
An iterative algorithm for dynamic
optimization of systems with

input-dependent hydraulic delays

Charles-Henri Clerget ∗ Jean-Philippe Grimaldi ∗
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Abstract
In this article, we propose a numerical algorithm capable of handling optimal control problems
for a class of systems with input-dependent input hydraulic delays. Such delays are often
observed in process industries. A careful look at the stationarity conditions allows us to derive
an iterative algorithm approaching the solution of this problem by solving a series of simpler
auxiliary instances. Interestingly, the algorithm is able to leverage state-of-the-art numerical
optimization tools such as IPOPT. The proof of convergence is sketched, highlighting the
relevance of the chosen algorithmic structure as a form of gradient descent in a functional
space. The practical interest of the algorithm is evidenced on a numerical example, showing the
desirable properties of convergence and the numerical efficiency.

Keywords: Optimal control, time varying delays, numerical methods, convergence analysis.

1. INTRODUCTION

Many applications in the field of process control use dy-
namic optimization in order to treat systems with time de-
lays (cf Richard (2003)). For this reason, most commercial
Model Predictive Control (MPC) tools routinely take into
account fixed time delays, and implementations are com-
mon place in industrial applications. Practically, delays are
usually treated directly in the time-discretization schemes.
Formally, the optimality conditions have been investigated
early on by the control system community, see Halanay
(1968), Soliman and Ray (1971), Malez-Zavarei (1980),
Basin and Rodriguez-Gonzales (2006), Frederico and Tor-
res (2012). A detailed panorama of the available station-
arity conditions (including the case of state-constrained
problems) can be found in Gollmann et al. (2009) and Göll-
mann and Maurer (2014) which also propose numerical
methods for implementation. These works cover cases of
multiple input and state delays in Pontryagin’s maximum
principle. Besides MPC techniques, other approaches have
focused on optimal synthesis, for fixed delays, resulting in
feedback control laws. Many research efforts have focused
on related numerical aspects, e.g. investigations regarding
the stability of some orthogonal collocation schemes with
regard to the transcription of systems of delay algebraic
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equations have also been investigated (see Betts et al.
(2015)).

Interestingly enough, it appears that fewer attention has
been given to dynamic optimization problems under vary-
ing delays. This topic is not new however and since the
seminal work of Banks (1968), most research efforts have
focused on closed-form solutions to LQR problems for
dynamics impacted by time-varying delays, see Carravetta
et al. (2010). However, these approaches usually do not
take into account cases where the delay variability actually
depends on the input or the state. Furthermore, in most
practical applications where delays are a priori known to
be variable, this information is simply ignored and the
delays are assumed to be fixed. Problems where such delay
dependency in the control is important are nevertheless
numerous and of great practical importance as the case
of input-dependant hydraulic delays frequently arises in
the plug-flow modelling of fluid transport phenomena.
Examples of such systems in the process industries can be
found in Harmand and Dochain (2005), Depcik and Assa-
nis (2005), Chèbre and Pitollat (2008), Roca et al. (2008),
Zenger and Niemi (2009), Bresch-Pietri et al. (2014), Petit
(2015) or M. Sbarciog and Prada (2008). The first theo-
retical results regarding the stationarity conditions of this
type of systems were laid out in Clerget et al. (2016).
However, as evidenced in Clerget et al. (2017), a straight-
forward direct simultaneous approach using orthogonal
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collocations (e.g. Biegler (2007), A. Flores-Tlacuahuac and
Biegler (2008) or Biegler (2010)) fails on this type of
applications. Indeed, the dependency of the delay with
respect to the input does not allow to transcript the
continuous optimal control problem as a smooth NLP 1 .
To circumvent this issue, Clerget et al. (2017) attempted
to discretize spatially the underlying plug-flow advection
partial differential equation (PDE) to proceed with the
direct optimization of the subsequent finite dimension
model, as has been studied for the modelling of more
complex transport systems e.g. Agarwal (2010). However,
in their numerical findings, the authors emphasize the
sensitivity of the results with respect to the choice of the
descretization scheme of the PDE. Overall, the numerical
performances are not fully satisfactory as a good numerical
accuracy of the PDE’s discretization must be paid by an
increased state size leading to a large computational load
and high index algebraic equations if state constraints are
to be imposed. Typical resolution times range from tens of
seconds to a couple of minutes. The method is also shown
to be prone to numerical difficulties as a refined spatial
discretization of the PDE leads to the ill-conditioning of
the Lagrangian’s Hessian that the solver must invert. This
leads to a malicious game where the numerical perfor-
mances of the solver deteriorate as the dimension of the
problem, and its inherent difficulty, increases.

