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Keywords: Optimal control, indirect methods, adjoint, invera role in its dual dynamics. We derive an equivalent rewrit-

sion, nonlinear control theory. ing of the dynamics of the two-point boundary value problem
where we eliminate as many variables as we can. In the case of
Abstract full feedback linearisability (flatness) the induced equation is a

2n-degree differential equation in the linearizing output.

In this paper we explain how to use inversion (as defined the article organizes as follows. In section 1 we detail the

nonlinear control theory) for indirect optimal control. Giverbroblem we address (SISO system with generic terminal and
the relative degree, it is possible to recover adjoint states .

d th imolifv th bl Exolici fis o 9ﬂtegral cost). In section 2 we explain how to recover the geo-
and thus to simplify the problem. Explicit proof is given an etric structure of the adjoint equation. Further we detail how

relies on the triangular'structure' of the underlying normql forry take boundary conditions into account for two special cases:

An example from the literature is treated in the last section. terminal cost with or without terminal constraints. In section 3
we treat a numerical example from the literature.

1 Introduction

Geometric tools have long been used in control theory for fee%l— Problem settings

back Ilpearlzatlon [5, 8]. '!'he mduced change of yarlables Ie%nsider an optimal control problem with dynamics
to straightforward resolution of inverse problem, i.e. computa-
tion of required inputs for a prescribed behavior of outputs. Op-
timization of the obtainable trajectories is an important topic,
especially for applications, but generally requires numericghere all vector fields and functions are real-analytic.
solvers. Inversion has lately been used in numerical optimal _ _ . .

control and the numerical importance of the relative degreebfs desired to find a trajectory of (1), Le{0,ts] > ¢
the output chosen when casting the optimal control proble: ©)(t) € R"**, that minimizes the performance index

%:f(wﬂg(w)u’ue&xew @

into a numerical collocation scheme was emphasized in [9]. It ty

yields substantial reduction in required CPU time [7]. The best- min ¢(z(ty)) + / L(z(t),u(t))dt 2
case scenario is full feedback linearization (flathess) as consid- 0

ered in [3]. whereL is a smooth nonlinear function

Given the system dynamics and an optimal cost, it was showr{SISO) single input single output system
how to take advantage of the geometric structure of the dy-

namics to reduce the dimensionality of a numerical collocation dr _ f(z) + g(z)u
scheme. In general collocation methods, coefficients are used dt 3)
to approximate with basis functions both states and inputs [4]. y = h(z)

While it was known since [11] that it is numerically efficient tqg szid to haveelative degredsee for instance [5}) at pointz,

eliminate the control, it was emphasized in [9] that it is possi—LgL?h(m) = 0, in a neighborhood of, and for allk < r—1,

ﬂié?r:gzsg fjle problgm further. Chpqsmg outputs V\.”th m"‘.‘)&hdLgL}*lh(:co) # OwhereLsh(z) =Y 1, %fi(x) is the
grees is the key to efficient variable ellmln"’It"?ﬂerivative ofh along f. Roughly speaking; is the number of

that makes the required number of coefficients smaller. W Mes one has to differentiatebeforeu app,ears.

combined to a nonlinear programming solver, this can induce

drastic speed-ups in numerical solving [6]. An important result (see [5]) is as follows. Suppose the sys-

em (3) has relative degreeatz®. Thenr < n. Set
In this paper we focus on indirect methods (i.e. adjoint meth- @) g * ren

ods) as opposed to the previously discussed direct collocation o1(z) = h(z)
schemes. We show that in this framework it is also possible ¢o(x) = Lyh(z)
to take advantage of the geometric structure of the dynamics.

More precisely we show that given a SISO system with-a

dimensional state, the relative degree of the system also plays ' r_



If r is strictly less tham, it is always possible to find — » 3.2 Adjoint equations

more functionsp, .1 (x), ..., ¢ (x) such that the mappin N ] o
Pri1(2) 9n(2) Pping The necessary conditions of Pontryaguin on the Hamiltonian

