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Abstract— The aim of this paper is to propose a robust and
accurate method for the parametric identification of the thermal
behaviour of low consumption buildings. These buildings are
known to have a two-time scale structure, which, if not
handled properly, results in poor conditioning of the parametric
identification.

We compare three identification methods, one uses the data
on the whole frequency domain (ARX) when the other methods
use the same data but separated on local frequency domain
(time scaled methods).

All three methods identify a reduced second order model.
Robustness is tested by corrupting the input and output before
the identification, and comparing the simulation results for
the various models and the original uncorrupted input. The
numerical results clearly show that the time scaled methods
are superior both in accuracy (noise free identification and
simulation) and robustness (when identification is performed
on corrupted data).

I. INTRODUCTION

As current norms on energy consumption become more re-

strictive, efficient control of the heating of low consumption

buildings has emerged as a topic of interest. A way to adress

this problem of practical interest is to develop optimal control

laws generating optimal trajectories under constraints. These

constraints bear on the control and the state; they account for

the in-door comfort and the power limitations (see [1] [2]).

To compute such an efficient optimal control law, especially

for long time periods, we need a low order model for the

thermal behaviour of the building.

According to ([3], [4], [5]), low order linear models form a

good set of models to describe the general thermal behaviour

of buildings. But, as it has been stressed in [6], these models

can give quite good results on prediction errors while provid-

ing poor estimates of the building’s physical characteristics.

This is a serious problem in the presented context of optimal

control (especially under constraints) which requires good

estimates of poles, zeros and static gains.

Usually, such bad performances can be the result of a

bad conditioning of the identification’s optimization problem.

For the three identification methods presented here, these

optimizations are formulated as quadratic problems, and the
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condition is the conditioning of the excitation matrix (or

matrices).1It is related to the sensitivity of the solution of

Ax = b with respect to variations of A or b.

Ill conditioning of the excitation matrix(ces) can be the

result of insufficient frequency content in the input data; it

can be also related to near collinearity of the state and future

input subspaces [8]. However, it has been proved in [9] that,

even for inputs which are rich enough in the frequency do-

main, the excitation matrix of two time scaled systems (such

as low consumption buildings) is asymptotically degenerate

as the ratio between the large and small time constants of the

system tends to the infinity. Identifying these systems locally

in the frequency domain removes these degeneracy problem.

It should be noted that, in the last two or three decades,

time scales have been largely associated to wavelet trans-

forms. Wavelets can be used in several ways in dynamical

systems identification. The first usage is for data filtering. In-

deed, we could use wavelet transforms to separate frequency

bands in the data. However, if one sticks to the popular

dyadic transforms, one is limited to time scales which are

equal to powers of 2. More classical low-pass and high-pass

filters are more flexible, and quite sufficient for our purpose.

The other usage is to model the system directly in the wavelet

domain. Characterization of finite dimensional systems in

this domain have been studied in ([10] , [11]). Reference [12]

covers a similar topic. A limitation is that these processes

are hardly (or even not at all) related to classical (rational)

Linear Time Invariant (LTI) systems. The most visible reason

for this is that the transforms from the time domain to the

wavelet domain and back are not causal; therefore it seems

unlikely that operations in the wavelet domain can be turned

into causal operations in the time domain.

The purpose of this paper is to compare the performance

of a classical ARX identification procedure to two variants of

the two time scaled identification (see [9]), for the purpose of

modelling a low consumption building with a second order

model. The difference with [9] is that we are never in the

model matching case. The performance is considered both in

terms of simulation error with respect to a high order model,

and in robustness with respect to data corruption.

This paper is organized as follows.

In Section II, we describe the plant we wish to identify, and

define various data sets that will be used for that purpose. For

comparison purposes, we introduce here data sets where each

input generates a separate output; actually, we currently have

1We recall that, for the L2 norm, the condition number [7] of a matrix
A is the ratio between the largest and the smallest eigenvalues of AT A.
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access to the sum of these outputs, that is, the temperature

inside the building. It is interesting to consider this possibility

because it gives more information on the system, and we

wish to evaluate the benefits of having access to that extra

information.

