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Abstract— In this paper, we propose a result allowing to
simplify the statement of input constrained optimal control
problems. In details, it is shown that perturbation terms of
magnitude ε appearing in the dynamics and the cost function
can be neglected, because they only yield an improvement
of magnitude ε2 in the optimal cost. This result, which is is
handy for practical applications, is here proven by means of
an interior penalty method to deal with input constraints. For
illustration, an example of energy management system for a
Hybrid Electric Vehicle (HEV) is treated. As is expected, the
complexity of the problem can be reduced at very little expense
of sub-optimality. Based on simulations, quantitative results in
term of fuel consumption are provided.

I. INTRODUCTION

Generally, optimal control problems (OCPs), which are
straightforward and valuable transcriptions of engineering
considerations, are deemed difficult to solve [1], [4], [14].
Among others, the number of state variables, and the occur-
rence of constraints greatly impact the resolution methods, by
increasing the level of complexity and the induced computa-
tional burden. This observation holds for all methods, from
dynamic programming [3], Pontryagin Minimum Principle
(PMP) based methods [21], [22], or direct formulations (e.g.
collocation methods) [10].

Prior to resolution, some simplifications of the problem
may be used to reduce this complexity. In earlier works
(see [2] and references therein), it has been shown how
perturbation terms appearing in the dynamics and the cost of
an unconstrained OCP could be neglected. More precisely,
under some mild assumptions, if the error in the right
hand-side of the dynamics and the cost function between
the nominal model (which is generally used to calculate
an optimal control) and the perturbed (real) model are of
magnitude ε , then the error on the optimal trajectories of
the state and the control is also in magnitude of ε . As
a consequence, the sub-optimality in the cost is only of
magnitude ε2. Practically, these results can be used to support
model simplification when determining a trade-off between
accuracy, optimality and complexity.

However, in real situations, most OCPs have to include
input (and also very often state constraints which we leave
out of the discussion in this contribution). Numerous re-
cent works have been proposing ways to deal with these
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constraints by means of unconstrained representation of the
variables, e.g. by saturation function [7], [8], [9]. Following
this idea, the recent works in [16], [17], [18] have shown how
to solve such constrained OCPs by generating a convergent
sequence of OCPs without constraints, using a method based
on interior penalties. By introducing penalties with a weight
factor in the cost function, a new unconstrained problem can
be defined for which the solution is determined from the
usual stationarity condition. This solution is then shown to
converge to the solution of the initial constrained problem
when the weight on the penalty tends to zero. This result is
built around the classic ideas of penalty in finite dimensional
optimization [5].

In this contribution, we extend the results of [2] to input
constrained case by using the results presented in [16], [17],
[18]. Interestingly, we end up with a very similar result in its
statement. The reason for this similarity is that we approach
the solution in a manner which vastly differs from the usual
asymptotic expansions in power of ε of the solutions of the
PMP conditions under constraints (with switching condition)
[6].

After establishing this general result, for illustration, we
study a problem of energy management system for a parallel
Hybrid Electric Vehicle (HEV). In this problem, it is desired
to quantify the benefit of considering engine temperature
dynamics in the minimization of the fuel consumption, as has
been considered in [19], [20], [23], [25]. Based on simulation
results presented in [15], the temperature state could be
ignored from this problem. Similar observations have been
given in [26] and [27] . We use the general result established
in this paper to explain and support these experimental
observations. The conclusion that can be drawn from this
is an important simplification step towards the design of an
effective and implementable energy management controller
for an HEV.

