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Abstract— This paper investigates prediction-based control
for nonlinear systems subject to both pointwise input- and
(potentially) distributed state-delays. We address infinity-norm
stability analysis of the corresponding closed-loop system refor-
mulating both delays as transport Partial Differential Equations
(PDEs) and transforming the resulting distributed state. We
show how the performed analysis can be extended to establish
robustness to delay uncertainties. We illustrate the merit of this
design with numerical simulation of a prey-predator population
dynamics.

I. INTRODUCTION

Time-delays systems are often involved in the modeling
of systems exhibiting periodical behaviors, as it is the case
in biology [25] or population dynamics [4], [11], [14] for
example. This lag, which could be either pointwise or dis-
tributed, accounts for physical distance and related transport,
blood circulation, cell generation, etc. Most of the time,
those delays affect both the input and the state. The same
conclusion applies, e.g., for systems involving a recycle
loop as it is commonly the case in the process industry
(see [22], [10], [8]). While most of the recycle processes
can reasonably be modeled as linear dynamics, this is not
the case of most biological systems.

In this paper, we design a prediction-based controller
for nonlinear systems subject to both input and state de-
lays. Predictor-based control strategies, more commonly
known as Smith Predictor (see [1],[28],[21]) are state-of-
the-art for systems with constant input time-delays (see
for instance [3],[5],[12],[13],[23], or [27] and the reference
therein). Grounding on the use of a prediction of the system
state on a time horizon equal to the input delay, this technique
aims at compensating this delay, which notably improves the
transient performances. However, while the literature on con-
trol of either input delay or state delay systems is extremely
wealth, systems with both input and state delays have seldom
been studied, except from very recent contributions [2], [9],
[17].

In this work, we consider nonlinear dynamics with (po-
tentially) distributed state delay subject to pointwise input-
delay. We assume that we know a nominal feedback law
which stabilizes the input-delay-free nominal system (and
potentially compensates the state delay by relying on past
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values of the system state). The strategy that we advocate is
similar to the one proposed in [2]. It consists in the use of
such a nominal feedback law, which, instead of being applied
to the current state, takes as input a suitable prediction of the
system state.

While the control design and the stability result we pro-
pose are very close to the ones in [2], the stability analysis
we present relies on a different methodology which enables
one to pursue a robustness analysis in the future. In details,
our approach is grounded on PDEs tools that were proposed
lately to address input delay uncertainties (see [19], [20])
and were extended in [9] to handle both state- and input-
delay uncertainties. In this paper, we build on those previous
contributions to propose a PDE framework accounting for
nonlinearities and distributed delays. Modeling both actuator
and the state delays as transport PDEs coupled with the
original Ordinary Differential Equation (ODE), we rely on a
backstepping transformation of the distributed input to ana-
lyze the closed-loop stability. To formulate the corresponding
target system, one needs to study an implicit functional PDE.
While nonlinearity is responsible for the implicit nature, the
functional one originates from the fact that the state-delay is
distributed. We then carry out an L∞ analysis for the closed-
loop system. This is the main contribution of the paper.

While we do not formally investigate the delay-robustness
problem, we show how the proposed methodology can be
applied to analyze it. The objective of this paper is to present
this new PDE framework by providing an alternative proof
to the one in [2] as a preliminary step.

The paper is organized as follows. In Section II, we
introduce the problem under consideration before providing
the prediction-based control we propose in Section III. Then,
we present the stability analysis of the closed-loop dynamics
in Section IV before sketching in Section V how it can be
extended to analyze robustness to delay uncertainties. Finally,
we illustrate the merits of our designs in Section VI with
simulations of a prey-predator model.

Notations. Let n be a positive integer and µ a given
positive constant. In the sequel, for u ∈ C ([0,1]×R,Rn) and
ϕ ∈ C (I,Rn) for any interval I ⊂ R, we denote

‖u(t)‖p,µ =

(∫ 1

0
epµx|u(x, t)|pdx

) 1
p

(1)

‖u(t)‖∞,µ = max
x∈[0,1]

|eµxu(x, t)|= lim
p→∞
‖u(t)‖p,µ (2)

