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Abstract

In this paper we explain how to use inversion (as defined in
nonlinear control theory) for indirect optimal control. Given
the relative degreer, it is possible to recoverr adjoint states
and thus to simplify the problem. Explicit proof is given and
relies on the triangular structure of the underlying normal form.
An example from the literature is treated in the last section.

1 Introduction

Geometric tools have long been used in control theory for feed-
back linearization [5, 8]. The induced change of variables lead
to straightforward resolution of inverse problem, i.e. computa-
tion of required inputs for a prescribed behavior of outputs. Op-
timization of the obtainable trajectories is an important topic,
especially for applications, but generally requires numerical
solvers. Inversion has lately been used in numerical optimal
control and the numerical importance of the relative degree of
the output chosen when casting the optimal control problem
into a numerical collocation scheme was emphasized in [9]. It
yields substantial reduction in required CPU time [7]. The best-
case scenario is full feedback linearization (flatness) as consid-
ered in [3].

Given the system dynamics and an optimal cost, it was shown
how to take advantage of the geometric structure of the dy-
namics to reduce the dimensionality of a numerical collocation
scheme. In general collocation methods, coefficients are used
to approximate with basis functions both states and inputs [4].
While it was known since [11] that it is numerically efficient to
eliminate the control, it was emphasized in [9] that it is possi-
ble to reduce the problem further. Choosing outputs with maxi-
mum relative degrees is the key to efficient variable elimination
that makes the required number of coefficients smaller. When
combined to a nonlinear programming solver, this can induce
drastic speed-ups in numerical solving [6].

In this paper we focus on indirect methods (i.e. adjoint meth-
ods) as opposed to the previously discussed direct collocation
schemes. We show that in this framework it is also possible
to take advantage of the geometric structure of the dynamics.
More precisely we show that given a SISO system with an-
dimensional state, the relative degree of the system also plays

a role in its dual dynamics. We derive an equivalent rewrit-
ing of the dynamics of the two-point boundary value problem
where we eliminate as many variables as we can. In the case of
full feedback linearisability (flatness) the induced equation is a
2n-degree differential equation in the linearizing output.

The article organizes as follows. In section 1 we detail the
problem we address (SISO system with generic terminal and
integral cost). In section 2 we explain how to recover the geo-
metric structure of the adjoint equation. Further we detail how
to take boundary conditions into account for two special cases:
terminal cost with or without terminal constraints. In section 3
we treat a numerical example from the literature.

2 Problem settings

Consider an optimal control problem with dynamics

dx

dt
= f(x) + g(x)u , u ∈ R, x ∈ Rn (1)

where all vector fields and functions are real-analytic.

It is desired to find a trajectory of (1), i.e.[0, tf ] 3 t 7→
(x, u)(t) ∈ Rn+1, that minimizes the performance index

min φ(x(tf )) +
∫ tf

0

L(x(t), u(t))dt (2)

whereL is a smooth nonlinear function

A (SISO) single input single output system

dx

dt
= f(x) + g(x)u

y = h(x)
(3)

is said to haverelative degree(see for instance [5])r at pointx0

if LgL
k
fh(x) = 0, in a neighborhood ofx0 and for allk < r−1,

andLgL
r−1
f h(x0) 6= 0 whereLfh(x) =

∑n
i=1

∂h
∂xi

fi(x) is the
derivative ofh alongf . Roughly speaking,r is the number of
times one has to differentiatey beforeu appears.

An important result (see [5]) is as follows. Suppose the sys-
tem (3) has relative degreer atx0. Thenr ≤ n. Set

φ1(x) = h(x)
φ2(x) = Lfh(x)

...

φr(x) = Lr−1
f h(x)



If r is strictly less thann, it is always possible to findn − r
more functionsφr+1(x), ..., φn(x) such that the mapping

φ(x) =




φ1(x)
...