é1(2) imply
o(z) = : d\, 0L 0A ob  Oa r 0q
* —_—= e ——— — r —_ —_ - b 10
(;Sn(gj) dt 0A 621 (92’1 * 8z1u H 621 ( )
d\;  OLOA \ \ ob  Oa T+ 0q
has a Jacobian matrix which is nonsingulacdtind therefore gt — 9409z ' 7| oz * oz T oz
qualifies as a local coordinates transformation in a neighbor- fori—9.  r (11)

hood ofz°. The value at:° of these additional functions can

be fixed arbitrarily. Moreover, it is always possible to choose dps _ _OLOA _ . [ab + a“u] T Jdq (12)
Gri1(), ..., bu(x) in such a way that,¢;(z) = 0, for all dt OA On; om; O o
r +1 <4 < nand allz aroundz®. . .
on the optimal trajectory.
The implication of this result is that there exists a change of
coordinates 3.3 Optimality conditions
x = (21,22, ..., 2r,m) = (¢,n) € R™ Since there is no constraint on the contrgl %—Ij is neces-

sary zero along the optimal trajectory. Observe that this partial
such that the systems equations may be written under the féfffivative does not involve the adjoint states, . .., Ar—1, 1),

lowing normal form i. e., thereis a functioti (21, . . ., 2, u, 7) such that
oOH

Cf;: = 211 fOI’i: 1...r—1 (4) % :GO(Zlv"'7Z7’7u7n)+)\Ta(Ca77) =0 (13)
dz, along the optimal trajectory. Inserting (8) into (13) shows that
dt b(Com) + alC, mu ®) there exist$, such that

dn

bl A , 6 H r

dat q(¢,n) (6) 87:1:0(21,“_7%7%’777)\7«):0 (14)

ou dt

wherea(¢,n) is nonzero for all(¢,n) in a neighborhood of
(C,m) = ¢(a”).

The inverse change of coordinates gives

along the optimal trajectory.

Its derivatives are thus also zero along the trajectory. Their
structure is given by the following lemma

x(t) = A(C(t),n(t)) (7) Lemmal. Fori >r, letz(t) = 42 — <22 Forj —
dz 1...r — 1, the i*" time derivative of2Z along the optimal
_ T ’ ou
ut) = BE®) dt (1)) 8) trajectory has the structure
In the coordinate , (2) is rewritten as d (0H
I $<’7)) ( )I i E <au> :Fi(zl7"'7ZT+i+17777)\T7i7"'7)\T7M) (15)

t.
mingb(A(C(tf),n(tf)))Jr/O fL(A(C(t),n(t))W(t))dt (9) whereF; is affine with respect to\,_;, . . . , A, 1) and satisfies

OF, _ (—=D%a(z1, ..., 20, 1) (16)

with dynamics (4,5,6) (when one does not substitutesing I

(8)
_ ) _ Proof. Equation (13) gives the desired result for= 0. The
3 Hamiltonian computations proof proceeds then by induction. Let us assume that (15) holds
for i < r — 1. Taking one more derivative of (15) and using (8)

3.1 The Hamiltonian yields equation (17). This last function is of the form (15).

Because of the triangular structure of the previous normal for@, r is affine with respect td\,_;, ..., A, 1), then the pre-
the Hamiltonian of cost (9) with dynamics (4,5,6) is vious computations show thd ., is affine with respect to
(Ar—iz1,---5 A, 1) (H is also affine with respect to the adjoint
states). Observe théf% does not appear in the computations
H(C,m,u,Ap) = LIA(G,7),u) + Z AiZit1 sincer —i > 1. Also, \,_;_, only appears once (fgr= r—1)
=1 and the dgrivative of the right handside expression with respect

F

i

1=r—1

A B¢ ) + alCmul + 1 q(Cn)  toitis —

which proves (16) fof + 1. O



di+1 (8[{) Ry o) Z OF; {_ OL DA b da ] 3 T@q]

_)\j—l_)\r|: + —

i \ou) = 2 By + DVl WY v 9z, Tos," T 8
Jj=1 j=r—
JF; H
- 3u (2’1, s Zr4it1,7] <a> C na)‘hu)
_”“@z+@z
= ST
j=r T
OF; | 0L 0A ob  Oa 0q OF; (0OH
) IR VN W Ty T 94y 9% (07
+j=T_i O\ [ A 0z; i1 = Ar [azj * 0z, (1, ’ZTH’??)} a 821} ou (877)
= Fi+1(21; ~7Zr+i+277)7)\r7i71a"'7)‘7"”“) (17)

The adjoint stategA4, ..., A,.) corresponding to the invertible Proposition (Main result). The optimal output; satisfies the
part of the normal form (or upper part) can be eliminated frofollowing differential equation of ordef2r):
(15) along the optimal trajectory.