‖ϕ‖∞ =max
s∈I
|ϕ(s)| (3)

and we use the standard notations ‖ · ‖p = ‖ · ‖p,0
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and ‖ · ‖∞ = ‖ · ‖∞,0. For (D1,D2) ∈ R2 and a
function X , we write Xt,1 : s ∈ [−D1,0] 7→ X(t + s)
and Xt,2 : s ∈ [−D2,0] 7→ X(t + s). Finally, for
u ∈ C ([0,1]×R,Rn), we define u(·, t) : x ∈ [0,1] 7→ u(x, t)
for t ≥ 0 and, for v ∈ C ([0,1]2×R,Rn), we define
v(x, ·, t) : y ∈ [0,1] 7→ v(x,y, t) for (x, t) ∈ [0,1] × R and
v(·,�, t) : (x,y) ∈ [0,1]2 7→ v(x,y, t) for (x, t) ∈ [0,1]×R.

II. PROBLEM STATEMENT

Consider the (potentially) unstable system

Ẋ(t) = f (Xt,1,U(t−D2)) (4)

in which X ∈ Rn, U is scalar and D2 > D1 > 0. In the
following, we assume that f is locally Lipschitz and that its
partial derivative with respect to its first argument (Gâteaux
derivative) is locally Lipschitz.

The dynamics (4) can encompass various complex delay
classes. Those can be either distributed or pointwise (how-
ever, we do not allow the delay to be time-varying1).

The control objective is to stabilize (4) following a
prediction-based approach to compensate the input delay.
With this aim in view, we first characterize further the system
under consideration.

Assumption 1: The system (4) is forward complete.

Assumption 2: There exists a feedback law
κ : C 0([−D1,0],Rn) 7→R which is a class C 1 function such
that the dynamics

Ẋ(t) = f (Xt,1,κ(Xt,1)) (5)

is globally exponentially stable, i.e.(see [18], [26]), there ex-
ist a continuous functional W : C ([−D1,0],Rn) and constants
C1,C2,C3 > 0 such that

C1‖ϕ‖∞ ≤W (ϕ)≤C2‖ϕ‖∞ (6)
|∂ϕW (ϕ)| ≤C3 (7)

and, moreover, the functional W is differentiable along the
trajectories of the closed-loop system (5) and

Ẇ (t)≤−W (t) (8)

Assumption 1 guarantees that (4) does not escape in finite
time and, in particular, before the closed-loop input reaches
the system at time t = D2. This is a necessary assumption to
guarantee that the control designed in the sequel will stabilize
the plant for any delay value.

Assumption 2 guarantees the existence of a nominal
feedback law for the input-delay free system. We assume that
this feedback law is exponentially stabilizable. Alternatively,
one could consider an asymptotically stabilizable feedback
law as it is done in [2]. However, the nominal closed-loop
dynamics should then also satisfy an Input-to-State Stability
property, which is not needed here. Note that we consider

1Even if the methodology we propose could be extended to state-
dependent delays or to time-varying delays a model of which is known.
This is a direction of future work.

that this feedback map is a function of the distributed state
Xt,1 to allow state-delay compensation.

In the sequel, we build on this nominal feedback law and
design a prediction strategy to compensate the input-delay.

III. NOMINAL CONTROL DESIGN

Consider the distributed state prediction

Pt(τ) = (9)
X(τ +D2) if t−D1−D2 ≤ τ ≤ t−D2

X(t)+
∫

τ

t−D2

f (Pt
s,1,U(s))ds if t−D2 ≤ τ ≤ t

for t ≥ 0 and τ ∈ [t−D1−D2, t]. We now use this prediction
as argument for the nominal input-delay free control law in
lieu of the original distributed state

U(t) =κ(Pt
t,1) (10)

Theorem 1: Consider the closed-loop system consisting
of the plant (4) satisfying Assumptions 1–2 and the control
law (10) involving the prediction (9). Define the functional

Γ(t) =‖Xt,1‖∞ +‖Ut,2‖∞ (11)

There exists a class K L function β such that, for
(X0,1,U0,2) ∈ C 0([−D2,0])×C 0([−D1,0]),

Γ(t)≤ β (Γ(0), t) , t ≥ 0 (12)

In order to properly understand the choice of the control
law, we provide several comments next.