The paper is organized as follows. Section II presents the
problem statement. A nominal OCP and a perturbed OCP are
described in a general manner. In Section III, the result of
[2] in the unconstrained case is recalled. Then, the extension
to input constrained OCPs is established. In Section IV,
two numerical examples are given to illustrate the previous
results. The first one is a linear quadratic (toy) problem
under input constraints. The second one is the HEV optimal
energy management system. Finally, some conclusions and
perspectives are given in Section V.
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II. PROBLEM STATEMENT AND NOTATIONS

The following perturbed input constrained OCP is consid-
ered:

min
u∈Uad

[
Jε(u) =

∫ T

0
Lε(x,u)dt

]
(1)

where Lε is a Lipschtiz function of its arguments, T is a fixed
parameter (without loss of generality), x∈ Rn and u∈ Rm are
the state and the control variables of the following nonlinear
dynamics with prescribed initial conditions X0:

ẋ = fε(x,u), x(0) = X0 (2)

The control u is constrained to belong to the set Uad ⊂
L∞[0,T ] defined by:

umin(t)≤ u(t)≤ umax(t), a.e. t ∈ [0,T ] (3)

Throughout the paper, for convenience, we note σ , [x,u].
In OCP (1), ε is a parameter scaling the error terms (per-
turbation) in the cost function and the state dynamics, with
respect to some ideal scenario ε = 0. This scenario is defined
as follows. We assume that Lε and fε are affine functions in
ε of the form:

Lε(σ), L0(σ)+ εL1(σ), fε(σ), f0(σ)+ ε f1(σ),

where f0 and L0 are of class C1 and L1, f1 and their first
and second derivatives are assumed to be bounded.

In this paper, we wish to establish relationships between
the solution of (1) for ε = 0 and for ε > 0. For this and
following the interior penalty approach presented in [16] and
[17], we introduce a penalty function P(u) in the cost (1).
This function is defined on ]umin,umax[, is smooth, and grows
unboundedly as its argument reaches either umin or umax. We
use it to define a penalized constraints-free OCP:

min
u∈L∞[0,T ]

[
Jr

ε(u) =
∫ T

0
[Lε(σ)+ rP(u)]dt

]
, r > 0 (4)

Assumption 1: For simplicity, OCP (4) is supposed to
possess a unique solution for any r > 0 and ε ≥ 0. We note ur

ε

the corresponding optimal control and xr
ε the corresponding

solution of the differential equation (2) for u = ur
ε . We also

note uε the optimal control of (1) for ε ≥ 0 and xε the
corresponding solution of (2) for u = uε

If the penalty function is chosen properly, i.e., satisfying
some conditions given in [18], the optimal value of the
modified cost in (4) converges to the optimal cost solution
of OCP (1). Furthermore, the term rP(u) goes to zero when
r tends to zero as has been shown in [5], [16] and [17].
The main advantage of the interior penalty methodology
is that, for each value of r, the solution of OCP (4) is
determined from simple stationarity conditions. This is of
practical importance when implementing numerical methods.

As we have mentioned before, we wish to establish
relationships between the solution of the OCP (1) for ε = 0
and for ε > 0. To this end, we formulate the stationarity
conditions of their penalized counterparts.

A. Penalized nominal problem

The nominal problem is obtained for ε = 0. Using the
PMP, the solution σ r

0 , [xr
0,u

r
0] of this problem is given by

the following two-point boundary value problem (TBVP):

ẋr
0 = f0(σ

r
0), xr

0(0) = X0

−ṗrT
0 = ∂xL0(σ

r
0)+ prT

0 ∂x f0(σ
r
0), prT

0 (T ) = 0 (5)

∂uL0(σ
r
0)+ r∂uP(ur

0)+ prT
0 ∂u f0(σ

r
0) = 0 (6)

where ∂zK indicates the partial derivative of K with respect to
z, z = x, u and pr

0 is the adjoint state of xr
0. The Hamiltonian

associated with this problem is:

Hr
0(σ , p) = L0(σ)+ pT f0(σ)+ rP(u)

B. Penalized perturbed problem

In the case ε > 0, the TBVP is:

ẋr
ε = fε(σ

r
ε ), xr

ε(0) = X0

−ṗrT
ε = ∂xLε(σ

r
ε )+ prT

ε ∂x fε(σ
r
ε ), prT

ε (T ) = 0

∂uLε(σ
r
ε )+ r∂uP(ur

ε)+ prT
ε ∂u fε(σ

r
ε ) = 0

where pr
ε is the adjoint state of xr

ε . The Hamiltonian associ-
ated with this problem is:

Hr
ε (σ , p) = Lε(σ)+ pT fε(σ)+ rP(u) (7)

It can be written as an affine function of ε as follows:

Hr
ε (σ , p) = Hr

0(σ , p)+ εH1(σ , p) (8)

where H1(σ , p) = L1(σ) + pT f1(σ) is independent of the
penalty function.

C. Problem under consideration

We wish to determine relationships between the solutions
corresponding to u0 and uε which as a matter of fact may
differ. However, their cost values will be close. The main
contribution of this paper is an upper bound on Jε(u0)−
Jε(uε)> 0 which will be constructed thanks to approaching
sequences of interior penalty solutions ur

ε and ur
0.

III. PERTURBATION METHODS

First, we recall the results of [2] in the unconstrained case
giving an upper bound on the difference Jε(u0)− Jε(uε).
Then, the main contribution of this paper for the input
constrained case will be presented and detailed.

A. Perturbation methods in the unconstrained case

For now we consider Uad = L∞[0,T ]. Note x0, u0 and σ0 ,
[x0,u0] the nominal solution to OCP (1). For any x and u,
we note:

δx = x− x0, δu = u−u0, δσ = σ −σ0

Classically, the TBVP associated to the nominal problem is

ẋ0 = f0(σ0), x0(0) = X0

−ṗT
0 = ∂xL0(σ0)+ pT

0 ∂x f0(σ0), pT
0 (T ) = 0

∂uL0(σ0)+ pT
0 ∂u f0(σ0) = 0
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while for the perturbed problem, we have:

ẋε = fε(σε), xε(0) = X0

−ṗT
ε = ∂xLε(σε)+ pT

ε ∂x fε(σε), pT
ε (T ) = 0

∂uLε(σε)+ pT
ε ∂u fε(σε) = 0

where p0 and pε are the adjoint states of x0 and xε respec-
tively. With these notations, we have:

Theorem 1: [Bensoussan][2] Assume that:
• ∃ k > 0 such that ‖L1‖ ≤ k and ‖ f1‖ ≤ k,
• ∃β > 0 such that:{

(∂xxH0
0 −∂xuH0

0 [∂uuH0
0 ]
−1∂uxH0

0 )(σ , p0)≥ 0

∂uuH0
0 (σ , p0)≥ β I uniformly in σ

then we have, for ε small enough and for some positive
constants cx, cu and K:

|xε − x0| ≤ cxε

|uε −u0| ≤ cuε

|Jε(uε)− Jε(u0)| ≤ Kε
2

B. Perturbation methods in the input constrained case

Now, we go back to the problem of interest where Uad

is defined in (3). The result that we shall establish is the
extension of Theorem 1 for the input constrained case. Since
we have reformulated the input constraints under the form of
a penalty problem, the OCP (4) is constraint-free and we can
directly apply Theorem 1. However, a central question would
arise: do the parameters cx, cu and K in the input constrained
case depend on rP(.)? If they do, this would prevent us from
studying the limit r→ 0. To answer this question, we first
need to rewrite the cost function in a particular form.

Proposition 1: For any control u:

Jr
ε(u)=

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt+
∫ T

0

[
N0

δur +P0
δxr]dt

+
∫ T

0

∫ 1

0

∫ 1

0
λ∂σσ Hr

ε (σ
r
0 +λ µδσ

r, pr
0)(δσ

r)2dλdµdt (9)

where

N0 , ε∂uH1(σ
r
0 , pr

0), P0 , ε∂xH1(σ
r
0 , pr

0)

δur = u−ur
0, δxr = x− xr

0, δσ
r = σ −σ

r
0

In (9), the term
∫ T

0
[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt is constant, it
depends only on the solution of the nominal problem. The
second term

∫ T
0
[
N0δur +P0δxr

]
dt represents the first order

variation of the cost due to the variation of the state and the
control trajectories.