In this paper, we propose an alternative methodology to
achieve the optimal control of systems displaying input-
dependant input delays based on an iterative procedure.
We will begin by introducing the stationarity conditions
of the optimal control problem that we consider. We will
then use those conditions to derive a candidate iterative
algorithm to solve the optimal control problem. We will
then sketch its proof of convergence by showing that it
can be viewed, in a limit case, as a gradient descent
algorithm. Finally, we will present and discuss numeri-
cal results, based on a simple benchmark problem from
Bresch-Pietri et al. (2014), illustrating the performances
of the algorithm.

2. NOTATIONS AND PROBLEM STATEMENT

Let T > 0 and n ∈ N∗, we note L2([0;T ],Rn) the space of
functions of integrable square over the interval [0;T ] and
D1([0;T ],Rn) the space of continuous and differentiable
functions on the interval [0;T ].

Let x0 ∈ Rm and P ∈ Mp(R) be symmetric definite
positive. Let φ : Rp → R∗+, L : [0;T ] × Rm × Rp → R
and f : [0;T ]×Rm×Rp×Rp → Rm be smooth functions.
Take (v0, u0) ∈ L2([r0; 0],Rp)×D1([r0; 0],Rp), r0 < 0 with∫ 0

r0

φ (u0(τ)) dτ = 1

and

∀t ∈ [r0; 0], u0(t) = u0(0) +

∫ t

0

v0(τ) dτ

Problem statement : Our goal in this paper is to solve
the following optimal control problem (generalization of a
Bolza problem)

1 In the sense that this dependency leads to index commutations in
the equations of the discretized dynamics

P : min
v

∫ T

0

L(t, x(t), u(t)) +
1

2
v(t)TPv(t) dt , J(v)

s.t. ∀t ∈ [0;T ], ẋ(t) = f(t, x(t), u(t), u(ru(t)))

∀t ∈ [0;T ], u̇(t) = v(t)

x(0) = x0, u[r0;0] = u0, v[r0;0] = v0

where the hydraulic delay Du(t) , t − ru(t) is implicitly
defined by the relation∫ t

ru(t)

φ(u(τ)) dτ = 1 (1)

and in particular
r0 = ru(0)

Equation (1) defines an hydraulic delay impacting the
smooth variable u which is the input of the system having
x as state.

In the following, in addition with the classic notations ∂f
∂x

and ∂f
∂u , we will denote ∂f

∂ur
the vector of partial derivatives

of f w.r.t. its last argument.

3. ALGORITHM DESIGN

Let us consider the operator P : L2([0;T ],Rp) →
D1([0;T ],Rp) × D1([0;T ],Rm)

2 × D1([0;T ],Rp) where
P(v) = (u, x, λ, ν) is defined by

u̇(t) = v(t), u[r0;0] = u0 (2)

ẋ(t) = f(t, x(t), u(t), u(ru(t))), x(0) = x0 (3)

λ̇(t) = −∂L
∂x

(t, x(t), u(t))T

− ∂f

∂x
(t, x(t), un(t), u(ru(t)))Tλ(t) (4)

λ(T ) = 0

ν̇(t) = −∂L
∂u

(t, x(t), u(t))T

− ∂f

∂u
(t, x(t), u(t), u(ru(t)))T · λ(t)

− 1[0;ru(T )](t)(r
−1
u )′(t)·

∂f

∂ur
(r−1u (t), x(r−1u (t)), u(r−1u (t)), u(t))T ·

λ(r−1u (t))

−
∫ r−1

u (min(t,ru(T )))

t

λ(τ)T ·

∂f

∂ur
(τ, x(τ), u(τ), u(ru(τ)))

v(ru(τ))

φ(u(ru(τ)))
dτ
∂φ

∂u
(u(t)) (5)

ν(T ) = 0

Using these notations 2 , it is straightforward to extend the
results of Clerget et al. (2016) to show that the stationarity
conditions of P are given by

(u, x, λ, ν) = P(v)

Pv + ν = 0
(6)