First, it is worth noticing that Pt
t,1 defined through (9) is a

D2 units of time ahead prediction of the distributed system
state Xt,1. Indeed, integrating (4) between t and τ +D2, one
obtains

X(τ +D2) =X(t)+
∫

τ+D2

t
f (Xs,1,U(s−D2))ds

=X(t)+
∫

τ

t−D2

f (Xs+D2−D1,1,U(s))ds (13)

in which the second equation has been obtained performing
a change of variable. One can observe that this equation
is equivalent to (9). Hence, formally, one obtains Pt(τ) =
X(τ+D2) for τ ∈ [t−D1, t] as D1 <D2. Plugging this control
law into the original dynamics, one naturally infers that the
closed-loop dynamics should be (5) which is asymptotically
stable by assumption.

Second, note that we define the prediction as a function of
two arguments: Pt1(τ) is the prediction X(τ +D2) computed
at time t1 and using X(t1) as a starting point. A priori,
this prediction could be different from Pt2(τ) for a different
t2. However, this is not the case here, as we consider
no model uncertainty, but it is likely to be the case in
practical applications. In particular, for the nominal case
under consideration here, the definition of the distributed
prediction (9) is formally equivalent to the following one
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given in [2]

P(τ) = X(t)+
∫

τ

t−D2

f (Ps,1,U(s))ds , (14)

for t−D2 ≤ τ ≤ t with t > D2

P(τ) = (15)
X(τ +D2) if −D1−D2 ≤ τ ≤−D2

X(0)+
∫

τ

−D2

f (Ps,1,U(s))ds if −D2 ≤ τ ≤ 0

in which P is then expressed as a function of one argument
to emphasize the fact that it actually does not depend on
the time at which the computation is done. However, (9)
constantly incorporates measured delayed state while (14)–
(15) is initialized with them and then only integrates the
dynamics. Thus, in all likelihood, the formulation we propose
should improve the robustness of the prediction to model
mismatch or delay uncertainty (even if the induced number
of computations would then increase). Further, it facilitates
the stability analysis, as will appear in the following.

Finally, even if the equation (9) may seem implicit at
first glance, this prediction is actually well-defined and the
solution always exists and is unique, as the solution of the
differential equation (4). Further, more interestingly, it is
also practically computable, relying on suitable discretization
scheme of the integral (see [29] for a study on the effect
of this discretization scheme on the closed-loop stability
of linear systems and [16] where nonlinear dynamics are
addressed and a time-varying discretization methodology
is proposed. Alternatively, one can rely on a a low-pass
filter addition [24] for linear systems or on an approximate
predictor as done in [15].).

We now provide an alternative proof to this theorem,
relying on PDEs reformulation.

IV. PROOF OF THEOREM 1 WITH PDES TECHNIQUE

A. PDEs reformulation and backstepping transformation

As a first step in our analysis, we define the
distributed variables ζ (x, t) = X(t + D1(x − 1)) and
u(x, t) =U(t +D2(x−1)) for x ∈ [0,1]. The plant (4) can
then be reformulated as the following ODE-PDE cascade

Ẋ(t) = f0(ζ (·, t),u(0, t))
D1∂tζ (x, t) =∂xζ (x, t)

ζ (1, t) =X(t)

D2∂tu(x, t) =∂xu(x, t)

u(1, t) =U(t)

(16)

in which we used

f0(ζ (·, t),u(0, t)) = f (Xt,1,u(0, t)) (17)

which is a simple change of arguments in the function
definition. Similarly, in the sequel, we denote

κ0(ζ (·, t)) =κ(Xt,1) (18)

Now define a distributed prediction, for x ∈ [0,1] and t ≥ 0,

p(x, t) =X(t)+D2

∫ x

0
f0(χ(y, ·, t),u(y, t))dy (19)

χ(x,y, t) =

 ζ

(
y+ x D2

D1
, t
)

if xD2 +(y−1)D1 ≤ 0

p
(

x+ D1
D2

(y−1), t
)

if xD2 +(y−1)D1 ≥ 0

for 0≤ y≤ 1 (20)

along with the following backstepping transformation of the
distributed input u(x, t)

w(x, t) =u(x, t)−κ0(χ(x, ·, t)) , 0≤ x≤ 1 (21)

Lemma 1: The infinite-dimensional backstepping trans-
formation (21) together with the control law (10) trans-
form (16) into the target system

Ẋ(t) = f0(ζ (·, t),κ0(ζ (·, t))+w(0, t)) (22)
D1∂tζ (x, t) =∂xζ (x, t) (23)