Proof: Classically, for a smooth function F , the Taylor
expansion for any y and y0 is noted:

F(y) = F(y0)+∂yF(y0)(y− y0)

+
∫ 1

0

∫ 1

0
λ (y− y0)

T
∂yyF(y0 +λ µ(y− y0))(y− y0)dλdµ (10)

From this, we can write:

Jr
ε(u) =

∫ T

0
[Lε(σ

r
0)+∂xLε(σ

r
0)δxr +∂uLε(σ

r
0)δur]dt

+
∫ T

0

∫ 1

0

∫ 1

0
λ∂σσ Lε(σ

r
0 +λ µδσ

r)(δσ
r)2dλdµdt

+ r
∫ T

0
[P(ur

0)+∂uP(ur
0)δur]dt

+ r
∫ T

0

∫ 1

0

∫ 1

0
λ∂uuP(ur

0 +λ µδur)(δur)2dλdµdt (11)

Note

S , ∂xLε(σ
r
0)δxr +∂uLε(σ

r
0)δur + r∂uP(ur

0)δur

Using the stationarity conditions (5, 6), we can write S:

S = [−ṗrT
0 − prT

0 ∂x fε(σ
r
0)+ ε∂xL1(σ

r
0)+ ε prT

0 ∂x f1(σ
r
0)]δxr

+[−prT
0 ∂u fε(σ

r
0)+ ε∂uL1(σ

r
0)+ ε prT

0 ∂u f1(σ
r
0)]δur

By integration, we get:∫ T

0
S(t)dt =−

∫ T

0
ṗrT

0 δxrdt−
∫ T

0
prT

0 ∂σ fε(σ
r
0)δσ

rdt

+ε

∫ T

0
∂σ H1(σ

r
0 , pr

0)δσ
rdt

which can be rewritten thanks to integration by parts as

∫ T

0
S(t)dt =−

=0︷ ︸︸ ︷
prT

0 (T )δxr(T )+ prT
0

=0︷ ︸︸ ︷
δxr(0)+

∫ T

0
prT

0 (ẋ− ẋr
0)dt

+
∫ T

0

[
−prT

0 ∂σ fε(σ
r
0)δσ

r + ε∂σ H1(σ
r
0 , pr

0)δσ
r]dt

yielding∫ T

0
S(t)dt = ε

∫ T

0
∂σ H1(σ

r
0 , pr

0)δσ
rdt

+
∫ T

0
prT

0 (ẋr− ẋr
0−∂σ fε(σ

r
0)δσ

r)dt (12)

By using the Taylor expansion (10) again, we get:

ẋ− ẋr
0−∂σ fε(σ

r
0)δσ

r = ε f1(σ
r
0)

+
∫ 1

0

∫ 1

0
λ∂σσ fε(σ

r
0 +λ µδσ

r)(δσ
r)2dλdµ (13)

Remembering that from the definition of Hr
ε in (7), we have

Lε(σ
r
0)+ rP(ur

0) = Hr
ε (σ

r
0 , pr

0)− prT
0

dxr
0

dt
−ε prT

0 f1(σ
r
0) (14)

We replace (12, 13, 14) in the expansion (11) and we obtain
the expression (9). This concludes the proof.

We are now ready to state the main contribution of this
paper.