In Section III, we describe the various model classes

within which we will look for a model, and how we

parameterize them with a finite set of numbers. This where

we introduce two time scaled models. We detail how the

parameters of a model class are related to the parameters of

another one.

In section IV, we define the various optimization problems

which, with the paramerizations of III and the data sets of

section II, will define how the various parameters used in the

model classes are obtained from the data sets. The definition

of these optimization problem are important because the

plant does not match any model of any class of section

III. Indeed, the output data is generated by a LTI system

of order 47 (possibly corrupted with noise), whereas we are

looking for a model of order 2. Therefore the choice of the

optimization problems greatly influences the determination

of the system parameters.

In Section V we compare the results obtained in terms of

static gains identification, statistical properties of simulation

errors, conditioning of the optimization problems and poles

and zeros locations. This is done using various data sets,

models, and model parameterizations. These results are in-

terpreted in the light of simulation accuracy and robustness

with respect to data corruption.

In Section VI, we conclude on the results and show

the substancial efficiency of the time scaled method in

terms of simulation errors and robustness of the parameters

identification to noises.

II. PLANT AND DATA

Our desired goal is to obtain a low-order thermal model of

a one-area building describing the general behaviour of the

internal temperature depending on several inputs. We need

those models to optimally control the heating of a building

under constraints. At the time this article is written, an actual

low consumption building is not (yet) available to us for

measurements. In its place, we shall use a high order (47th)

linear system as the “true” input-output mapping. This high-

order model is a spatial discretization of the heat equation

in the building.

The inputs and output and listed in table I. The control of

this system is a part of the last input, together with human

activities. We consider a person to be a constant input of

100W and we also know the heat provided by the devices

inside the house. For identification purposes, we use inputs

which are an average of chronicles over several decades.

These data are experimentally measured weather histories

sampled with a period of one hour over one year; due to

their poor time-resolution it is likely that these signals are

not well shaped to perform a good identification (see [8]).

The knowledge of the building’s geometric shape and its

orientation, allows us to generate the input of the system.

TABLE I

INPUT-OUTPUT

Output input

External temperature
Solar flux on the floor

Internal temperature Solar flux on the walls
Heating flux on the air node

These preliminary transformations are non-linear, and be-

cause a linear model is sought after, one cannot directly use

the measured data but the transformed data to perform the

identification. These non-linear transformations are described

in [13]. The output is then computed by simulation using

a LTI model of order 47 which accounts for the three-

dimensions geometry of the building.

This data set the noise free data. By contrast, we will

call noisy data the same data set to which we add noise

independently on each input and output. The noises on

each signal are Gaussian white noises of standard deviation

equal to one thirtieth of the standard deviation of the signal.

Because the signals are not stationary it represents a quite

strong noise on the signals. For instance, this represents a

standard deviation of .3◦C on a temperature measurement,

which is a realistic value for a temperature sensor. This

signal/noise ratio is consistent with real application.

In addition, we shall use another data set, which we call

separated output data set. It is obtained by separating (in

simulation) the influence of each input within the internal

temperature. This gives much more information on the plant

behavior. We shall also allow ourselves to corrupt the data

with independent noises; in this case, the data set will be

called noisy separated output.

III. MODEL CLASSES AND

PARAMETERIZATIONS

It is well known (see [14]) that the system detailed in

section II can be efficiently represented by a second order

linear model. This can be done in several manners, which

we now discuss.

A. Classical ARX model

This is the classical LTI model with rational transfer

function. The order here is two. We have restricted our

study to strictly proper transfer. This model class, together

with the chosen parameterization (see equation (1)), has been

found to represent the best trade-off between robustness and

simulation accuracy in numerical results.

The parameterization is given by (see [15])

y[k]+a1y[k−1]+a2y[k−2] =
4

∑

i=1

bi1ui[k−1]+bi2ui[k−2]

(1)

with i = 1, . . . , 4, and where the models parameters are

a1, a2, b11, . . . , b14, b21, . . . , b24.
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B. Two Time scale transfer

The difference with the previous model class (see equation

(1)) is the introduction of a parameter ǫ ≪ 1 which

represents the ratio between the ”slow” and the ”fast” time

scales. Specifically, the transfer is expressed as

Tǫ(s) = Tf (s)Ts(
s

ǫ
) (2)

Ts and Tf are slow and fast transfer functions independent

of ǫ. Thermal models are known to be two time scale and

then can be represented by the equation (2) (see [16]).