ζ (1, t) =X(t) (24)
D2∂tw(x, t) =∂xw(x, t) (25)

w(1, t) =0 (26)
Proof: We start this proof by noticing that

p(x, t) = Pt(t + D2(x − 1)) for x ∈ [0,1] and that
χ(x,y, t) = Pt(t +D2(x−1)+D1(y−1)) for (x,y) ∈ [0,1]2

(this could be obtained performing a change of variable
in (19) and using the fact that the solution to the differential
equation (4) or, equivalently, to the integral equation (9) is
unique). From there, it follows that U(t) = κ0(χ(1, ·, t)).
Consequently, from the definition (21), one obtains (26).
Further, from (20), one gets

χ(0,y, t) =ζ (y, t) (27)

and (22) follows with (21).
Now, taking space- and time-derivatives of (19), one

obtains

∂t p(x, t) = f (Xt,1,u(0, t))

+D2

∫ x

0

(
∂ f0

∂ χ
(χ(y, ·, t),u(y, t)) ·∂t χ(y, ·, t)

+
∂ f0

∂u
(χ(y, ·, t),u(y, t)) ·∂tu(y, t)

)
dy (28)

∂x p(x, t) =D2 f0(χ(x, ·, t),u(x, t))

=D2

(
f0(χ(0, ·, t),u(0, t))

+
∫ x

0

(
∂ f
∂ χ

(χ(y, ·, t),u(y, t)) ·∂xχ(y, ·, t)

+
∂ f
∂u

(χ(y, ·, t),u(y, t)) ·∂xu(y, t)
)

dy
)

(29)

Observing that χ(0, ·, t) = ζ (·, t) from (20) and that
f0(ζ (·, t),u(0, t)) = f (Xt,1,u(0, t)), it follows that

D2∂t p(x, t)−∂x p(x, t) = (30)

D2

∫ x

0

∂ f0

∂ χ
(χ(y, ·, t),u(y, t)) · (D2∂t χ(y, ·, t)−∂xχ(y, ·, t))dy
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Now, taking spatial- and time-derivatives of (20), one gets

∂t χ(x,y, t) = ∂tζ

(
y+ x D2

D1
, t
)

if xD2 +(y−1)D1 < 0

∂t p
(

x+ D1
D2

(y−1), t
)

if xD2 +(y−1)D1 > 0
(31)

∂xχ(x,y, t) =
D2
D1

∂xζ

(
y+ x D2

D1
, t
)

if xD2 +(y−1)D1 < 0

∂x p
(

x+ D1
D2

(y−1), t
)

if xD2 +(y−1)D1 > 0
(32)

and, thus, using (23) and (30),

D2∂t χ(x,y, t)−∂xχ(x,y, t) =
0 if xD2 +(y−1)D1 < 0

D2
∫ x+D1

D2
(y−1)

0
∂ f0
∂ χ

(χ(ξ , ·, t),u(ξ , t))
·(D2∂t χ(ξ , ·, t)−∂xχ(ξ , ·, t))dξ if xD2 +(y−1)D1 > 0

(33)

Thus, defining r(x, ·, t) = D∂t χ(x, ·, t)− ∂xχ(x, ·, t) and, for
(s,x, t) ∈ [−D1/D2,0]× [0,1]×R,

rx(s, ·, t) =
{

r(s+ x, ·, t) if s+ x≥ 0
0 otherwise (34)

there exists a continuous function g : [0,1] × R →
C (C ([−D1/D2,0]× [0,1]×R,R),C ([0,1]×R,R)) such
that

∂xr(x, ·, t) =g(x, t) · rx(·,�, t) (35)
r0(·,�, t) =0 (36)

As the plant (4) is forward complete, p and thus χ exist for
all time. Hence, the functional g is defined for all time. From
there, one obtains that the solution of this system is global
and unique. Solving this equation, it follows that r(x, t) = 0
or, equivalently,

D2∂t χ(x, ·, t) =∂xχ(x, ·, t) (37)

Finally, taking space- and time-derivatives of (21), one
obtains

∂tw(x, t) =∂tu(x, t)−
dκ

dχ
(χ(x, ·, t)) ·∂t χ(x, ·, t) (38)

∂xw(x, t) =∂xu(x, t)− dκ

dχ
(χ(x, ·, t)) ·∂xχ(x, ·, t) (39)

Therefore, with (16) and (37), the transport PDE (25) follows
straightforwardly.