φn(x)




has a Jacobian matrix which is nonsingular atx0 and therefore
qualifies as a local coordinates transformation in a neighbor-
hood ofx0. The value atx0 of these additional functions can
be fixed arbitrarily. Moreover, it is always possible to choose
φr+1(x), ..., φn(x) in such a way thatLgφi(x) = 0, for all
r + 1 ≤ i ≤ n and allx aroundx0.

The implication of this result is that there exists a change of
coordinates

x 7→ (z1, z2, ..., zr, η) ≡ (ζ, η) ∈ Rn

such that the systems equations may be written under the fol-
lowing normal form

dzi

dt
= zi+1 for i = 1 . . . r − 1 (4)

dzr

dt
= b(ζ, η) + a(ζ, η)u (5)

dη

dt
= q(ζ, η) (6)

wherea(ζ, η) is nonzero for all(ζ, η) in a neighborhood of
(ζ, η) = φ(x0).

The inverse change of coordinates gives

x(t) = A(ζ(t), η(t)) (7)

u(t) = B(ζ(t),
dzr

dt
, η(t)) (8)

In the coordinates(ζ, η), (2) is rewritten as

min φ(A(ζ(tf ), η(tf ))) +
∫ tf

0

L(A(ζ(t), η(t)), u(t))dt (9)

with dynamics (4,5,6) (when one does not substituteu using
(8)).

3 Hamiltonian computations

3.1 The Hamiltonian

Because of the triangular structure of the previous normal form,
the Hamiltonian of cost (9) with dynamics (4,5,6) is

H(ζ, η, u, λ, µ) = L(A(ζ, η), u) +
i=r−1∑

i=1

λizi+1

+λr[b(ζ, η) + a(ζ, η)u] + µT q(ζ, η)

3.2 Adjoint equations

The necessary conditions of Pontryaguin on the Hamiltonian
imply

dλ1

dt
= −∂L

∂A

∂A

∂z1
− λr

[
∂b

∂z1
+

∂a

∂z1
u

]
− µT ∂q

∂z1
(10)

dλi

dt
= −∂L

∂A

∂A

∂zi
− λi−1 − λr

[
∂b

∂zi
+

∂a

∂zi
u

]
− µT ∂q

∂zi

for i = 2 . . . r (11)

dµi

dt
= −∂L

∂A

∂A

∂ηi
− λr

[
∂b

∂ηi
+

∂a

∂ηi
u

]
− µT ∂q

∂ηi
(12)

on the optimal trajectory.

3.3 Optimality conditions

Since there is no constraint on the controlu, ∂H
∂u is neces-

sary zero along the optimal trajectory. Observe that this partial
derivative does not involve the adjoint states(λ1, . . . , λr−1, µ),
i. e. , there is a functionG0(z1, . . . , zr, u, η) such that

∂H

∂u
= G0(z1, . . . , zr, u, η) + λra(ζ, η) = 0 (13)

along the optimal trajectory. Inserting (8) into (13) shows that
there existsF0 such that

∂H

∂u
= F0(z1, . . . , zr,

dzr

dt
, η, λr) = 0 (14)

along the optimal trajectory.

Its derivatives are thus also zero along the trajectory. Their
structure is given by the following lemma

Lemma 1. For i > r, let zi(t) = dr−izr

dtr−i = di−1z1
dti−1 . For i =

1 . . . r − 1, the ith time derivative of∂H
∂u along the optimal

trajectory has the structure

di

dti

(
∂H

∂u

)
= Fi(z1, . . . , zr+i+1, η, λr−i, . . . , λr, µ) (15)

whereFi is affine with respect to(λr−i, . . . , λr, µ) and satisfies

∂Fi

∂λr−i
= (−1)ia(z1, ..., zr, η) (16)

Proof. Equation (13) gives the desired result fori = 0. The
proof proceeds then by induction. Let us assume that (15) holds
for i < r− 1. Taking one more derivative of (15) and using (8)
yields equation (17). This last function is of the form (15).