For a given ǫ, the model class is the same as the ARX;

however, it suggests a different parameterization and an

adequate handling of each time scale. To do so, the following

definition is needed:

Definition 1: We define the fast transfer τf (s) and the

slow transfer τs(s) as follows

lim
ǫ→0

T (iω) = Ts(i∞)Tf (iω)
def
= τf (iω) (3)

lim
ǫ→0

T (iǫω) = Ts(iω)Tf (i0)
def
= τs(iω) (4)

Observe that, as ǫ goes to zero, the slow and the fast transfer

keep a similar magnitude if and only if the slow transfer is

biproper as defined in [17]. As suggested by Definition 1,

Tǫ behaves like τs in the low frequencies and like τf in the

high frequencies. For a given ǫ, we can recover Tǫ from τs

and τf if the static gain of the fast transfer is equal to the

high frequency gain of the slow transfer.

If some knowledge of a frequency that separates the two

parts of Tǫ in the frequency domain is available, we can

design a low-pass pre-filter Fl and a high-pass pre-filter Fh

from which the following model class and parameterization

are defined:

Definition 2: The two time scale model class for the filters

Fl and Fh are described in transfer form by

Fly = τsFlu (5)

Fhy = τfFhu (6)

For a given Tǫ the orders of τs and τf are given by definition

1. These two transfers are parameterized linearly as in the

ARX class and are subject to the constraint that

|τs(i∞)| = |τf (0)| (7)

Several observations can be made

• a suitable change of time scale in the differential op-

erator, as suggested by (4), makes (6) independent of

ǫ.

• for a finite ǫ, a system with transfer Tǫ does not satisfy

(5,6). However, there is a one-to-one correspondence

betwen the parameters of Tǫ and the parameters of τs

and τf when (7) holds. This is essentially similar to the

correspondence of the linear parameterization of ARX

models and their gain/poles/zeros description.

• if one uses a classic least square method to identify

Tǫ, the excitation matrix, i.e. the Hessian of the cost,

is asymptotically degenerate as ǫ tends to zero [9].

Therefore this method is not robust for small ǫ.

• it has been proven in [9] that, if one considers the

classical L2 prediction error as cost for the models (5,6),

then its minimum tends to zero when ǫ tends to zero

if (y, u) satisfy y = Tǫu. Further, the limit excitation

matrix is nondegenerate.

In the experiments carried-out on the discussed thermal

model, it has been observed that the poles given by the ARX

identification provide a good indication of the value of the

cutting frequency that should used to design the low and

high pass pre-filters (see eq. (5) and (6)). Figure 1 shows the

amplitude Bode plot of the high order model for the heating

control, and its value when multiplied by the low-pass and

high-pass pre-filters Fl and Fh, respectively used in the

following numerical experiments. The filters are Butterworth

filters.
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Fig. 1. Global and pre-filtered heating transfers. The right part of the plot,
where the slope goes back to -1, is irrelevant to the identification because
the data sample rate makes it disappear.

IV. THE PARAMETRIC IDENTIFICATION

PROBLEMS

Here, we define optimization problems to perform the

identification of the parameters for each model class. Some

emphasis is put on the difference between the separated and

non separated output data sets.

A. Global ARX model

Using (1), we minimize the L2 norm of the prediction

error, as defined by the difference between the two sides of

(1). In practice, we use Matlab’s ARX routine to determine

optimal coefficients.

B. Two time scales identification with a global measurement

of the inside temperature

1) Parameterization: The number of poles and zeros of

each transfer function has to be set. Since we want a model

of order two, we chose a model Tǫ with two poles, with one

pole in τs and one pole in τf . The third pole that is visible in

figure 1 is irrelevant because its time constant is significantly

faster than the sampling rate. As in Section III-B, the method

requires a slow zero. A fast zero could be considered too.