We now exploit the backstepping transformation (21) to
provide a Lyapunov analysis of the stability of the closed-
loop system. The reason for this choice is linked to the
boundary condition (26) as will appear in the sequel.

B. Lyapunov analysis
Define the following Lyapunov-Krasovskii functional can-

didate

Vp(t) =
(

µ−1+
1

2p

)
W (t)2p (40)

+Db2p
p (‖X0,1‖µ,2p +‖w(0)‖µ,2p)

∫ 1

0
e2pµxw(x, t)2pdx

in which the functional W has been introduced in Assump-
tion 2, p ∈ N, µ > 1 and

bp(‖X0,1‖µ,2p +‖w(0)‖µ,2p) = (41)

max
{(

µ−1+
1

2p

)
C3`(‖X0,1‖µ,2p +‖w(0)‖µ,2p),1

}
and ` : R+ → R+ is defined as the Lipschitz constant of
f (·,κ(·)) with respect to its second argument over the ball
B(0,R). In the following, for the sake of clarity, we omit the
arguments of bp and `.

Taking a time-derivative of this functional and using
integrations by parts, one obtains

V̇p(t) =(2p(µ−1)+1)W 2p−1 (42)
×∂Xt,1W (Xt,1) · f (Xt,1,κ(Xt,1)+w(0, t))

−2pµb2p
p

∫ 1

0
e2pµxw(x, t)2pdx−b2p

p w(0, t)2p

≤− (2p(µ−1)+1)W (t)2p−2pµb2p
p ‖w(t)‖

2p
2p,µ

+(2p(µ−1)+1)W 2p−1`C3|w(0, t)|−b2p
p w(0, t)2p

in which we have also used (7) and (8). Further, using Young
inequality, one obtains

(2p(µ−1)+1)W 2p−1`C3|w(0, t)| (43)

≤(2p−1)W (t)2p +

(
µ−1+

1
2p

)2p

C2p
3 `2pw(0, t)2p

Therefore, plugging (43) into (42) and using (41), it follows

V̇p(t)≤−2pµVp(t) , t ≥ 0 (44)

and thus, for t ≥ 0,

Vp(t)
1

2p ≤ e−µt

((
(µ−1+

1
2p

) 1
2p

W (0) (45)

+bp

(
D
∫ 1

0
e2pµxw(x,0)2pdx

) 1
2p
)

This gives, for t ≥ 0,

(µ−1)
1

2p W (t)+bp

(
D
∫ 1

0
e2pµxw(x, t)2pdx

) 1
2p

(46)

≤ 2e−µt

((
µ− 1

2

) 1
2p

W (0)+bp

(
D
∫ 1

0
e2pµxw(x,0)2pdx

) 1
2p
)

Now, define

Γ0(t) =W (t)+b‖w(t)‖µ,∞ (47)

Γ̃(t) =W (t)+‖w(t)‖∞ (48)

in which b ∆
= max{(µ−1)C3`(‖X0,1‖∞ +‖w(0)‖∞),1}. Tak-

ing the limit of (46) as p tends to infinity, one finally gets

Γ0(t)≤ 2e−µt
Γ0(t) , t ≥ 0 (49)

and thus, using (6) and the fact that b≥ 1 by definition, the
existence of a K∞ function α̃ such that

Γ̃(t)≤α̃(Γ̃(0))e−µt (50)
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C. Equivalence between functionals Γ and Γ̃

As a final step to prove Theorem 1, the fact that Γ in (11)
and Γ̃ in (48) are equivalent remains to be shown. With this
aim in view, we first prove the following lemma.

Lemma 2: There exist class K∞ functions α1 and α2 such
that

‖u(t)‖∞ ≤ α1(‖Xt,1‖∞ +‖w(t)‖∞) (51)
‖w(t)‖∞ ≤ α2(‖Xt,1‖∞ +‖u(t)‖∞) (52)

Proof: From (19) and (20), there exists a class K∞

function α3 such that

‖χ(t)‖∞ ≤ α3(‖Xt,1‖∞ +‖u(t)‖∞) (53)

Second, from (21), one obtains the existence of a class K∞

function α4 such that

‖w(t)‖∞ ≤ α4(‖u(t)‖∞ +‖χ(t)‖∞) (54)

Gathering (53)–(54), one obtains the existence of α2 such
that (52) holds. The one of α1 such that (51) holds follows
similar lines.