As mentioned previously, the input-dependency of the de-
lay makes P impractical to solve directly using orthogonal
2 On the interval [0; ru(T )] covered by the indicator function, the
function r−1

u employed in (5) is well defined
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collocations. Instead, we would much prefer to solve a
sequence of simpler auxiliary problems and a natural idea
would be to define a sequence of problems displaying a
delay law which would be time-varying, but in a fixed
fashion based on the value of vn found at the previous
iteration

min
vn+1

∫ T

0

L(t,Xn+1(t), un+1(t)) +
1

2
vn+1(t)TPvn+1(t) dt

s.t. Ẋn+1(t) = f(t,Xn+1(t), un+1(t), un+1(run(t)))

u̇n+1(t) = vn+1(t)

x(0) = x0, un+1[r0;0]
= u0, vn+1[r0;0]

= v0

Mathematically, the stationarity conditions of each of
these problems could then be expressed as special cases
of (2)-(5) in which φ would no longer be a function of u
but instead of t alone. However, examining equation (5)
shows that the distributed term that it involves (the last
term of (5)) would vanish (exactly, at each step) and that
if the sequence was ever to converge, its solution would
not verify the original stationarity conditions of P, but a
biased version of them. Following this remark for all n ≥ 1,
we define

Pn+1 : min
vn+1

∫ T

0

L(t,Xn+1(t), un+1(t))

+
1

2
vn+1(t)TPvn+1(t)

+ Sn(t)(un+1(t)− un(t))

+
α

2
‖vn+1(t)− vn(t)‖22 dt

s.t. Ẋn+1 =

f(t,Xn+1(t), un+1(t), un+1(run
(t)))

u̇n+1 = vn+1

Xn+1(0) = x0, un+1[r0;0]
= u0,

vn+1[ru(0);0]
= v0

where

Sn(t) =

∫ r−1
un

(min(t,run (T )))

t

λn(τ)T ·

∂f

∂ur
(τ, xn(τ), un(τ), un(run

(τ)))·

vn(run
(τ))

φ(un(run
(τ)))

dτ
∂φ

∂u
(un(t))

is the sensitivity of the objective with respect to the change
of the delay law caused by a change of the control input
as derived from the calculus of variations. In the definition
of Sn and the general statement of Pn, (un, xn, λn, νn) are
defined as

vn 7→ (un, xn, λn, νn) , P(vn)

Throughout the rest of the discussion, the following as-
sumptions are considered

Assumption 1. L is twice continuously differentiable while
f , φ are continuously differentiable. There exists K ≥ 0
such that

∀(t, x, u) ∈ [0;T ]× Rm × Rp, ‖∇2L(t, x, u)‖1 ≤ K
and

∀(t, x, u, ur) ∈ [0;T ]×Rm×Rp×Rp, ‖∇f(t, x, u, ur)‖1 ≤ K
and

∀u ∈ Rp, ‖∇φ(u)‖1 ≤ K
and, ∇2L, ∇f , ∇φ are K-Lipschitz continuous.

Assumption 2. There exists J∗ ∈ R such that

∀v ∈ L2([0;T ]), J∗ ≤ J(v)

Assumption 3. There exists φmin > 0 such that

∀u ∈ R, φmin ≤ φ(u)

Remark 4. Assumptions 1-2 are classic in optimization.
Assumption 3 is usually considered for systems with input
varying delays of hydraulic type (see Bresch-Pietri et al.
(2014)) so that r′u be bounded away from zero and the
input keep on reaching the plant.

Definition 5. Consider a sequence (vn)n∈N∗ and α ≥ 0,
(vn) is called α-admissible if for all n ≥ 2, vn is a solution
(possibly local) of Pn.

Let us define

X , {v ∈ L2([0;T ]), ∃Rv ∈ R+, ∀w ∈ L2([0;T ]),

J(w) ≤ J(v) =⇒ ‖w‖2 ≤ Rv} (7)

the set of L2 functions such that their J-level set is
included in a ball of L2 and note

gv , Pv + ν (8)

The main result concerning the sequence (Pn) is as follows

Theorem 6. Under Assumptions 1, 2 and 3, given any α-
admissible sequence (vn)n∈N∗ such that v1 ∈ X , if α is
large enough then (vn) satisfies

lim
n→∞

‖gvn‖2 = 0

and

lim
n→∞

‖vn+1 − vn‖2 = 0

Furthermore, the sequence (J(vn))n∈N∗ is monotonically
decreasing.