This one is visible in figure 1. It turns out that, for the
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data set where the global inside temperature is measured, the

best trade-off between robustness and simulation accuracy is

achieved by including a fast zero in the fast transfers. Thus

the parameterization for the slow and fast models are

τs(t) =
1

s + α
( k1s + z1, · · · , k4s + z4 ) (8)

τf (t) =
1

βs + 1
( ρ1s + p1, · · · , ρ4s + p4 ) (9)

2) The identification problem: To perform the identifica-

tion, we follow the two following steps

• Step 1 : Use of high-pass and low-pass pre-filtering data

for which the approximations as given by Definition 1

are as accurate as possible.

• Step 2 : Perform separate identifications of τn and τs

under the constraint that

|τsi(i∞)| = |τfi(i0)| (i = 1 · · · 4) (10)

Let ys(t) and us(t) (resp. yf (t) and uf (t) =
( us1(t) · · · us4(t) )) be the low-pass (resp. high-pass)

filtered data, then the corresponding differential equations

are given by

d

dt
ys(t) + αys(t) =

4
∑

i=1

ki

d

dt
usi(t) + ziusi(t) (11)

β
d

dt
yf (t) + yf (t) =

4
∑

i=1

ρi

d

dt
ufi(t) + piufi(t) (12)

Using finite differences we obtain, using usual discrete-time

notations,

yk+1
s − yk

s

∆s

+ αyk
s =

4
∑

i=1

ki

uk+1
si − uk

si

∆s

+ ziu
k
si (13)

β
yk+1

f − yk
f

∆f

+ yk
f =

4
∑

i=1

ρi

uk+1

fi − uk
fi

∆f

+ piu
k
fi (14)

where ∆s and ∆f are rescaling parameters chosen to im-

prove the conditioning of the problem by adapting the finite

difference to the considered time scale (see [18]). Note that

in (13) the sampling rate may be smaller than ∆s since ys

has been pre-filtered by a low pass filter.

The problem is linear with respect to the parameters so it

is convenient to use a least squares method to identify the

two transfer matrices. Moreover, this parameterization of the

transfer matrix allows to write the constraints linearly with

respect to the parameters as shown in (15)

νT = νT
s − νT

f = ( k1 − p1, · · · , k4 − p4 ) = 0 (15)

where the parameters ki, pi are appearing in the equations

(11), (12), (13) and (14).

3) Problem statement: We can now formulate

an optimization problem. Given a set of data,

the problem is to find the parameters vectors

θs = ( k1 · · · k4 z1 · · · z4 α ) and θf =
( p1 · · · p4 ρ1 · · · ρ4 β ), corresponding to the

parameters from the equations (11), (12), (13) and (14), by

solving the following problem

min
θs, θf

ν = 0

Js(θs) + Jf (θf ) (16)

where Js(θs) (resp. Jf (θf )) is the least squares cost of the

slow (resp. fast) matrix transfer given by

Js(θs) =
1

M

M
∑

1

ǫ̂2s[k, θs] (17)

Jf (θf ) =
1

M

M
∑

1

ǫ̂2f [k, θf ] (18)

where

ǫ̂2s[k, θs] =
yk+1

s − yk
s

∆s

− ϕs[k]θs (19)

ǫ̂2f [k, θf ] = yk
f − ϕf [k]θf (20)

ϕs[k] =
(uk+1

s1 − uk
s1

∆s

, · · · ,
uk+1

s4 − uk
s4

∆s

· · ·

uk
s1, · · · , u

k
s4,−yk

s

)

(21)

ϕf [k] =
(

uk
f1, · · · , u

k
f4,

u
k+1

f1
−uk

f1

∆f
, · · · ,

u
k+1

f4
−uk

f4

∆f
· · ·

−
y

k+1

f
−yk

f

∆f

)

(22)

In [9] it has been proved that, if the real transfer is indeed Tǫ,

the minimum of (16) is asymptotically reached (as ǫ tends

to zero) by the parameters corresponding to the slow and

fast transfers. Moreover, the Hessians of Js and Jf are not

degenerate when ǫ tends to zero.