_ . . KW,y W,y OW,_y (OH\"
Lemma?2. Fori=0...r — 1, there exists a functiol#/; such Tzi-',-l + q— o =
that - Oz n op an
0 0L 0A
Ar—i = Wilz1, ooy Zrgig1, 0, ) (18) A B
K oz~ 9402
along the optimal trajectory at times wheatéz,, . . ., z,.) is not ob da
zero. For concision we shall note= W (z1, ..., z2,-, 1, ). —Wolz1, - 2r41,m) [821 + 3713('217 : vz"'+17’7)]

(20)

Proof. Gathering the conditiond,, = 0 and jt, (22) = o for

. ] o di—.lzl
i =1,...,r — 1, one get the following system afequations with 2;(t) = '

dti=1
Conversely, assume that satisfies (20); let) a solution of (6)

d™lz and . a solution of
FO(Zl7"'7W777’)\T):O H
a2 dp __OH _ LA
Fl(zlw"7W77]7)\T717)‘Ta:u):0 dt - 87]2 8143771
ab da dq
—Wolz1s- s 2os1,m) | 5 —u’
. : 0215+ 2r41,1) [3771' + am“] o
Ty 21
Frfl(zlw"’W7777)‘11"'7)‘T7:u’):O ( )
with
The systen{F; = 0) is linear and triangular with respect to the w= LUCHIRED) (22)
;. Up to the sign, the diagonal termg =a(z1,...,2r). a(z1,- -5 2r)
Hence the systeniF; = 0) has a unique solution Wlth re-pefineA = Wi(zy,... 290,70, 1) and¢ = (21,...2.). If XA =

spect to the\;. Fori = 0, equation (18) is easily drawn from(y, ) satisfies (10,11) and@H/du(C,n,u, A\, 1) = 0,
(13). Consider nowt; = 0 for i > 0. From (15) we see then( satisfies (4,5)A = A and satisfies (12).

that),_; isafunctionof(zy, ..., 2z, rir1, Ar—it1, ..., An); fOr
Jj < i, we assume recursively that_; is a function; of
(21, oy Zrgjg1), Withr + 5+ 1 <r+i+ 1. Hence\,_; isa
functionW; of (z1,..., 2r4j+1)- O

Proof. The left handside is the time derivative of (19). The
right handside is the insertion of (8) and of (18) for 0 into
(20).

The converse part essentially shows thatan be drawn from
z1 and its derivatives and, of cours@ndpy. Itis closely related
B to the direct part. From the definition (22) of it follows that
M(t) = Wr—i(a1(t),- - z20(t), 0, 1) (19) g satisfies (4,5). Sinc@H/du = 0, then), satisfies (13), and
ence,\, = Wy(z1,...,2-41,n) = A,.. Together with (21),
Differentiating this equation and using the adjoint equation cflnfollows that/,LO(saltisfies (Izl).n)Sinc@H/aug: 0 it follcgws)
A1 leads to fromlemmas 1 and 2 that = W (z1,..., 200, m,0) = A. [

Fori =r — 1, we have



In other words thé +2(n —r) unknowns to be found arg,n, &k =1,...,¢. Then one can solve
andu. Then theA as defined above are appropriate candidates

for the adjoint states corresponding(ta, ...z) (the only ad- _ M‘l( " " " T
joint states that are missing). i a (21(tp)s 2 (tp),mlts), 1(Er)

0
3.4 Endpoint conditions - ([)5) ¢(A(Zl(tf)7"’7zr(tf)7n(tf)))>
With  the proposed terminal cost¢(z(tf))
¢(A(z1, ..., 2r,m)), the terminal conditions on the adjom
states are then

4 Example

To illustrate the previous result we derive here the optimality

9 N . conditions for the forced van der Pol Problem.
Ailty) = — z21(tf), .y 2r(ts),m(ty))), fori=1,...,r i . i i o
(tr) azi¢( (a(t) () m(tp) The dynamics of this system discussed in [7] and [10] is given
by
That can be rewritten in terms of conditions upon the deriva- _
tives of the flat output T1 = T2
dy=—x1+ (1 —2d)r2 +u
Wilz1(tr)s o 2erin (7)o m(ts)s il ) =
0 It was used in the last two cited references as a benchmark.
Dz P(A(21(ty), - 2 (tg),0(Es))): The optimal control problem is to minimize the quadratic cost
function