Proof. Given n ∈ N∗, let us assume that vn ∈ X (which
is true for n = 1 by assumption) and, by extension of (7),
define

Xn , {v ∈ L2([0;T ]), J(v) ≤ J(vn)} ⊂ X
which is a bounded set in the sense of the L2 norm, i.e.
there exists Rn > 0 such that

∀v ∈ Xn, ‖v‖2 ≤ Rn (9)

Consider the operator Q : L2([0;T ],Rp)
2 → D1([0;T ],Rp)

2

×D1([0;T ],Rm)
2

with Q(v, w) = (u, q, x, λ) defined as

u̇(t) = v(t), u[r0;0] = u0 (10)

q̇(t) = w(t), q[r0;0] = u0 (11)

ẋ(t) = f(t, x(t), u(t), u(rq(t))), x(0) = x0 (12)

λ̇(t) = −∂L
∂x

(t, x(t), u(t))T

− ∂f

∂x
(t, x(t), u(t), u(rq(t)))Tλ(t) (13)

λ(T ) = 0

Note the slight (but important) differences between P
defined by (2)-(5) and Q. The second argument of Q is
used to define the time-varying delay appearing in the
right-hand side of equations (12)-(13).

The newly defined operator Q plays a key role with respect
to the sequence (vn). Indeed, the stationarity conditions
of Pn+1 are given by
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(un+1, Xn+1,Λn+1) = Q(vn+1, vn)

Ṅn+1(t) =

− ∂L

∂u
(t,Xn+1(t), un+1(t))T

− ∂f

∂u
(t,Xn+1(t), un+1(t), un+1(run

(t)))T Λn+1(t)

− 1[0;run (T )](t)(r
−1
un

)′(t)·
∂f

∂ur
(r−1un

(t), Xn+1(r−1un
(t)), un+1(r−1un

(t)), un+1(t))T ·

Λn+1(r−1un
(t))− Sn(t)T

Nn+1(T ) = 0

0 = Pvn+1 +Nn+1 + α(vn+1 − vn)
(14)

Noticing that

(Q(v, v), N(Q(v, v), v)) = P(v)

it is clear from the structure of Pn+1 that if an α-
admissible sequence (vn) converges, its limit will satisfy
equations (2)-(5).

From (14), we directly deduce that the solutions of Pn and
Pn+1 are related by

vn+1 = vn −
1

α
gvn +

1

α
εn+1 (15)

with
εn+1 = −P (vn+1 − vn)− (Nn+1 − νn)

In turn, the cost variation between vn and vn+1 is given
by

J(vn+1)− J(vn) =

∫ 1

0

G′(s) ds

where
G(s) = J(vn + (vn+1 − vn)s)

Using the adjoint state method (see e.g. Strang (2007)),
one computes, after a few lines of calculus,

J(vn+1)− J(vn) =∫ 1

0

∫ T

0

gvn+(vn+1−vn)s(t)
T (vn+1(t)− vn(t)) dtds

which gives

J(vn+1)− J(vn) =

− 1

α
‖gvn
‖22 +

1

α
〈gvn , εn+1〉

+

∫ 1

0

〈gvn+(vn+1−vn)s − gvn , vn+1 − vn〉ds

Finally

J(vn+1)− J(vn) ≤

− 1

α
‖gvn‖22 +

1

α
‖gvn‖2‖εn+1‖2

+

∫ 1

0

‖gvn+(vn+1−vn)s − gvn‖2‖vn+1 − vn‖2 ds

(16)

At this point, the two main technical results remaining
to establish the desired results are to show that ‖εn+1‖2
admits an upper bound proportional to ‖gvn‖2 and that
the function v 7→ gv is Lipschitz continuous with respect
to the L2 norm on any bounded set. For the sake of
briefness, the explicit derivation of these properties is left
to a forthcoming publication.

Then, one shows that for α large enough, J(vn+1) −
J(vn) < 0. In particular, this guarantees that vn+1 ∈ Xn.
By induction, this implies that if one picks a value α = α1

such that it guarantees a decrease in cost at n = 1, then
for all rank n, vn ∈ X1 and there exists β > 0 such that

∀n ∈ N∗, J(vn+1)− J(vn) ≤ −β‖gvn‖22
This leads to

N∑
i=0

‖gvi‖22 ≤ β(J(v0)− J(vn+1))

Finally we derive
N∑
i=0

‖gvi‖22 ≤ β(J(v0)− J∗)

and the convergence of the series yields

lim
n→∞

‖gvn‖2 = 0

which gives the conclusion.