Theorem 2: Assume that:
• ∃ k > 0 such that ‖L1‖ ≤ k and ‖ f1‖ ≤ k,
• ∃β > 0 such that:{

(∂xxHr
0−∂xuHr

0[∂uuHr
0]
−1∂uxHr

0)(σ , pr
0)≥ 0

∂uuHr
0(σ , pr

0)≥ β I uniformly in σ
(15)

then we have, for ε small enough and for some positive
constants cx, cu and K independent from rP(.):

|xr
ε − xr

0| ≤ cxε

|ur
ε −ur

0| ≤ cuε

|Jr
ε(u

r
ε)− Jr

ε(u
r
0)| ≤ Kε

2
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As the penalized cost Jr
ε converges to the optimal value

of Jε under input constraints when r tends to zero and the
parameter K is independent from rP(.), we have:

|Jε(uε)− Jε(u0)| ≤ Kε
2

Proof: From Proposition (1), we can rewrite the penal-
ized cost function Jr

ε for ur
0:

Jr
ε(u

r
0)−

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt =
∫ T

0

[
P0(ξ r

0 − xr
0)
]

dt

+
∫ T

0

∫ 1

0

∫ 1

0
λ∂xxHr

ε (x
r
0+λ µ(ξ r

0−xr
0),u

r
0, pr

0)(ξ
r
0−xr

0)
2dλdµdt

(16)
where ξ r

0 is the solution of the differential equation:

ξ̇
r
0 = fε(ξ

r
0 ,u

r
0), ξ

r
0(0) = X0

Since the first derivatives of L1 and f1 are bounded by
assumption, we can write, for some positive constants k1
and k2: ∣∣P0∣∣≤ k1ε,

∣∣N0∣∣≤ k2ε (17)

Using the fact that ∂xxHr
ε is bounded and |ξ r

0 − xr
0| < c0ε

(using the comparison lemma [11]), we derive from (16, 17),
for ε small enough that:

|Jr
ε(u

r
0)−

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt| ≤ cε
2 (18)

where c depends on k1, c0 and the upper bound of ∂xxHr
ε

but not on rP(.). This property is the result of ∂xxHr
ε being

independent from rP(.).
Let ur

ε be the optimal control for the perturbed problem
(4). By definition, we have:

Jr
ε(u

r
ε)≤ Jr

ε(u
r
0)

which can be rewritten using (18) as:

Jr
ε(u

r
ε)−

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt

≤ Jr
ε(u

r
0)−

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt ≤ cε
2

By using Proposition 1 again, we derive that:

cε
2 ≥

∫ T

0

[
N0

δur
ε +P0

δxr
ε

]
dt

+
∫ T

0

∫ 1

0

∫ 1

0
λ∂σσ Hr

ε (σ
r
0 +λ µδσ

r
ε , pr

0)(δσ
r
ε )

2dλdµdt (19)

We now look for a bound on ∂σσ Hr
0(σ

r
0 +

λ µδσ r
ε , pr

0)(δσ r
ε )

2. To proceed, we replace every factor
of δur

ε in the second order variation of the cost Jr
ε(u

r
ε) by

terms in z and δxr
ε , where z is given by :

z(λ ,µ, t) = δur
ε +[∂uuHr

0(.)]
−1

∂uxHr
0(.)δxr

ε (20)

In this latter, z is well defined because ∂uuHr
0(.) is assumed

to be positive definite from (15). This allows us to handle
diagonal quadratic forms in terms of z and δxr

ε . Thus, we
can write ∂σσ Hr

0(.)(δσ r
ε )

2 as follows:

∂σσ Hr
0(.)(δσ

r
ε )

2 = zT
∂uuHr

0(.)z

+δxrT
ε

[
∂xxHr

0−∂xuHr
0[∂uuHr

0]
−1

∂uxHr
0
]
(.)δxr

ε (21)

From the second order optimality conditions (15), we derive
that:

∂σσ Hr
0(.)(δσ

r
ε )

2 ≥ β ‖z‖2 (22)

Now, equation (19) can be rewritten using (8, 22) to give

cε
2 ≥

∫ T

0

[
N0

δur
ε +P0

δxr
ε

]
dt

+β

∫ T

0

∫ 1

0

∫ 1

0
λ ‖z‖2 dλdµdt

+
∫ T

0

∫ 1

0

∫ 1

0
ελ∂σσ H1(σ

r
0 +λ µδσ

r
ε , pr

0)(δσ
r
ε )

