) phase space (v, a) with parameter ν = 5%
and various Gaussian kernels of width σ ∈ [0.1, 0.5]

Moreover, the typical applications of travel mode de-
tection are in low dimension, and allow for offline compu-
tation of the boundaries, taking advantage of the online
efficiency. As an illustration, anticipating on further stud-
ies conducted in Section IV, SVDD is applied to a dataset
provided in [16], where the GPS-measured linear velocity
was recorded at 1Hz for a variety of transportation
modes. The linear acceleration was computed differen-
tiating the velocity after smoothing the data (to avoid
problems related to accelerometer measurements). On
Fig.1, the five modes of transportation are represented by
their SVDD envelopes in the (speed-acceleration) phase
space (v, a). The envelopes overlap, so it is only when a
trajectory leaves a set that it is made clear it does not
belong to the corresponding class. To resolve ambiguities,
one can for instance assign a trajectory to the class
of smallest volume in Rd among the compatible ones,
as it is the class that is easiest to leave. Developing
such ambiguity resolution techniques is left out of the
discussion and is postponed to future work.

In this example, SVDD was computed with Gaussian
kernels kσ, which variances σ2 were adapted to each
dynamic to get sharp estimates. However manipulat-
ing multiple σ entails considering functions in several
RKHSs, with different norms. Furthermore, for every
mode, the SVDD estimates are somewhat ill-behaved:
when increasing σ, the boundary does not expand mono-
tonically (in the inclusion sense). This calls for studies on
comparison of multiple RKHSs and the increasingness
property, which are the topic of the next section.

III. Theoretical guarantees on set estimation
Let XN , {xi}i≤N be a finite set of distinct points of

X, k be a positive definite kernel on X and Hk(X) be
its associated RKHS. In studies on RKHSs, the kernel
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is usually kept fixed. However, we seek some robustness
of the estimate KN with respect to the kernel. This
is the path we explore below considering multiple kernels.

Notations: We denote by BRd(x,R) the closed ball in
Rd of center x and radius R and by Bk(f,R) the closed
ball in Hk(X). For any subset K, the set co(K) desig-
nates its convex hull and ∂K stands for its boundary. We
denote by BSV DDk , Bk(fk, Rk) the minimal enclosing
ball of {kxi}i = Φk(XN ) in Hk(X). Let KSV DD

k ,
Φ−1
k (BSV DDk ) ⊂ X.
We make two assumptions on the kernel k:

Assumption 1. 0 /∈ co({kxi(·)}i≤N )

Assumption 2. ∃κk ∈ R, ∀x ∈ X, k(x, x) = κk

Assumption 1 is verified for X = Rd by the Gaus-
sian (3) and Laplacian kernels (4), due to the positivity
of the functions, but not by the linear kernel (5).

Assumption 2 is verified for X = Rd by all the
translation-invariant continuous positive definite kernels,
which, owing to Bochner’s theorem [25], are of the form
h(‖x − y‖Rd) with h being the Fourier transform of a
finite positive measure on Rd.

A. Main results
We first obtain the following result for noiseless SVDD.

Lemma 1 (SVDD as an orthogonal projection). Under
Assumptions 1 and 2, the center fk of BSV DDk is the
orthogonal projection of 0 for the norm ‖ · ‖k onto
co({kxi}i). The solution (fk, Rk) of the noiseless SVDD
problem (6) satisfies:

fk ,
N∑
i=1

αikxi = arg min
f∈co({kxi}i)

‖f‖2
k ; Rk =

√
κk − ‖fk‖2

k

(11)
Furthermore:

∀x ∈ X, x ∈ KSV DD
k ⇔ ‖fk‖2

k ≤ fk(x) (12)

Proof. The Lagrangian L corresponding to (6) is

L(f, α,R) , R2 +
N∑
i=1

αi
(
‖kxi − f‖2

k −R2) (13)

The KKT conditions require the solution (f,R, α) to
satisfy:

0 = ∂L
∂R

(f,R, α) = 2R
(

1−
N∑
i=1

αi

)

