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Abstract

Starting from a simple example of linear delayed system
(with 2 inputs and 2 outputs) commonly used in process
control, we show that, as for flat systems (see [1]), an ex-
plicit parametrization of all the trajectories can be found.
Once more this leads to an easy motion planning. More
generally speaking, we prove that this property, called 4-
freeness (see [2, 4]) is general among higher dimensions
linear delayed systems.

More theoretically speaking, we use the module frame-
work and consider a linear delayed system as a finitely
generated module over the ring R[4, 4], where d is one
or a set of delay operators. We show that this system
is d-free. That is we can find a basis of its corresponding
module over the localized ring R[4, 6,6=1]. An applicable

dt
way to exhibit such a basis is explicitly described.

1 An introductory example to mo-
tion planning using J-freeness

Let us start by considering a simple system with two in-
puts and two outputs:
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with s the Laplace variable, i € {1,2}, j € {1,2}, Tl»j €
R*t K] € R* 6] € RY.

We want to determine the commands u that will steer
the system from the steady state (g, #) to the steady state
(¢, @) within a desired time T that must be well choosen.

Let us introduce & = (¢1,€%), that we call §-flat out-
puts:
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One can determine all the quantities of the system from
&,£,¢ by linear combinations, provided that the 7/ are all
different. Explicitly:
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These last relations show the invertible transformation
exchanging the trajectories of & and those of (y,u). The
boundary conditions can be equivalently written for these
d-flat outputs.
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Smoothness implies 5(15 <0) =0, €(t <0)=0, €(t >
A) =0, €(t > A) =0 with A =T — maw; ;(]), prov1ded
that 1" > max; ; ((5‘27) This permits the continuity of the
commands.

Any smooth function [0, A] 3 ¢ — £(¢) satisfying the
conditions above will provide us a set of commands for the
desired motion planning.

For example, one could choose
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but many other choices are possible.

Similarly it is possible to steer the system from a past
trajectory to a future one. One just have to replace (g, @)
and (g, @) by (y, w)(t) and (g, @)(t), then calculate £(t) and
é(t) and use

EW) -+ OE0).

This proves that such systems are controllable in the sense
of [5] and [7].

We have singled out the fundamental topic, namely the
existence of a parametrization of the trajectories. In the
following we will exhibit the same property in the general
case.
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2 Main result

From now on, the system under consideration has p out-
puts and m independent inputs and is called the original
system. It is frequently used in process control [6] :
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with s the Laplace variable, i € {1, ...
7 € R*t K] € R,§] € RT.
Note that K/ = 0 means that u/ does not affect y;.

Moreover we assume that every input does affect the sys-
tem, Which means that for each column j there exists ¢;

#0.

Definition 1 In
each column j, let us denote {zJ

,p},j6{1,~~~,m}

such as A

AN ¥ }the set of

partial states z! ' whose A # 0 (one could call them the

non-zero (nz) states) These and only these act upon the

outputs. Among these, let {2 z } be a maximal set
7

P 2
of partial states such as le + TZ»I forallk,l <n;. We call
them the essential partial states of the column. One
can eastly check that there is at least one essential partial

state per column.

Main result Leté_{éji—l ..,p,j:l,...,m}.
For each column j, one can emhzbzt &, a R[671] combina-
tion of elements of {z e } that is a basis of the

R[4 5,6~

This does not require any rational relation between the (5‘27
As a result one gets {1, ... €™} which is a basis of the

[Cft,é 571 module corresponding to the original system,

J J
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that is the module spanned by the essential partial states
and the inputs, which is thus §-free.