4) Problem solving: While this is not a requirement, we

chose to solve problem (16) with Uzawa’s algorithm (see

[19]). Its main feature is that, at the minimization stage, each

subproblem is very similar to an identification problem on

the relevant frequency range, (see [15]), in the sense that the

Hessian of the inner optimization problem is a matrix that

contains the signals covariance. Moreover, the gradient step

of the maximization problem is adapted to each constraint.

C. Two time scales identification with a separation of the

influences of each input

Using a data set which is different from the data set used

in the previous section leads to a different tradeoff between

accuracy and robustness. Indeed, we have observed that for

separated outputs it was best to make some of the fast zeros

“vanish” from the parameterization.

1) Parameterization: Even if using the two time scaled

method to identify the system allows a clear improvement

of the results in terms of simulation errors and parameters

identification, as compared to the classical least squares

method, an even better identification can be achieved. One

explanation is that the system has four inputs and just one

output. These inputs are really poorly balanced and some of

311



them do not excite the system in an appropriate frequency

range. For instance, the solar fluxes are almost perfectly 24

hours-periodic signals. Therefore, it is difficult to clearly

identify the influence of these inputs on the temperature

inside the building. That is why in this part we now separate

the influence of each input on the temperature. Instead

of identifying a transfer matrix we identify four separate

transfer functions. This method is referred to as the separated

time scaled method.Because we look for a second order

model we have to impose that the four slow (resp. fast)

transfer share the same poles.

Observe that, even if the model class may appear similar

to the one in Section IV-B (once the equality of the poles

in the four transfers is duly accounted for), the cost that we

will minimize in (32) is not the same as in (16), because we

add four prediction error costs.

In other words, the sum of the excitation matrices of four

signals is different from the excitation matrix of the sum of

these four signals.

In this case, we have four transfer functions Ti(s) =
Tsi(s/ǫ)Tfi

(s) (i = 1 · · · 4). Each transfer can be de-

composed into a fast and a slow transfer as mentioned in

Definition 1. We now separately identify the four slow (resp.

fast) sub-systems in their own time scale under the following

constraints :

• for each transfer function the high frequency gain of the

slow system must be equal to the static gain of the fast

system (|τsj(i∞)| = |τfj(i0)| j = 1 · · · 4)

• the fast (resp. slow) sub-systems share the same poles.

To perform the identification, we follow the two following

steps

• Step 1 : use of high-pass and low-pass pre-filtering data

for which the approximations as given by definition (1)

are accurate.

• Step 2 : perform separate identifications of τn and τs

under the constraint that |τsj(i∞)| = |τfj(i0)| (j =
1 · · · 4) and that the transfer functions τsj (resp. τfj)

share the same poles.

Let ysi(t) and usi(t) (resp. yfi(t) and ufi(t)) be the

low-pass (resp. high-pass) filtered simulations data of the

ith transfer function, then the corresponding differential

equations are given by a slow subsystem

d

dt
ysi(t) + αiysi(t) = ki

d

dt
usi(t) + ziusi(t) (i = 1 · · · 4)

(23)

and a fast subsystem

βi

d

dt
yfi(t) + yfi(t) = piufi(t) (i = 1 · · · 3) (24)

β4

d

dt
yf4(t) + yf4(t) = ρ4

d

dt
uf4(t) + p4uf4(t) (25)

This model class has been found to achieve the best trade-

off between robustness and simulation accuracy. In particular,

deleting the zeros in (24) achieves the best trade off between

robustness and simulation accuracy.

Using finite differences we have, using the same notations

employed in Section IV-B

yk+1
si − yk

si

∆si

+ αiy
k
si = ki

uk+1
si − uk

si

∆si

+ ziu
k
si (26)

(i = 1 · · · 4)

βi

yk+1

fi − yk
fi

∆fi

+ yk
fi = piu

k
fi (i = 1 · · · 3) (27)

β4

yk+1

f4
− yk

f4

∆f4

+ yk
f4 = ρ4

uk+1

f4
− uk

f4

∆f4

+ p4u
k
f4 (28)

Once again, the constraints can be expressed linearly with

respect to the parameters. Actually, the constraints of the

identification problem are :

αi − αi+1 = 0, i = 1 · · · 3 (29)

βi − βi+1 = 0, i = 1 · · · 3 (30)

ki − pi = 0, i = 1 · · · 4 (31)

Thus, the vector of constraints ν = νs − νf is given by the

concatenation of the ten equalities given by (29), (30) and

(31).