0 = ∂L
∂f

(f,R, α) = 2
(
f −

N∑
i=1

αikxi

)
0 ≤ αi and 0 ≤ R

0 = αi

(
‖kxi − f‖2

k −R
2)

Therefore, the solution f belongs to co({kxi}i) ⊂ Hk.
For the p ∈ [[1, N ]] points (kxij )j≤p ∈ ∂B(f,R) having a
non-null coefficient α, we have:

∀j ≤ p, ‖kxij −f‖
2
k = R

2 = κk+‖f‖2
k−2(kxij , f)k (14)

Hence, the scalar product (kxij , f)k is constant w.r.t. j.

∀j ≤ p, (kxij , f)k = (
p∑
j=1

αjkxij , f)k = ‖f‖2
k

So R2 = κk − ‖f‖2
k, and the constraints of (6) become:

‖kxi − f‖2
k ≤ κk − ‖f‖2

k ⇔ 0 ≤ (kxi − f, f)k (15)

Owing to Assumption 1 and as f lies in co({kxi}i),
we can apply the Best Approximation Theorem: the
constraints require f to be the orthogonal projection of
0 for ‖ · ‖k onto co({kxi}i). Conversely, f satisfies the
constraints. Finally, (12) stems from the same calculus
as (15).

For the Gaussian kernel (3) we write for conciseness
Hσ , Hkσ and KSV DD

σ , KSV DD
kσ

(same for Bσ and
Φσ). We recall the result of [26, Corollary 3.14];{ ∀σ2 ≥ σ1 > 0, Hσ2(Rd) ⊂ Hσ1(Rd)

∀f ∈ Hσ2(Rd), ‖f‖σ1 ≤
(
σ2
σ1

)d/2
‖f‖σ2

(16)

from which we derive the following result.

Lemma 2 (Norm inequalities for Gaussian kernels). Let
σ2 ≥ σ1 > 0. The optimal fσ1 , fσ2 defined in Lemma 1
satisfy the inequality:(

σ2

σ1

)d
‖fσ1‖2

σ1
≥ ‖fσ2‖2

σ2
≥ 1
N

(17)

Proof. Let σ2 ≥ σ1 > 0, and fσ2 =
∑N
j=1 αi,σ2kσ2,xi be

as in (11). Define analogously (αi,σ1)i. Below, we use the
classical result that

1
N

= min
{αi≥0 |

∑
i≤N

αi=1}

∑
i≤N

α2
i

and, as the Gaussian kernel has positive values and
αi,σ2 ≥ 0, we lower bound ‖fσ2‖2

σ2
by the diagonal terms:

‖fσ2‖2
σ2

=
∑
i,j≤N

αi,σ2αj,σ2kσ2(xi, xj) ≥
∑
i≤N

α2
i,σ2
≥ 1
N

Set f̃σ1 =
∑N
j=1 αi,σ1kσ2,xi . Owing to Lemma 1, fσ2 is

the element of smallest norm ‖ · ‖σ2 in co({kσ2,xi}i).
Hence

‖f̃σ1‖2
σ2
≥ ‖fσ2‖2

σ2

Then, after some calculus, and after introducing the dual
RKHS space which we omit for brevity, one gets(

σ2

σ1

)d
‖fσ1‖2

σ1
≥ ‖f̃σ1‖2

σ2

This concludes the proof.
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Relation (16) states that the Gaussian RKHSs form
an increasing sequence of embeddings when σ decreases.
This is a first step to compare the indicator functions
defined by (8). Furthermore the SVDD algorithm with
the Gaussian kernel is "set-consistent", in the sense that
with enough data it can recover any compact set of Rd:

Proposition 1 (Main result: Set-consistency of Gaus-
sian SVDD). The estimate KSV DD