If Fi is affine with respect to(λr−i, . . . , λr, µ), then the pre-
vious computations show thatFi+1 is affine with respect to
(λr−i−1, . . . , λr, µ) (H is also affine with respect to the adjoint
states). Observe thatdλ1

dt does not appear in the computations
sincer− i > 1. Also,λr−i−1 only appears once (forj = r− i)
and the derivative of the right handside expression with respect
to it is− ∂Fi

∂λr−i
, which proves (16) fori + 1.



di+1

dti+1

(
∂H

∂u

)
=

r+i+1∑

j=1

∂Fi

∂zj
zj+1 +

∂Fi

∂η
q +

r∑

j=r−i

∂Fi

∂λj

[
−∂L

∂A

∂A

∂zj
− λj−1 − λr

[
∂b

∂zj
+

∂a

∂zj
u

]
− µT ∂q

∂zj

]

−∂Fi

∂µ
(z1, . . . , zr+i+1, η)

(
∂H

∂η

)T

(ζ, η, λr, µ)

=
r+i+1∑

j=1

∂Fi

∂zj
zj+1 +

∂Fi

∂η
q

+
j=r∑

j=r−i

∂Fi

∂λj

[
−∂L

∂A

∂A

∂zj
− λj−1 − λr

[
∂b

∂zj
+

∂a

∂zj
B(z1, . . . , zr+1, η)

]
− µT ∂q

∂zi

]
− ∂Fi

∂µ

(
∂H

∂η

)T

≡ Fi+1(z1, . . . , zr+i+2, η, λr−i−1, . . . , λr, µ) (17)

The adjoint states(λ1, ..., λr) corresponding to the invertible
part of the normal form (or upper part) can be eliminated from
(15) along the optimal trajectory.

Lemma 2. For i = 0 . . . r− 1, there exists a functionWi such
that

λr−i = Wi(z1, . . . , zr+i+1, η, µ) (18)

along the optimal trajectory at times wherea(z1, . . . , zr) is not
zero. For concision we shall noteλ = W (z1, ..., z2r, η, µ).

Proof. Gathering the conditionsHu = 0 and di

dti

(
∂H
∂u

)
= 0 for

i = 1, ..., r − 1, one get the following system ofr equations

F0(z1, . . . ,
dr+1z1

dtr+1
, η, λr) = 0

F1(z1, . . . ,
dr+2z

dtr+2
, η, λr−1, λr, µ) = 0

...

Fr−1(z1, . . . ,
d2rz

dt2r
, η, λ1, . . . , λr, µ) = 0

The system(Fi = 0) is linear and triangular with respect to the
λi. Up to the sign, the diagonal term is∂F0

∂λr
= a(z1, . . . , zr).

Hence the system(Fi = 0) has a unique solution with re-
spect to theλi. For i = 0, equation (18) is easily drawn from
(13). Consider nowFi = 0 for i > 0. From (15) we see
thatλr−i is a function of(z1, . . . , zr+i+1, λr−i+1, . . . , λr); for
j < i, we assume recursively thatλr−j is a functionWj of
(z1, . . . , zr+j+1), with r + j + 1 < r + i + 1. Henceλr−i is a
functionWi of (z1, . . . , zr+j+1).

For i = r − 1, we have

λ1(t) = Wr−1(z1(t), . . . , z2r(t), η, µ) (19)

Differentiating this equation and using the adjoint equation on
λ1 leads to

Proposition (Main result). The optimal outputz1 satisfies the
following differential equation of order(2r):

i=2r∑

i=1

∂Wr−1

∂zi
zi+1 +

∂Wr−1

∂η
q − ∂Wr−1

∂µ

(
∂H

∂η

)T

=

− µT ∂q

∂z1
− ∂L

∂A

∂A

∂z1

−W0(z1, . . . , zr+1, η)
[

∂b

∂z1
+

∂a

∂z1
B(z1, . . . , zr+1, η)

]

(20)

with zi(t) = di−1z1
dti−1 .