2) Problem statement: Given a set of data, the problem

is to find the four parameters vectors θsi = ( ki zi αi )
T

,

the three θfi = ( pi βi )
T

(i = 1 · · · 3) and θf4 =

( p4 ρ4 β4 )
T

by solving the following problem

min
θsi, θfi

ν = 0

4
∑

i=1

Jsi(θsi) + Jfi(θfi) (32)

where Jsi(θsi) (resp. Jfi(θfi)) is the least squares cost of

the ith slow (resp. fast) transfer function.

Jsi(θsi) =
1

M

M
∑

1

ǫ̂2si[k, θsi] (33)

Jfi(θfi) =
1

M

M
∑

1

ǫ̂2fi[k, θfi] (34)

where

ǫ̂2si[k, θsi] =
yk+1

si − yk
si

∆si

− ϕsi[k]θsi (35)

ǫ̂2fi[k, θfi] = yk
fi − ϕfi[k]θfi (36)

ϕsi[k] =
(

u
k+1

si
−uk

si

∆si
uk

si −yk
si

)

(37)

ϕfi[k] =
(

uk
fi −

y
k+1

fi
−yk

fi

∆fi

)

(i = 1 · · · 3) (38)

ϕf4[k] =
(

uk
f4

u
k+1

f4
−uk

f4

∆f4
−

y
k+1

f4
−yk

f4

∆f4

)

(39)

3) Problem solving: Here again, we use Uzawa’s algo-

rithm to solve this problem.

V. NUMERICAL RESULTS

A. Conditioning of the problems

To perform a robust parameter identification, the Hessian

of the optimization problem has to be well conditioned (see

[15]). Yet, a two-time scaled system usually induces bad
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conditioning (see [9]). The time scaled identification has

been designed to improve the conditioning of the optimiza-

tion problem. For the classical least squares method there is

one conditioning number, while there are two conditioning

numbers for the time-scaled method (one for the slow

transfer matrix and one for the fast one), and there are eight

conditioning numbers for the separated time scaled method

(one for each subsystem). The conditioning numbers are

given in the table II. We use everywhere data without noise

corruption resulting from the high order model (see section

II).

TABLE II

CONDITIONING NUMBERS

least squares Time scaled Separated
identification identification time scaled

rs1 = 0.0011

rs2 = 0.00083

rs3 = 0.00078

conditioning rLS = 2.6/1010 rs = 1.4/108 rs4 = 0.0016

numbers rf = 1.4/109 rf1 = 0.043

rf2 = 0.013

rf3 = 0.037

rf4 = 0.020

As one can see it on Table II, the separated time scaled

method improves the conditioning of the problem. But, we

can also see that using a non separated time scaled method

does not improve the conditioning numbers as well as the

previous method. Having separated outputs provides extra

information on the system as we have virtually three extra

sensors.

The bad conditioning of the least squares method (ARX)

is highly problematic because the results of the identification

are very poor, in simulation results and in parameter identifi-

cation. Concerning the non separated time scaled method, in

the following, we will see that, despite the bad conditioning

of the system, this method yields better results in simulation

and in parameter identification than the least squares method.

On the other side, it will be seen that this method fails to

estimate the location of the zeros of the system, particularly

when the identification is performed using noisy data.

Finally, we can see that the separation of the transfers

allows us to normalize the problem and then to improve

the conditioning numbers. As a result, this method is really

robust with respect to noises and consistent results2 in

parameter identification are obtained wether noisy or noise

free data are used.

B. Simulation results

1) Simulation protocol: This protocol is decomposed in

four steps:

1) Using noise free input data described in section II and

using the high order model, we get the four noise free

corresponding outputs.

2This comparison is made with noises which have the same statistical
properties.