Now, observing that,

‖u(t)‖∞ = max
x∈[0,1]

|U(t +D2(x−1))|

= max
s∈[t−D2,t]

|U(s)|= ‖Ut,2‖∞ (55)

one gets, using (6) and Lemma 2, the existence of class K∞

functions α5 and α6 such that

α5(Γ̃(t))≤ Γ(t)≤ α6(Γ̃(t)) (56)

From there, using (50), one obtains the existence of a class
K L function β such that Theorem 1 holds. This concludes
the proof.

V. ON DELAY-ROBUSTNESS OF THE PREDICTION-BASED
CONTROL LAW (9)–(10)

In this section, we investigate how the previously proposed
design can be extended in the case of (state- and input-) de-
lays uncertainty. We start by formulating a new assumption.

Assumption 3: There exist scalars D and D such that 0 <
D < D1 < D2 < D.

We now consider that the two delays are uncertain and
use D̂1 and D̂2 as state-delay and input-delay estimates, re-
spectively (with (D̂1, D̂2)∈ [D,D]2). The previously proposed
design is then modified as follows.

A. Control design

The estimated distributed state prediction is now

P̂t(τ) = (57)
X(τ + D̂2) if t− D̂1− D̂2 ≤ τ ≤ t− D̂2

X(t)+
∫

τ

t−D̂2

f (P̂t
s,1,U(s))ds if t− D̂2 ≤ τ ≤ t

for t ≥ 0 and τ ∈ [t− D̂1− D̂2, t] and the control law is

U(t) =κ(P̂t
t,1) (58)

Claim 1: Consider the closed-loop system consisting of
the plant (4) satisfying Assumptions 1–2 and the control
law (10) involving the prediction (9). Define the functional

Γ(t) = max
s∈[−max{D1,2D̂1},0]

|X(t + s)|+ max
s∈[−D̂2,0]

|Ü(t)| (59)

+ max
s∈[−max{D2,D̂1+D̂2},0]

|U(t + s)|+ max
s∈[−max{D2,D̂2},0]

|U̇(t + s)|

Consider (X0,1,U0,2) ∈ C 1[−D2,0])× C 2([−D1,0]). There
exist positive functions ∆∗1(Γ(0)) and ∆∗2(Γ(0)) such that,
if |D1− D̂1|< ∆∗1(Γ(0)) and if |D2− D̂2| < ∆∗2(Γ(0)), there
exists a class K L function β such that

Γ(t)≤ β (Γ(0), t) , t ≥ 0 (60)

Further, the functions ∆∗1 and ∆∗2 are decreasing functions.

B. Elements of proof of Claim 1 and discussion

For the sake of clarity, we do not provide here the proof
of Claim 1 which is lengthy and technical. However, we aim
at underlying its milestones which should lead to the above
statement.

Grounding on [9], we propose to rely on the estimated
distributed input û(x, t) = U(t + D̂2(x− 1)) along with the
estimated distributed state ζ̂ = X(t + D̂1(x−1)) to carry out
the analysis. Then, one can introduce as in the previous
section the backstepping transformation

ŵ(x, t) =û(x, t)−κ0(χ̂(x, ·, t)) (61)

in which the distributed prediction is now

p̂(x, t) =X(t)+ D̂2

∫ x

0
f0(χ̂(y, ·, t), û(y, t))dy (62)

χ̂(x,y, t) =

 ζ̂

(
y+ x D̂2

D̂1
, t
)

if xD̂2 +(y−1)D̂1 ≤ 0

p̂
(

x+ D̂1
D̂2

(y−1), t
)

if xD̂2 +(y−1)D̂1 ≥ 0

for 0≤ y≤ 1 (63)

This would lead to a target system similar to (22)–(26) but
including transport equations corresponding to distributed
errors (distributed state and input errors) and with additive
source terms. To handle those source terms and the nonlin-
earity of the systems, it is necessary to carry out the analysis
with a modified H p

2 -norm as done in [7] (for p = 1) instead
of a modified L p norm as it is the case in the previous
section. Hence, the conclusion obtained in [7] for input-
delay systems would extend to the state- and input-delays
case under the form of Claim 1.