Conversely, assume thatz1 satisfies (20); letη a solution of (6)
andµ a solution of

dµi

dt
=− ∂H

∂ηi
− ∂L

∂A

∂A

∂ηi

−W0(z1, . . . , zr+1, η)
[

∂b

∂ηi
+

∂a

∂ηi
u

]
− µT ∂q

∂ηi

(21)

with

u =
zr+1 − b(z1, . . . , zr)

a(z1, . . . , zr)
(22)

DefineΛ = W (z1, . . . z2r, η, µ) and ζ = (z1, . . . zr). If λ =
(λ1, . . . λr) satisfies (10,11) and∂H/∂u(ζ, η, u, λ, µ) = 0,
thenζ satisfies (4,5),λ = Λ andµ satisfies (12).

Proof. The left handside is the time derivative of (19). The
right handside is the insertion of (8) and of (18) fori = 0 into
(10).

The converse part essentially shows thatλ can be drawn from
z1 and its derivatives and, of courseη andµ. It is closely related
to the direct part. From the definition (22) ofu, it follows that
ζ satisfies (4,5). Since∂H/∂u = 0, thenλr satisfies (13), and
hence,λr = W0(z1, . . . , zr+1, η) = Λr. Together with (21),
it follows that µ satisfies (12). Since∂H/∂u = 0, it follows
from lemmas 1 and 2 thatλ = W (z1, . . . , z2r, η, µ) = Λ.



In other words the1+2(n−r) unknowns to be found arez1, η,
andµ. Then theΛ as defined above are appropriate candidates
for the adjoint states corresponding to(z1, ...zr) (the only ad-
joint states that are missing).

3.4 Endpoint conditions

With the proposed terminal cost φ(x(tf )) =
φ(A(z1, ..., zr, η)), the terminal conditions on the adjoint
states are then

λi(tf ) =
∂

∂zi
φ(A(z1(tf ), ..., zr(tf ), η(tf ))), for i = 1, ..., r

That can be rewritten in terms of conditions upon the deriva-
tives of the flat output

Wi(z1(tf ), . . ., zr+i+1(tf ), η(tf ), µ(tf )) =
∂

∂zr−i
φ(A(z1(tf ), ..., zr(tf ), η(tf ))),

for i = 1, ..., r

3.5 Endpoint equality constraints

Following Bryson and Ho’s [2] presentation of optimal control
problems we explain how to treat a special case of practical
interest. Our proposed approach applies in this situation where
extra adjoint states appear.

Let us consider the original problem (1), (2) with the additional
constraint

ψ(x(tf )) = 0. (23)

Whereψ is a smooth function fromRn → Rq, 0 < q < n.
Introducingq extra multipliersπ ∈ Rq we get the terminal
conditions

λi(tf ) =
∂

∂zi
φ(A(z1(tf ), ..., zr(tf ), η(tf )))

+ πT ∂

∂zi
ψ(A(z1(tf ), ..., zr(tf ), η(tf ))) (24)

for i = 1, ..., r along with theq terminal constraints (23). Un-
der the assumption that one can extract a non singularq×q ma-
trix out of the Jacobian ofψ (which is a classical assumption to
make (23) solvable), it is possible to isolate an invertible set of
q equations in theq unknowsπ from the set of equations (24).
This means that these multipliers also write in terms ofz1 and
its successive derivatives,η andµ. Let (i1, ..., iq) be a set of
indexes such that theq × q matrix extracted from the Jacobian
of ψ is invertible, letMq denote this matrix extracted from

(
∂

∂z
ψ(A(z1(tf ), ..., zr(tf ), η(tf )))

)

This matrix depends onz1(tf ), ..., zr(tf ), η(tf ). LetW̄ denote
the vector(Wik

), for k = 1, ..., q and z̄ the vector(zik
), for

k = 1, ..., q. Then one can solve

π = M−1
q

(
W̄ (z1(tf ), ..., zr(tf ), η(tf ), µ(tf ))T

−
(

∂

∂z̄

)
φ(A(z1(tf ), ..., zr(tf ), η(tf )))

)

4 Example

To illustrate the previous result we derive here the optimality
conditions for the forced van der Pol Problem.