2) Then, we perform a first identification using the pre-

vious data.

3) Further, we add independent noises on the inputs and

the outputs collected from the first step. Then, we

perform three identifications using this noisy data and

the three identification methods.

4) Finally a validation step is performed. We simulate

all the models from 2 and 3 using noise free inputs

to obtain the global temperature of the building. We

compare these temperature to the global output of step

1. The Table III gives some statistical properties of the

simulation error between the global temperature from

the high order model and the global temperature of

each of the six identified models.

2) Results: Figure 2 shows the errors of simulation be-

tween the high order reference model and the three identified

systems, the latter being identified using noisy data. These

simulations are performed using noise free inputs over 25

days. As can be seen in Figure 2 the ARX model identified

using MATLAB’s identification toolbox does not give good

results in terms of simulation errors. Moreover, one can see

in Figure 2 that the standard deviation of the simulation error

seems to be better with the separation of the influences of

the inputs than without.

TABLE III

COMPARISON OF STATISTICAL PROPERTIES OF THE SIMULATION ERROR

WITH RESPECT TO THE NOISE FREE SIMULATION USING THE HIGH

ORDER MODEL

Stat. Least squares Time scaled Separated
prop. identification identification time scaled

Noise free Mean −0.0989 −0.0024 −0.0088

data std dev 0.93 0.35 0.266

Noisy Mean 0.0461 0.0021 −0.0045

data std dev 0.641 0.49 0.34

a) Using noise free data: The table III shows some

statistical properties of the simulation errors of the three

identified systems. Considering the identification using noise

free data, one can see that the best results are obtained by

the time-scaled methods. Indeed, the statistical properties of

the simulation error obtained with the time scaled methods

are similar. One can also notice that the worst results are

clearly obtained with the ARX model.

b) Using noisy data: Let us focus on the identification

using noisy data. one can see that the best results are

again achieved with the time-scaled methods. One can also

observe that the deterioration of the standard deviation is

less important when we separate the influences of the input

than with a global measurement of the temperature. We can

also notice that even if the ARX model is still the worst, the

addition of noises has clearly improved its performances.

3) Conclusion: One can see that using a time scaled

method allows a good improvement of the results in terms of

simulation error. The comparison between the least squares

method and the time scaled method shows that the results

are better using the latter.
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Fig. 2. Comparison of simulations errors using noise free data obtained with the three identified models which have been identified using noisy data.
The reference output is computed with the high order model using noise free data. This figure shows the benefits in terms of simulation error provided by
using the time scaled identification. This plot represent a 25 days simulation extracted from a whole year simulation.

C. Static gains, poles and zeros identification

Concerning poles and zeros, we give, in tables VI ,VII and

VIII the corresponding time constants. Those time constants

are calculated using the discrete model provided by equations

(1), (13), (14), (26), (27) and (28)

1) Static gains identification: Let us see the results of the

three identification on the static gains

TABLE IV

COMPARISON OF THE IDENTIFIED STATIC GAIN USING NOISE FREE DATA

High order least squares Time scaled Separated
model identification identification time scaled

Gain 1 1 0.903 1.0013 1.0004

Gain 2 0.0088 0.0058 0.0089 0.0088

Gain 3 6.75 · 10−5 5.68 · 10−4 5.48 · 10−5 6.75 · 10−5

Gain 4 0.009 0.0125 0.009 0.009

TABLE V

COMPARISON OF THE IDENTIFIED STATIC GAIN USING NOISY DATA

High order least squares Time scaled Separated
model identification identification time scaled

Gain 1 1 0.959 1.0008 1.0007

Gain 2 0.0088 0.006 0.0088 0.0088

Gain 3 6.75 · 10−5 5 · 10−4 6.73 · 10−5 6.75 · 10−5

Gain 4 0.009 0.0107 0.009 0.009

As one can see on the tables IV and V, using a time-

scaled identification method yields a substancial improve-

ment compared to the classical least squares method. In fact,

the classical least squares method never correctly estimates

the static gains whereas the time-scaled methods estimate the

gains of the transfer matrix adequately.