4. NUMERICAL EXAMPLE

For the sake of illustration, we treat a benchmark problem
already considered in Bresch-Pietri et al. (2014). Consider
a second order unstable system with dynamics given by

ẍ(t)− ẋ(t) + x(t) = u(ru(t))

u̇(t) = v(t)
(17)

having the following initial conditions

x(0) = 1, ẋ(0) = 0

u[r0;0] = 1, v[r0;0] = 0

This can equivalently be recast as

Ẋ(t) = AX(t) +Bu(ru(t))

u̇(t) = v(t)

where

X =

(
x
ẋ

)
, A =

(
0 1
−1 1

)
, B =

(
0
1

)
The optimal control problem is

P : min
v

∫ T

0

‖x(t)− xr‖22 + wu‖u(t)− ur‖22 + wv‖v(t)‖22 dt

s.t. Ẋ(t) = AX(t) +Bu(ru(t))

u̇(t) = v(t)

with T = 10, wu = 0.1, wv = 0.1 and xr = ur = 1.5.
Given α = 5, we iteratively approach a solution of P by
constructing an α-admissible sequence (vn). We pick the
trivial initialization value v1 = 0 and for all n ≥ 1 apply
the following algorithm :

• given vn, compute un and the delay law rn
• compute (xn, λn) and deduce Sn
• solve Pn+1 and obtain vn+1

Practically, the resolution of Pn+1 is performed using a di-
rect collocation transcription method, AMPL as algebraic
modelling language and IPOPT 3.11.8 as NLP solver. The
time horizon is divided into 100 finite elements of equal
size, each of them containing 3 Radau collocation points.
The results are presented on Figures 1-4.

Figures 1-2 display the optimal trajectory that is com-
puted and the associated delay law (the values are ob-
tained for n = 100). The inflexions of the input profile
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t
0 1 2 3 4 5 6 7 8 9 10

u

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Input

t
0 1 2 3 4 5 6 7 8 9 10

1

1.1

1.2

1.3

1.4

1.5

1.6

x
xr

Output

Figure 1. Optimal trajectory computed for P

around t = 0.9 and t = 2.4 are typical of systems hav-
ing variable delays. Figure 3 pictorially shows how this
trajectory is progressively approached by the sequence.
Figure 4 exhibits some indicators regarding the conver-
gence properties of the algorithm as n grows : the cost J
along with the relative steps size measured by log10 (∆v) ,

log10(
‖vn−vn−1‖2
‖vn‖2

) and log10 (∆J) , log10(
‖Jn−Jn−1‖2
‖Jn‖2

)

at successive iterations. As expected, the cost decreases
monotonically and the linear shape of the cost decrease
on the semi-log plot is evocative of a first order steepest
descent-like method. The total computation time for the
first 100 iterations displayed on Figure 4 using a 2.60 GHz
Intel(R) Core(TM) i7-4720HQ processor on a 64 bits sys-
tem with a 16.0 Go RAM is equal to 12.61 seconds, 9.78
seconds being actually spent in the solver.

5. CONCLUSION

In this paper, we have proposed an iterative algorithm to
solve the problem of optimal control of systems with hy-
draulic input-dependent input delays. A convergence proof
was sketched and numerical results were given illustrating
the practical interest of the method. More details will be
given in a forthcoming publication.

A straightforward extension would be to extend the calcu-
lus of variations and the deduced iterative optimization

t
0 1 2 3 4 5 6 7 8 9 10

D
u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Delay law of the optimal trajectory

t
0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

u100

u5

u35

u65

Input convergence

t
0 1 2 3 4 5 6 7 8 9 10

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x100

x5

x35

x65

Output convergence

Figure 3. Successive approximations of the optimal trajec-
tory

algorithm to the case of systems with hydraulic input-
dependent state delays. This case is of importance since
it is instrumental in the modelling of recycling loops or
cascades of reacting units.

The current study has focused on the open-loop generation
of optimal trajectories for the system. A valuable improve-
ment would be to study the closed-loop behaviour of such
a methodology used in a receding horizon framework for
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Iterations
0 10 20 30 40 50 60 70 80 90 100

J

0.5

1

1.5

2

2.5

3

Cost decrease

Iterations
0 10 20 30 40 50 60 70 80 90 100

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log("J)
log("v)

Size of the steps

Figure 4. Convergence properties of the algorithm

real-time control applications. Stability conditions for such
an MPC scheme could be fruitfully investigated.
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