2dλdµdt (23)

The next step is to find an upper bound on |δxr
ε | depending

on z and ε . From (20), we have:

δur
ε = z− [∂uuHr

0(.)]
−1

∂uxHr
0(.)δxr

ε (24)

Using the Taylor expansion (10), the dynamic of δxr
ε can be

written as:

d(δxr
ε)

dt
= Aδxr

ε +Bδur
ε + ε f1(xr

ε ,u
r
ε)

where A and B are given by:

A =
∫ 1

0
∂x f0(σ

r
0 +λδσ

r
ε )dλ , B =

∫ 1

0
∂u f0(σ

r
0 +λδσ

r
ε )dλ

We replace δur
ε given by (24) in the dynamic of δxr

ε :

d(δxr
ε)

dt
= (A−B[∂uuHr

0(.)]
−1

∂uxHr
0(.))︸ ︷︷ ︸

,Amod

δxr
ε +Bz+ ε f1(σ

r
ε )

with δxr
ε(0) = 0. Since the term ∂uxHr

0(.) is independent of
rP(.) and ∂uuHr

0(.) > β I, the matrix Amod is bounded inde-
pendently from rP(.). As a result and using the comparison
lemma [11], we can write:

|δxr
ε | ≤ c2x

[∫ T

0
‖z‖2 dt

] 1
2
+ c3xε (25)

for some positive constants c2x and c3x. This implies:

|δxr
ε |2 ≤ 4c2

2x

∫ T

0

∫ 1

0

∫ 1

0
λ ‖z‖2 dλdµdt +2c2

3xε
2 (26)

In (25), c2x depends on the upper bounds of Amod and B
and c3x depends on the upper bounds of Amod and f1. These
parameters are independent from rP(.).

We can now determine an upper bound on |δur
ε |. From

equation (24), we deduce:

|δur
ε |2 ≤ c2u

∫ T

0

∫ 1

0

∫ 1

0
λ ‖z‖2 dλdµdt + c3uε

2 (27)

where c2u and c3u depend on (c2x, c3x), but not on P(.).
Since P0 and N0 are bounded and using (26, 27), we can

write (23) as:

cε
2 ≥ β1

∫ T

0

∫ 1

0

∫ 1

0
λ ‖z‖2 dλdµdt

+ε

∫ T

0

∫ 1

0

∫ 1

0
λ∂σσ H1(σ

r
0 +λ µδσ

r
ε , pr

0)(δσ
r
ε )

2dλdµdt
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By using the assumption that ∂σσ H1(.) is bounded (it is in-
dependent from rP(.)) and the term ε

∫ T
0
∫ 1

0
∫ 1

0 λ∂σσ H1(σ
r
0 +

λ µδσ r
ε , pr

0)(δσ r
ε )

2dλdµdt leads to a factor in ε3, we get:∫ T

0

∫ 1

0

∫ 1

0
λ ‖z‖2 dλdµdt ≤ c

β1
ε

2

The two equations (26) and (27) can be written in the form:

|δxr
ε |2 ≤ c2

xε
2, |δur

ε |2 ≤ c2
uε

2 (28)

Finally, we can easily find an upper bound of Jr
ε(u

r
0)−

Jr
ε(u

r
ε). In details:

|Jr
ε(u

r
ε)− Jr

ε(u
r
0)| ≤

∣∣∣∣Jr
ε(u

r
ε)−

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt
∣∣∣∣

+

∣∣∣∣Jr
ε(u

r
0)−

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt
∣∣∣∣︸ ︷︷ ︸

≤cε2

Using Proposition 1 and equations (28), we derive for ε small
enough that:

|Jr
ε(u

r
ε)−

∫ T

0

[
Hr

ε (σ
r
0 , pr

0)− prT
0 ẋr

0
]

dt| ≤ c1ε
2 (29)

where c1 depends on (k1, k2, cx, cu), c ≥ c1 and is inde-
pendent from rP(.). From equation (18) which has the same
form as (29), we conclude that:

Jr
ε(u

r
0)− Jr

ε(u
r
ε)≤ (c+ c1)ε

2 = Kε
2 (30)

As we can see it from the previous calculations, the constants
cx, cu and K are independent from r and P(.). This concludes
the proof.