Moreover, the separation of the influences of each input

allows one to reach the same accuracy using noisy or noise

free data, whereas the others methods give better results

using noisy data.

2) Time constants and zeros location:

a) Time constants identification.: The table VI reports

the identified time constants using noisy and noise free data.

We can see that with and without noises the identification

of the two time constants of the system are similar using

the time-scaled methods, whereas the ARX model provides

time constants quite different of the other models. Since the

simulation results are better with the models identified by

time scaled methods, one can suppose that the time constants

are well identified by these methods.

TABLE VI

IDENTIFIED TIME CONSTANT IN HOURS

least squares Time scaled Separated
identification identification time scaled

Noise free Slow 117 143 147

data Fast 1.1 2.5 2.9
noisy Slow 108 144 147

data Fast 1.2 2.4 2

b) Zeros time constants: The tables VII and VIII give

the zeros time constants of each transfer using respectively

noise free and noisy data to perform the identification. As

one can see on these tables, the only method yielding a weak

dispersion of the identified parameters is the time scaled
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identification with separation of the influences of the inputs.

Moreover, using Moore’s method to reduce the system does

not keep the two time scaled structure of the system. Indeed,

looking at the Bode diagram of the reduced system, one can

notice that the two time scaled structure exhibited by both

the high order model and the identified one is not preserved

by the reduced one.

TABLE VII

IDENTIFIED ZEROS’ LOCATION USING NOISE FREE DATA. THE † SYMBOL

MEANS THAT THE ZERO HAS BEEN FOUND TO BE UNSTABLE.

least squares Time scaled Separated
identification identification time scaled

First Slow zero 7.8 14.8 24

Transfer Fast zero None 4.6 None

Second Slow zero 2.1 9.9 5.1
Transfer Fast zero None 0.85 None

Third Slow zero 1.65 197† 11.1
Transfer Fast zero None 0.44 None

Fourth Slow zero 9.99 21.3 24.9
Transfer Fast zero None 0.051† 0.76

TABLE VIII

IDENTIFIED ZEROS’ LOCATION USING NOISY DATA. THE † SYMBOL

MEANS THAT THE ZERO HAS BEEN FOUND TO BE UNSTABLE.

least squares Time scaled Separated
identification identification time scaled

First Slow zero 5.3 15.5 23.2
Transfer Fast zero None 4.4 None

Second Slow zero 2.8 9.9 5.2
Transfer Fast zero None 1.1 None

Third Slow zero 1.9 116† 11.6
Transfer Fast zero None 0.023† None

Fourth Slow zero 11.2 22.6 24.3
Transfer Fast zero None 0.019† 0.44

3) Conclusion: The least squares method does not really

identify static gains, time constants and zeros of the system,

the time scaled method with global measurement allows us

to identify the static gains and the time constants, but shows

poor results in the identification of the zeros. Finally, the

time-scaled method with separation of each inputs allows to

identify all these parameters with robustness to noises.

VI. CONCLUSION

In this paper, it was shown that using a time-scaled identi-

fication method (see [9]) allows a substancial improvement of

the model identification compared to a classical least squares

method, in terms of prediction error and of parameters

sensitivity to measurement noises. It was also emphasized

that to clearly identify a time-scaled system it is needed

to find a good compromise between simulation error and

robustness to noise. The time-scaled method allows a great

improvement in the search of this compromise compared to

the least squares method.

Nevertheless, it has been observed that the identification of

the zeros of the system is too sensitive to the noises using that

method. To improve the conditioning of the system the inputs

and the output should be normalized. Using a separation of

the influences of each input is a solution. Then, it has been

shown that separating the influences of the inputs and using a

time scaled method can provide a good compromise between

identification error and robustness toward noises since the

results obtained with or without noises are quite similar.

In summary, this work proposes an efficient method, based

on a two time scale models to identify a low order linear

model describing the thermal behaviour of the system. This

efficiency is measured in terms of simulation errors and

in terms of robustness of the parameters identification to

noises. This is due to the normalization of the two time

scale problems, both in magnitude of the signals and in their

frequency range. The model obtained by this method can be

used in simulation and it can also be used in constrained

optimal control since the parameters are well identified.
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