The dynamics of this system discussed in [7] and [10] is given
by

ẋ1 = x2

ẋ2 = −x1 + (1− x2
1)x2 + u

It was used in the last two cited references as a benchmark.
The optimal control problem is to minimize the quadratic cost
function

J =
∫ 5

0

(x2
1(s) + x2

2(s) + u2(s))ds

subject to the dynamics given above and the endpoint con-
straints

x1(0) = 1, x2(0) = 0, x2(5)− x1(5) = 1

The dynamics is flat andz1 = x1 is a flat output (ideal case).
Following the procedure presented in the previous section we
get the Hamiltonian

H =
1
2
(x2

1 + x2
2 + u2) + λ1x2 + λ2(−x1 + (1− x2

1)x2 + u)

The adjoint equations are

λ̇1 = −Hx1 = − (x1 − 2λ2x1x2) (25)

λ̇2 = −Hx2 = − (
x2 + λ1 + λ2(1− x2

1)
)

Solving the two equationsHu = 0 anddHu

dt = 0 for the adjoint
states we get

λ1 =x
(3)
1 + ẋ1 + 2x1ẋ

2
1 − (1− x2

1)ẍ1

− ẋ1 −
(
−x

(2)
1 − x1 + (1− x2

1)ẋ1

)
(1− x2

1) (26)

λ2 =− x
(2)
1 − x1 + (1− x2

1)ẋ1 (27)

Now one just has to substitute the expression forλ1 andλ2

into the differential equation (25) to get the fourth order differ-
ential equation to be satisfied by the flat output on the optimal
trajectory

x
(4)
1 + 2x3

1 + 6x1ẋ1ẍ1+(
2x1ẋ1 − (1− x2

1)ẍ1

)
(1− x2

1) + 2x1 + ẍ1 = 0



Finally one gets the boundary conditions

x1(0) = 1
ẋ1(0) = 0

ẋ1(5)− x1(5) = 0

x
(3)
1 (5) + ẋ1(5) + 2x1(5)ẋ2

1(5)− (1− x2
1(5))ẍ1(5)− ẋ1(5)

−(−x
(2)
1 (5)− x1(5) + (1− x2

1(5))ẋ1(5))(1− x2
1(5))

= x
(2)
1 (5) + x1(5)− (1− x2

1(5))ẋ1(5)

the last relation being just the endpoint conditionλ1(5) +
λ2(5) = 0 expressed in terms of the flat output.

Solving this two point boundary value problem can be done
with any appropriate numerical solver, e.g. Matlabbvp4c .
Results give solutions comparable to the one obtained in [7]
and [10], the obtained cost is1.68588.

The adjoint statesλ1 and λ2 also writes in terms of the flat
output along the optimal trajectory as given by (26) and (27).

Conclusion

In summary, what we have shown is the following: if the sys-
tem has relative degreer, thenr of the adjoint states can be
explicitly recovered. To do so one just has to rewrite the prob-
lem in its normal form and then write thatHu and its firstr−1
time derivatives are zero along the optimal trajectories.

As stated in the main result of the paper, finding an optimal
trajectory is equivalent to finding time functionsz1(t) ∈ R,
η(t) ∈ Rn−r andµ(t) ∈ Rn−r that satisfy (20), (6) and (21).
We have fewer unknowns than the classicaln states andn ad-
joint states. We are now left with1 + 2(n − r) unknowns.
The ideal case is (as for collocation methods) the fully invert-
ible case (flat case) wherer = n, as treated in the example
in the previous section. In any case we believe this structure
could be exploited in implementation of shooting techniques
(see [1] for an overview of shooting methods) as it involves
fewer unknowns. Numerical relevance of this approach is cur-
rently under investigation.
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