In a nutshell, elements and techniques from [7], [9] and
the infinity norm analysis carried out in the previous section
yield the proof of Claim 1.
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VI. APPLICATION TO POPULATION DYNAMICS –
NUMERICAL SIMULATIONS

Time-delays are of particular interest for logistic and pop-
ulations modeling as they are capable of generating periodic
solutions of considerable complexity, dynamics which are
often observed in those fields.

To illustrate the interest of the proposed approach, we
consider the following (simplified) prey-predator model with
predator harvesting{

Ẋ1 = X1(t)[g(X1(t))−X2(t−D1)p(X1(t))]
Ẋ2 = −dX2(t)+X1(t)X2(t−D1)p(X1(t))+U(t−D2)

(64)

in which X1 is the population of preys, X2 the predators one, g
the growth rate of the preys in the absence of predators, xp(x)
is the response function and d is the death rate of predators in
the absence of prey. In the above, the state delay D1 accounts
for the fact that the predation requires maturity of individuals
(young predators do not kill preys); the delay D2 accounts for
the fact that the predators are neither introduced at the same
physical location nor harvested before a certain size/age.
Following [14], we consider g(x) = 1− x

50 and p(x) = 2
10+x .

The dynamics (64) satisfy Assumption 1 and exhibit a non-
zero equilibrium point X r with X r

1 solution of the equation
X r

1 p(X r
1) = d and X r

2 = g(X r
1)/p(X r

1). Furthermore, using
the backstepping technique for ODEs, one obtains that a
feedback law satisfying Assumption 2 is

κ(Xt,1) = dX2(t)−X1(t)X2(t−D1)p(X1(t))

−λ2(X2(t)− v(t))+ v̇(t) (65)

v(t) =
1

Π(t)p1(Π(t))
(Π(t)g(Π(t))+λ1(Π(t)−X r

1)) (66)

in which λ1 and λ2 are given positive constants and

Π(τ) =X1 +
∫

τ

t−D1

Π(s)(g(Π(s))−X2(s)p(Π(s)))ds (67)

for τ ∈ [t −D1, t] which only depends on Xt,1. The time-
derivative v̇ in (65) can be formally calculated using (67)
and the first component of (64).

In details, this feedback law aims at compensating the
state-delay through the prediction Π = X1(t +D1) and the
corresponding nominal input-delay-free closed-loop system
is then

Ẋ1 =−λ1(X1(t)−X r
1)−X1(t)p(X1(t))(X2(t−D1)− v(t−D1))

Ẋ2− v̇ =−λ2(X2− v) (68)

which is exponentially stable.
For simulation, we consider D1 = 1s, D2 = 2s and d = 1

and choose λ1 = λ2 = 1. We choose a discrete sampling
time equal to 10ms and approximate integrals involved in
predictions with a Backward Euler scheme.

Fig. 1 depicts the corresponding results. After being turned
on at t = 3s, the control kicks in at time t = 5s which is
consistent with the input-delay value. This can be observed
through the fact that X2 remains to its zero equilibrium before
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(a) Evolution of the prey population.
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(b) Evolution of the predator population.
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(c) Control.

Fig. 1. Simulation results for the closed-loop system consisting
of the plant (64) and the control law (58),(65) with g(x) = 1 − x

50 ,
p(x) = 2

10+x , d = 1, D1 = 1s, D2 = 2s, λ1 = λ2 = 1 and the initial condition
X(0) = [0.1 0]. Control is turned on at t = 3s. We consider three cases: (i)
the state- and input- delays are known; (ii) both delays are underestimated
with D̂ = (D̂1, D̂2) = (0.8,1.8); and (iii) both delays are overestimated with
D̂ = (D̂1, D̂2) = (1.2,2.2).

that time. Then, the first effect on the first coordinate can
be noticed at time t = 6s which is also consistent with the
state delay value. Finally, one can check that asymptotic
stabilization is achieved with a smooth (tunable) transient
when delays are known. This transient worsens with delay
uncertainties but, as Claim 1 state it, stabilization is still
achieved for sufficiently small delay estimation errors.

To improve corresponding transient performances and
potentially increase delay robustness, existing delay-adaptive
techniques involving time-varying estimates (see [5], [6]) for
both delays in the same time should be investigated within
the new framework proposed in this paper in future works.
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