The main conclusion is the following: if the error in the
dynamics and the cost function between the nominal model
(which is generally used to calculate a controller) and the
perturbed (real) model are of magnitude ε , then the sub-
optimality in the presence of the input constraints is only of
magnitude ε2. This result is very similar in its statement to
the result given in [2] for the unconstrained case. The interior
penalty approach is used here as a proof tool to deal with
input constraints.

IV. ILLUSTRATIVE EXAMPLES

To illustrate the proposed result, we consider two prob-
lems.

A. Input constrained Linear Quadratic (LQ) problem

Consider the following LQ problem:

Jε(u) =
1
2

∫ 10

0
(u2 + x2

1)dt (31)

where x1, x2 and u are the state and the control variables of
the following linear system:

ẋ1 = x2−
ε

5
x1, x1(0) = 4 (32)

ẋ2 = −(1− ε

4
)x2 +u, x2(0) = 4 (33)

The control u is constrained to belong to the set Uad defined
by:

−2≤ u(t)≤ 2 (34)

By using the PMP, the optimal control is given by:

u∗ε = min(2,max(−2,−λ2)) (35)

where λ1 and λ2 are the adjoint states associated to x1 and
x2 respectively. They are given by:

λ̇1 = −x1 +
ε

5
λ1, λ1(10) = 0 (36)

λ̇2 = (1− ε

4
)λ2−λ1, λ2(10) = 0 (37)

The equations (35, 36, 37) define a TBVP which has been
solved using bvp4c [13].

Let u0 the optimal control minimizing Jε under the dy-
namics (32, 33) when ε = 0 and uε the solution of the OCP
defined by (31, 32, 33) when ε > 0. Figure 1 reports the
difference ∆J = Jε(u0)− Jε(uε) between the two costs and
an upper bound which kindly fits a parabola, as expected
from Theorem 2. Figures 2 and 3 give the states and the
control trajectories.
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Fig. 1. Upper bound on ∆J as a function of ε in the LQ case
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Fig. 2. States trajectories for ε = 0.2

From Figure 1, we can see that the difference between
Jε(uε) and Jε(u0) is bounded by Kε2. The maximum relative
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error between the two costs is less than 3% for ε ∈ [0,0.2],
which is considered acceptable.

B. Thermal management Problem for a parallel hybrid elec-
tric vehicle

The numerical results presented in [15] are the main moti-
vation for this study. Based on extensive numerical tests and
experiments, these results show that, in the optimization of
an energy management system for a parallel Hybrid Electric
Vehicle (HEV), neglecting the engine temperature leads to an
acceptable sub-optimal fuel consumption. Interestingly, this
observation can be justified by Theorem 2. To illustrate our
point, we formulate the corresponding nominal and perturbed
OCPs.

The cost function under consideration is the fuel con-
sumption over a fixed time window corresponding to a given
driving cycle of duration T :

J(u) =
∫ T

0
c(u, t)e(θ)dt

where u is the control variable (the engine torque), θ is the
engine temperature and c(u, t) is the fuel consumption rate
when the engine is warm. The time variable accounts for the
dependence of the consumption on the engine speed, which
is a varying set points assumed to be perfectly tracked.

In this model, e(.) is a correction factor of fuel consump-
tion with respect to the engine temperature θ . It can be
approximated by:

e(θ ,ε) =

 (1− θ

θw
)ε +1, θc ≤ θ ≤ θw

1, θ > θw

The considered dynamics are:
• The dynamics of the State Of Charge of the battery

(SOC)
dξ

dt
= f (u, t), ξ (0) = ξ0

One operational constraint requires that the final value
of ξ should be equal to its initial value:

ξ (T ) = ξ (0).

