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Abstract

This article studies some of the statistical properties of domestic hot water (DHW) consumption. 

The study is based on experimental data obtained for a group of households, over a 1 year 

period. To describe the consumptions, we consider three representative statistical properties of 

the drain sequence associated to each household: i) the distribution of the magnitude of the 

drains, ii) a daily pattern of the start times of consumptions, iii) the time between two successive 

drains. A remarkable outcome of the study is that the time between two successive drains 

follows a bimodal Weibull distribution. This opens perspectives for piloting applications.  
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1. Introduction  

The increasing share of intermittent renewable electricity sources in the energy mix 
[2, 3] raises new difficulties in management of the electricity production and 
equilibrium in distribution networks. Demand Side Management (DSM), which is a 
portfolio of smart piloting techniques aiming at modifying consumers’ demand, is a 
promising solution for such concerns [3]. A key factor in developing DSM is the 
availability of energy storage capacities. In this context, the large pools of electric hot 
water tanks (EHWT) found in numerous countries appear as a very large potential. 

An EHWT is a domestic electric appliance which heats a volume of water with a 
controllable heating element. The user drains hot water from the EHWT at various 
times of the day, for its comfort. The state of charge of the tank is a function of heating 
and domestic hot water consumption. Delivery of hot water at all times is a constraint 
that must be satisfied at best. To design advanced heating control strategies (in view of 
various objectives such as reducing operation cost for a single tank, or reaching a 
desirable load profile for the total consumption of a pool of tanks), a model of the 
demand is a key element. For this reason, we perform some investigations on the 
dynamics of domestic hot water (DHW) consumption, which has a random nature. 

The water drains appear as a sequence of quasi-instantaneous drains in the scale of 
the day (see Fig. 1). As can be observed on experimental data, the time of occurrence of 
these drains is not fixed, but is stochastic. In the literature, studies have focused on 
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describing weekly or seasonal consumption patterns, or have presented hour-per-hour 
mean consumptions [4, 5, 6]. One such typical approach can be found in [7], in which 
an approach based on aggregation of types of uses allows to generate minute-per-
minute load profiles, and in [8], in which forecast over 2 days are generated using the 
Kalman filter. Nevertheless, more advanced stochastic modeling of the magnitude of 
these drains and of the temporal correlation in the sequence, based on data analysis, 
would represent some valuable ways of improvement to design heating strategy for the 
tanks. This article aims at establishing such statistical properties. 

 

Fig. 1  An example of sequence of drains for an household over 48h. 

 
Data have been gathered in 11 distinct households with EHTW equipped with flow 

meters and temperature sensors, over periods ranging from 292 to 337 days, with a 
sampling time of one minute. In this paper, using data, we identify statistical 
characteristics of DHW consumption. This is the main contribution of this article. 

The paper is organized as follows. In Section 2, we identify three main statistical 
features. Then, in Sections 3 to 5, model of these characteristics are presented. 
Conclusion and perspective are drawn in Section 6. 

2. Characteristics of domestic hot water consumption  

Domestic Hot water consumption aggregates various uses in a household: bathing, 
cleaning, cooking, etc. The durations of resulting drains range from a few seconds to a 
few minutes. They can be represented as quasi-instantaneous events of various 
magnitudes in the scale of the day. These drains can be described as a volume of hot 
water or a quantity of energy taken from the tank (the energy contained in hot water 
being defined with respect to a cold water temperature reference). 



To model the drain sequence, one needs to describe when the drain happens, and 
how much hot water is consumed during those drains (we make the assumption that two 
drains occurring within a single minute correspond to a single bigger drain). 

The following statistical properties are considered: i) the distribution of the 
magnitude of the drains, ii) a daily pattern of the start times of consumptions, iii) the 
time between two successive drains. 

This defines a stochastic process for the total hot water consumption        at 
time   of the form 

       ∑          
  

   
   (1) 

 

where    and    are the time of occurrence and the magnitude of the drain  , resp., and 

     is the Heaviside function:        if       and          if      .  
Classically, the magnitude of the drains can be characterized through frequentist 

inference [9], by estimating a probability density function from the frequency of the 
data. The results are presented in Section 3. 

The times of occurrence of the drains are more complex to describe. The 
consumption start times are related to the number of persons in the household and their 
domestic habits. As will be shown in Section 4, they are distributed according to an 
average daily pattern which is reported. Then, the time between two successive drains 
follows a bimodal Weibull distribution. This is shown in Section 5. 

3. Frequentist inference for the water drains distribution law 

A simple way to model the diversity of magnitude of the drains is to represent the 
drains as random variables drawn from the same probability law. Since the drains are 
positive, this probability law can be represented with a probability density function on 

[0,+∞[ (see Fig. 2).  

The probability distribution reported in Fig. 2 has been estimated with a frequentist 
approach to inference [9], for all households and all measurements. The displayed 
distribution law is the frequency of occurrence of each drain for a large number of 
measurements. 

An interesting observation is that four distinct peaks are visible in the filtered 
distribution function. This is in accordance with the results presented in [7], obtained by 
considering four types of uses (small and medium drains, shower bath and bath tub).  

If needed, this result could be refined by taking into account that the measurements 
are strongly related to the habits of the households (e.g. in term of bathing), the time of 
the day and the season. For households equipped with additional sensors, the 
conditional distribution could be estimated online. However, we do not consider this in 
this article. 