σ of XN by the SVDD
algorithm for Gaussian kernels satisfies the following two
properties

i) : ∀ ε > 0, ∃σ0 > 0, s.t.
∀ 0 < σ ≤ σ0, K

SV DD
σ ⊂ XN +BRd(0, ε) (18)

ii) : ∃M > 0, ∀σ > 0, KSV DD
σ ⊂ XN +BRd(0,M)

(19)

Proof. Let ε > 0, σ > 0 and x ∈ KSV DD
σ . We combine

(12) and (17):
1
N
≤ ‖fσ‖2

σ ≤ fσ(x) =
∑
i≤N

αi,σe
−‖x−xi‖2

Rd
/(2σ2)

≤ e−mini ‖x−xi‖2
Rd
/(2σ2)

Thus, mini ‖x − xi‖2
Rd ≤ 2σ2 lnN . Set σ0 , ε/

√
2 lnN .

Therefore, for any σ ∈]0, σ0], we have that
KSV DD
σ ⊂ XN +BRd(0, ε).
Fix M , supi,j≤N ‖xi − xj‖Rd and fσ =

∑
i≤N αikxi

as in (11). Let y ∈ Rd\ (XN +BRd(0,M)), then:

∀ i, j ≤ N, kσ(y, xi) = e−‖y−xi‖
2
Rd
/(2σ2)

< e−M
2/(2σ2)

≤ e−‖xi−xj‖
2
Rd
/(2σ2) = kσ(xi, xj)

∀ i ≤ N,
∑
i≤N

αikσ(y, xi) = (
∑
j≤N

αj)(
∑
i≤N

αikσ(y, xi))

<
∑
i,j≤N

αiαjkσ(xi, xj) = ‖fσ‖2
σ

We conclude from (12) that y /∈ KSV DD
σ . This yields

KSV DD
σ ⊂ XN +BRd(0,M).

Relations (18) and (19) show that the sequence
(KSV DD

σ )σ>0 is bounded and, for σ small enough, lies in
a neighborhood of XN for the norm of Rd. In the limit
case, when N tends to infinity, if X∞ is dense in a given
compact K ⊂ Rd, then KSV DD

σ is dense as well and lies
in a neighborhood of K.

B. Further results
Numerical experiments confirm that the sequence

(KSV DD
σ )σ>0 of sets produced by the SVDD algorithm

for Gaussian kernels is not increasing with σ w.r.t the
inclusion. The increasingness property of a sequence of
sets is akin to a "stability property" in the sense that the
predictions drawn for a "large" kernel should contain the
predictions obtained for "narrower" kernels.

As an extension, for a given kernel kσ, we may look for
a modified ball Bσ(f̃σ, R̃σ), that should at least contain

the set {kxi}i. We may also wish for the modified ball
to include Φk(KSV DD

σ ), i.e. the set of all the kx that
are in the minimal enclosing ball of {kxi}i in Hσ. One
possibility is to keep the center fixed and to expand
the radius accordingly. We first state a proposition for
general kernels.

Proposition 2. Let k1 and k2 be two positive definite
kernels on X, satisfying Assumptions 1 and 2, and such
that for some γ > 0 the kernel γ2k1 − k2 is positive
definite (or equivalently that Hk2(X) ⊂ Hk1(X)). Then:
co({k2(xi, ·)}i) ⊂ Bk2(fk2 , Rk2) ⊂ Bk1(fk2 , γRk2) ⊂
Hk1(X).

Proof. From [27, Th 2.17], we deduce that the existence
of γ > 0 s.t. the kernel γ2k1 − k2 is positive definite is
equivalent to the inclusion Hk2(X) ⊂ Hk1(X), the iden-
tity being continuous, of norm smaller than γ. Therefore
we have Bk2(fk2 , Rk2) ⊂ Bk1(fk2 , γRk2) ⊂ Hk1(X) and,
by definition of the minimal enclosing ball coupled with
the triangular inequality, we obtain co({k2(xi, ·)}i) ⊂
Bk2(fk2 , Rk2). This completes the proof.