• Engine temperature dynamics

dθ

dt
= g(u, t,θ), θ(0) = θ0

The constraints on the control are given by:

umin(t)≤ u(t)≤ umax(t)

where umin(t) and umax(t) are determined by the driving
conditions, and physical limitations of the engine and the
electric motor. For more details, one can refer to [15], [26],
[27].

The simplification ε = 0 represents a case where the en-
gine thermal efficiency is independent from its temperature,
e.g. because the engine has reached its stabilized temperature
(it is warm). In this case, the engine temperature can be left
out of the equations describing the OCP.

Generally, the cost function to be minimized is:

Jε(u) =
∫ T

0
c(u, t)e(θ ,ε)dt

We now define two following OCPs:

(Pε)



min
u

[
Jε(u) =

∫ T

0
c(u, t)e(θ ,ε)dt

]
dξ

dt
= f (u, t), ξ (0) = ξ0

dθ

dt
= g(u, t,θ), θ(0) = θ0

umin(t)≤ u(t)≤ umax(t)

ξ (T ) = ξ (0)

(38)

(P0)



min
u

[
J0(u) =

∫ T

0
c(u, t)dt

]
dξ

dt
= f (u, t), ξ (0) = ξ0

umin(t)≤ u(t)≤ umax(t)

ξ (T ) = ξ (0)

(39)

(P0) is a simplification of (Pε) for ε = 0, where the effect of
the engine temperature on the fuel consumption is neglected.

On the application side, the problem (38) is the right
problem to solve. We shall note that in (39), the state θ has
been omitted. Interestingly, this simplification is not due to
an argument of singular perturbations as in [12], but rather of
regular perturbations. Thus, the number of states is reduced
to 1 which is appealing as it reduces the complexity of
numerical methods.

These two problems (Pε and P0) are solved for the NEDC
cycle. We proceed as follows :
• For a given ε , compute the optimal control uε solution

of (Pε).
• For ε = 0, compute the optimal control u0 solution of
(P0).

• Compare the two costs Jε(uε) and Jε(u0).
Again, we define ∆J as the error on the cost function:

∆J = Jε(u0)− Jε(uε)
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Fig. 4. Upper bound on ∆J as a function of ε

Theorem 2 informs us that the sub-optimality effect of
neglecting the engine temperature is bounded by a quadratic
form in ε . Indeed, we observe this phenomena. The blue
graph in Figure (4) represents a theoretical upper bound

∆J ≤ Kε
2 (40)

where K is determined experimentally to fit values for ε

small enough, its value is 0.15. In the vicinity of ε = 0, the
results fit (40). For higher value of ε , ∆J remains below the
quadratic conservative estimation given by (40).

On the practical side, this result indicates that the error in
the optimal cost function will be less than 1%, and suggests
that it is sufficient to consider the sub-optimal solution
obtained by neglecting the engine temperature in the OCP.
This result is an important step towards the design of an
effective and simple energy management controller that is
suitable for implementation in real-time because the number
of the state variable in the optimization has a great impact
on the time needed for resolution. As a concluding remark
we can note that other similar conclusion can be formulated
on battery related problems in [24].

V. CONCLUSION

The result of [2] has been extended to the input constrained
case by using the interior penalty methods. The obtained
result provides a conservative upper bound on the error in
the optimal cost, which is quadratic in the magnitude of
uncertainties. This upper bound can be used to select the
right level of complexity of the OCP to solve to optimize the
accuracy/complexity trade-off by establishing an estimation
as a function of the system parameters. The extension of the
obtained results to include state constraints, which is more
involved because modeling errors in the dynamics can lead
to a violation of the state constraints, is the subject of current
investigation.
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