Building up {¢',...,¢"}

Let us consider any of the m columns, say the j** col-

umn. Denote {Z‘gl, c Z‘Zn } the set of its essential partial

2.1

states. Obviously n;, which is the number of partial states

of the ji* column, depends on j. To streamline notation

we now denote {2/ ,...,2] }as{z1,..., 2} That means
nj

that subsequently we won’t keep in mind the number of
the column we work in, and that we will use a dedicated
reordering of the partial states of the column. Now we are

looking for a basis of the R[% ,6,871] module correspond-

ing to {uw’,z} ,..., zln]} In other words we are looking

for a basis of the R[4

%,5,5_1] module corresponding to
{u,z1,...,24}. We can try this kind of R[6~!] combina-
tion:
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where the appropriate aq,...,aq are to be found. Let us
calculate the derivatives of &. First:
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Now we choose to get rid off u(¢). In order to do so we

make:
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Once more we want to get rid off u(¢), which means:
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We go on successively until the (¢ — 1) derivative

=0.
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The final condition is:
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In the end, assuming the ¢ — 1 equations of C' over the ¢

variables a; we guarantee D:
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Some fundamental issues

Proposition 1 The system of equation C' is underdeter-
mined. Subjected to an extra condition of normality, say
a1 = 1, all the (a;)i=1. 4 are different from 0.

Proof: By adding the extra condition a; = 1 we get a
square linear system:
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e First we aim at showing that this system is invertible.
It is easy to check it by looking at its determinant:
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Then by expanding the numerator we get: :
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On the one hand, we know that H a; # 0 thanks to propo-
i=1
sition 1. On the other hand, we have to deal with another
Vandermonde determinant. Since {z1,...,z,} is the set
of essential partial states, it 1s different from 0. Thus the
linear system D is invertible.
Proposition 3 & is a basis of the R[jt ,6,87Y mod-
ule corresponding to {u,z1,...,%4} (in other words &
is a basis of the R[2,58,67'] module corresponding to

dt’
{u]a zla“'a zn })

Proof: Since D is solvable, one can calculate z1(t +
d1), ... zq(t + &4) thanks to £(2), ... e,

At last, we can use any equation from the dynamics of
the essential partial states to calculate the input . Thus:

1(t+46 t+94
u(t) = ozt + 1)7-1- z1(t+ 1).
Ky
Proposition 4 The set {&’1 L, Emy
shown s a basis of the R[dt,é] module spanned by the
essential partial states and the inputs of the original sys-
tem.

constructed as

Proof: For j = 1,...,m, & is a basis of the module
corresponding to the essentlal partlal states of the column
and its input {ud, 2/ } Let us consider the set

JE
{&r,..., €™}, This set generates all the essential partial
states of the original system. Furthermore this set is free
because 1t generates the m inputs that are independent.
We can conclude that it is a basis of the module spanned
by the essential partial states and all the inputs of the
original system.

Proposition 5 The original system has a §-free repre-
sentation.

Proof: We have found a basis {€!, ... ™} for the
456

R[4, 11 module corresponding to a representation of
the original system. So this representation is d-free.

Remark: If we want to, we can calculate those among

the {24, ,...,2,, } that are not in the set of the es-
sential partial states {z Vo 2 } Let us denote these
i .
non-essential partial states znel, s Zhe, . Obviously
7

t; = tne; + n;, which means that the number of non-zero

partial states equals the number of non-essential partial

states added to the number of essential partial states. For

any Z‘Z?neh one can find an essential partial state Z‘Z?np with
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the module corresponding to {zJ

G, =T Thus we can build a torsion element of

}: let
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This element is a torsion element since :
T w(t) = —w(t).

Thus, up to an initial condition, to know Z‘Z 1s to know
mp

Z‘Z . So to know zzj e Z‘Z is to know the whole set
nen -
{Z. mt }. In fact the non-essential partial states

can be viewed as the non-commandable part of a non-
minimal realization.

3 Concluding remarks

We have shown that a large class of linear delayed systems,
which are commonly used as process control models, are
d-free. This means that, as for flat systems [1], we have
an explicit parametrization of the trajectories via a finite
set of arbitrary time functions and their derivatives. In
forthcoming publications, we will use this property, as in
[3], for trajectory generation.
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