fori=1,..,r

— ° 2 2 2
3.5 Endpoint equality constraints 7 _/0 (21(5) + 23(s) + u™(s))ds

Following Bryson and Ho’s [2] presentation of optimal contraubject to the dynamics given above and the endpoint con-
problems we explain how to treat a special case of practicitaints
interest. Our proposed approach applies in this situation where

extra adjoint states appear. 21(0) = 1,22(0) = 0,22(5) — 21(5) = 1
Let us consider the original problem (1), (2) with the additional
constraint The dynamics is flat and, = z; is a flat output (ideal case).
Following the procedure presented in the previous section we
Y(z(ty)) = 0. (23) get the Hamiltonian
. . " 1
Wherev,z;_ is a smooth fu_nc_tlon fromlR” — RY9, 0 < ¢ < n. H= (22 4 22 +u?) 4+ Mg 4+ do(—z1 + (1 — 22) 20 + 1)
Introducing ¢ extra multiplierst € R? we get the terminal 2
conditions

The adjoint equations are

Mlt) =g $(AGA () o2 (11), (1) M= —Ha, = = (01— 2am12s) (25)
Ay = —Hyy = — (22 + M + Aa(1 — 7))

+7rT@aziw(A(Zl(tf)7.."Zr(tf)’n(tf))) (24)

Solving the two equation&,, = 0 and %«
fori = 1,...,r along with theg terminal constraints (23). Un- states we get

der the assumptlon that one can extract a non singuarma-

trix out of the Jacobian of (which is a classical assumptionto Ay =z G 4+ 22147 — (1 — 2%)iy

make (23) solvable), it is possible to isolate an invertible set of

= 0 for the adjoint

: (2) 2y ; 2
¢ equations in theg unknowsr from the set of equations (24). —h= (_xl —ar+(1- 951)5”1) (1-z1) (26)
This means that these multipliers also write in terms;oand Ay = — x§2) — oz 4 (1= 2?)i @7)

its successive derivativeg,and . Let (iy,...,i,) be a set of

indexes such that thex ¢ matrix extracted from the Jacobianyow one just has to substitute the expression ¥prand Ao

of ¢ is invertible, let)M, denote this matrix extracted from  into the differential equation (25) to get the fourth order differ-
ential equation to be satisfied by the flat output on the optimal

<(§Z7/1(A(Zl(tf), ...,Zr(tf),n(tf)))> trajectory

(4)
. ) _ + 223 + 621814+
This matrix depends omy (ty), ..., z-(tf), n(ty). LetW denote ! D

the vector(W;, ), for k = 1,...,q and z the vector(z;, ), for (25”1131 (1—a?)i) (1—af) + 221+ & =0



Finally one gets the boundary conditions

(0)
#1(0)
i1 (5) — 21 (5) =
2% (5) + @1(5) + 221(5)i3(5) — (1 — 23(5))i1 (5) — i1 (5)
~(~a?(5) — 21(5) + (1 — 23(5))i1(5)) (1 — 23(5))

2P (5) + 21(5) — (1 — 23(5))i1 (5)

1

1
0
0

the last relation being just the endpoint conditidn(5) +
A2(5) = 0 expressed in terms of the flat output.

(4]

(5]

(6]

[7]

Solving this two point boundary value problem can be done

with any appropriate numerical solver, e.g. Matlkap4c .

Results give solutions comparable to the one obtained in [1B]

and [10], the obtained cost 1S68588.

The adjoint states\; and )\, also writes in terms of the flat
output along the optimal trajectory as given by (26) and (27).

Conclusion

9]

(10]

In summary, what we have shown is the following: if the sys-

tem has relative degree thenr of the adjoint states can be

explicitly recovered. To do so one just has to rewrite the prob-

lem in its normal form and then write that, and its firstr — 1
time derivatives are zero along the optimal trajectories.

(11]

As stated in the main result of the paper, finding an optimal

trajectory is equivalent to finding time functions(t) € R,

n(t) € R*"andu(t) € R*~" that satisfy (20), (6) and (21).

We have fewer unknowns than the classicatates and ad-
joint states. We are now left witlh + 2(n — r) unknowns.

The ideal case is (as for collocation methods) the fully invert-

ible case (flat case) where = n, as treated in the example
In any case we believe this structure

in the previous section.

could be exploited in implementation of shooting techniques
(see [1] for an overview of shooting methods) as it involves
fewer unknowns. Numerical relevance of this approach is cur-

rently under investigation.
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