Corollary 1 (Increasingness of σ-concentric SVDD). Let
σ0 > 0. The sequence (Φ−1

σ (Bσ(fσ0 , (σ/σ0)d/2Rσ0)))σ≥σ0

is increasing w.r.t. the inclusion when σ increases.

Proof. Inequality (17) implies that the Gaussian ker-
nel satisfies the assumptions of Proposition 2 with
γ2 = (σ/σ0)d. This proof requires as well introducing
dual RKHSs.

IV. Application to detection of
transportation mode on simulated data

In this section, we illustrate the practicability of SVDD
for approximation of differential inclusions. We consider
a general model (20) representing two types of vehicles:
cars and bikes. In this model, the input exerted onto
the vehicles is such that it produces asymptotic tracking
of a reference velocity signal vreq(·) stemming from an
urban-part of the NEDC cycle (New European Driving
Cycle) generating a small set (N ≈ 500) and a large set
(N ≈ 15000) of points. The chosen parameters are listed
in Table I along with the magnitude of the speed.

mv̇(t) = −kv2(t) + u(t) (20)

where u(t) ,

 −Fmax if kp(vreq(t)− v(t)) < −Fmax
Fmax if kp(vreq(t)− v(t)) > Fmax
kp(vreq(t)− v(t)) otherwise

TABLE I: List of parameters of the NEDC simulation
m k kp Fmax max(vreq)

Car 1 T 0.27 20 2 kN 80 km/h
Bike 100 kg 0.5 20 30 N 30 km/h

We apply the SVDD algorithm to the pairs (v, a) ,
(v, v̇) with a Gaussian kernel with a diagonal co-variance
matrix σv = 1.8, σa = 0.185. There are between 10 and
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30 support vectors in all cases, the learning step compu-
tation time ranging from 0.5 sec. to 25 sec. Fig.2a and
2b show the tightness of our estimate for noiseless data.
As soon as enough points have been treated (Fig.2b),
the SVDD outputs approximate well the theoretical
boundaries, i.e. the graph of the differential inclusion (1)
(which can be derived from (20) using a very general
vreq). Furthermore the estimate is robust to 10 % outliers
drawn in a uniform fashion (which results in a relatively
strongly corrupted dataset compared to the typical noise
present in velocity measurements and the subsequent
filtered derivatives), by setting ν = 10 % in (9) (Fig.2d)
according to the guidelines recalled in §II-D. As shown
in Corollary 1, the σ-concentric SVDD balls generate
an increasing sequence that rapidly expands (Fig.2e).
To test the membership of a trajectory to either class
(Fig.2c), one can check the signs of the functions (8).
When a function takes a positive value, the trajectory
has violated the empirical boundary and thus does not
belong to the corresponding class (Fig.2f). Using a repre-
sentative test trajectory, the car can be easily identified
after approximately 1-2 min of measurement.

V. Conclusion and perspectives
The example of detection of transportation modes

highlights the relevance for parameter estimation of a set-
valued framework involving SVDD, a kernel method. Our
investigation has shown the consistency of the algorithm
for Gaussian kernels, as it allows to recover any set-
valued map with bounded graph. The dependence of
SVDD on its parameters was also discussed. Future work
will concern identification of continuous parameters, such
as mass estimation as is considered in weigh-in-motion
applications, a key technology for improving ground
transportation safety [28]. This problem is more complex
that the one treated here. We believe it may require
to incorporate the sequentiality of time series into the
above framework, which would speed up mode detection
as well.
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Fig. 2: Estimate sets KSV DD
σ of theoretical dynamical limits (filled areas) by the SVDD algorithm on simulation

data. (a): noiseless case with a small number of data (∼500 pts). (b): noiseless case with a large number of data
(∼15k pts) (c): a test trajectory is compared to the SVDD boundaries. (d): case with noise on the small data and
10% uniformly distributed outliers. The boundaries are mildly altered. (e): applying σ-concentric SVDD on the
noiseless small data with varying σ (100%,102%,104% of the previous σ).(f): the indicator functions show that the
test trajectory of (c) is a car as the car values are negative while some bike values are positive.
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