 

Fig. 2  Experimental probability distribution of drain magnitudes (over the whole recorded sequences). 

 

4. Daily pattern for the start times of drains 

The hot water consumption is strongly related to the habits of the house occupants. 
Also, it is clearly visible in the data (as could be expected) that the drains mostly take 
place at certain times of the day (see Fig. 1).  In fact, a daily pattern can be defined. For 
this, one can simply consider the mean value of the number of drains at a given time of 
the day, for each household. The procedure is as follows. This procedure is commonly 
used in statistics (e.g. to determine the intensity function of a non-homogeneous 
Poisson process [10]). 

Given a household, we represent each of its   set of 24 hours measurements 
(labeled by  =1…n) with a function       that represents the number of drains having 
occurred in this day over the interval      , for          . In other words, consider 

any day   and the sorted drain times   
      

 , then        is defined as 
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Then, we define the daily pattern as the mean of these functions 
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This function, defined over the time interval        , gives, for any household, the 
average (expected) number of drains that should have occurred at time   (see Fig. 3): it 
is representative of the habits of this household in terms of frequency of the drain. The 
function (3) obtained with the discussed dataset is reported in Fig. 3. The presence of 
sharp transients between low slope regions shows that the average function (2) is 
representative of the individual behaviors in each household. High slopes correspond to 
time periods with frequent drains. 
 

 

Fig. 3  Averaged daily cumulative number of drains 

 

5. Distribution of the time between two successive drains 

The time between two successive drains   
     

      
  (during a day  ) is also 

related to the habits of the house occupants. Therefore, we isolate data accordingly. 
In the case when the number of drains over time       are samples of a non-

homogeneous Poisson process (i.e. the drains are not correlated), then it is possible to 
construct adjusted increments with the mean value function        that must follow an 
exponential distribution. As will appear, this assumption is not valid in our case, but we 
still perform the same analysis, yielding different conclusions. The construction is done 
the following way. 

For each period   of 24 hours, a set is constructed by taking the image of each 

drain time   
      

 ,  through the function   (see Fig. 4). The     
   are then used to 

define the set of successive increments 
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Fig. 4  Construction of the ajusted increments 

These variables have an interpretation: for any day  ,   
  is the average increment 

of the number of drains from     
  to   

 . Its expected value (for all possible  ) is 1. 
These normalized increments (represented in the ordinate axis in Fig. 4) are 

assumed to be independent from the choice of the households. They are representative 
of the correlation between successive drains.  

The   
  are distributed in the        interval. Using the whole dataset, an 

experimental cumulative distribution function (CDF) can be obtained. It is reported in 

Fig. 5. Remarkably, this function shows a good fit to          –              which 

corresponds to the CDF of the Weibull distribution of shape parameter  and scale 
parameter   [11]. Among other possibilities (exponential distribution, Gamma 
distribution, Beta distribution), this is (by far) the best fit. 

The Weibull distribution is commonly used to model failure rates over time. In the 
literature, it is often associated with Autoregressive Conditional Duration (ACD) 
models [12] to forecast the distribution of a succession of duration times (e.g. time 
lapse between two transactions in stock market [13]). In Weibull models, the parameter 
  defines the nature of the process. The case       corresponds to an exponential 
distribution. If      , then the occurrence of an event raises the probability of a 
closely following event (cases of immediately consecutive events are frequent). On the 
contrary, the case       corresponds to the case when successive events are spaced 
out. 



  

Fig. 5  Experimental CDF for the ajusted increments compared to the Weibull CDF 

To establish that the experimental data follow the assumed distribution, a graphical 
method can be employed. The probability plot consists in plotting two CDF, one 
against the other: if the two distributions are similar, the points of the probability plot 
should lie on a straight line. Further, for the Weibull distribution, the shape parameter α 
can simply be deduced from the slope [11]. 

 

 

Fig. 6  Probability plot of the data against the Weibull distribution 



 
Interestingly, the probability plot in Fig. 6 displays two distinct lines with different 

slopes. This is a well-identified characteristic of a multimodal or mixed Weibull 
distribution, indicative of the fact that several shape parameters coexist [14, 15]. In our 
case, we propose the following interpretation. It is likely that two different timescales 
come into play in the time correlation. Those timescales can correspond to the fact that 
the user is at home or not, doing an activity that requires hot water. The two modes 
have parameters      , i.e. at all times during the day the occurrence a water drain 
strongly suggests that another water drain should be expected right after. 

6. Conclusion and perspectives 

In this article, we have identified three distinct statistical characteristics present in a 
dataset of time series of DHW consumption. According to the investigations conducted 
on the presented dataset, the conclusions are well grounded but they remain 
preliminary. If these characteristics remain valid for more various cases (e.g. in 
different countries or with a wider range in the type of households), then this would 
pave the way to interesting works on stochastic modelling of hot water consumption.  

These perspectives are important for smart piloting applications of EHWT. Indeed, 
the identification of the time lapse between drains with a Weibull distribution appears 
as particularly useful, since it stresses that if the user is draining water, he is very likely 
to drain more water shortly. Considering this likely event, piloting strategies can be 
updated online to take into account the high probability of future drains. Future works 
should include the definition, if possible, of a global Weibull ACD model that can be 
fitted online for each household. 

At another scale, for a large number of EHWT, stochastic modelling of the 
consumption opens the way to the development of models for the distribution of the 
state of charge of the tanks, using e.g. Fokker-Planck equations.  
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