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Abstract— This paper exposes a methodology which allows us
to address constrained optimal control of non linear systems by
interior penalty methods. A constructive choice for the penalty
functions that are introduced to account for the constraints
is established in the article. It is shown that it allows us to
approach the solution of the non linear optimal control problem
using a sequence of unconstrained problems, whose solutions
are readily characterized by the simple calculus of variations.
An illustrative example is given. The paper extends recent
contributions, originally focused on linear dynamics.

I. INTRODUCTION

This paper exposes a methodology allowing us to solve a
constrained optimal control problem (COCP) for a general
single-input single-output (SISO) with non linear dynamics.
This methodology belongs to the class of interior point
methods (IPMs) which consists in approaching the optimum
by a path lying strictly inside the constraints. In the interior,
optimality conditions are much easier to characterize and
to make explicit. A penalty function approach commonly
considered in finite dimensional optimization problem is
employed.
An augmented performance index is generally considered in
penalty methods for both finite optimization problem and
optimal control problem. It is constructed as the sum of
the original cost function and so-called penalty functions
that have some diverging asymptotic behavior when the
constraints are approached by any tentative solution. This
augmented performance index can then be optimized in the
absence of constraints, yielding a biased estimate of the
solution of the original problem. The weight of the penalty
functions is gradually reduced to provide a converging se-
quence, hopefully diminishing the bias.

The penalty function methods are computationally ap-
pealing, as they yield unconstrained problems for which a
vast range of highly effective algorithms are available. In
finite dimensional optimization, outstanding algorithms have
resulted from the careful analysis of the choice of penalty
functions and the sequence of weights. In particular, the
interior points methods which are nowadays implemented in
successful software packages such as KNITRO [1], OOQP
[2] have their foundations in these approaches. We refer the
interested reader to [3] for a historical perspective on this
topic. In this article, we apply similar penalty methods to
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solve COCPs. COCPs represent a very handy formulation
of objectives in numerous applications, especially because
constraints are very natural in problems of engineering
interest. Unfortunately, these constraints induce some serious
difficulties [4], [5], [6]. In particular, it is a well known fact
[6] that constraints bearing on state variables are difficult
to characterize, as they generate both constrained and un-
constrained arcs along the optimal trajectory. To determine
optimality conditions, it is usually necessary to know or to
a-priori postulate the sequence and the nature of the arcs
constituting the desired optimal trajectory. Active or inactive
parts of the trajectory split the optimality system in as many
coupled subsets of algebraic and differential equations. Yet,
not much is known on this sequence, and this often results
in a high complexity. Therefore, it is often preferred to
use a discretization based approach to this problem, and to
treat it, e.g. through a collocation method [7], as a finite
dimensional problem [8], [9], [10], [11], [12], [13], [14].
In this context, IPMs have been applied to optimal control
problems by Wright [15], Vicente [16], Leibfritz and Sachs
[17], Jockenhövel, Biegler and Wächter [18]. This is not the
path that we explore, as we wish to use indirect methods
(a.k.a. adjoint methods) to take advantage of their accuracy
as we can approach the continuous time solution as precisely
as we want through a mesh refinement.

Although there is a well-established literature on the math-
ematical foundations of IPMs for finite-dimensional mathe-
matical programming [19], this is not yet the case for optimal
control problems. These methods are of particular interest
since each solution of the sequence of optimal control prob-
lem is easily computed using classical stationarity conditions
of the solution. The main difficulty is to guarantee that the
sequence of solution is strictly interior. This point is critical
since interiority is a requirement to avoid ill-posedness and
computational failure of implemented algorithms. The prob-
lem of interiority in infinite dimensional optimization has
been addressed in [20] for input-constrained optimal control,
and in [21] for a state and input constrained optimal control
problem with linear time varying dynamics. Both contribu-
tions provide penalty functions guaranteeing the interiority
of the solutions. As shown in [21], a constructive choice of
the penalty functions for linear systems guarantees that the
state constraint is strictly satisfied. Moreover, depending on
the behavior of the control in the vicinity of the saturation,
the control constraint can be guaranteed to be also strictly
satisfied. The purpose of this article is to generalize the
results obtained in the case of linear systems [21] to non
linear dynamics. A new element of proof is introduced

2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

978-1-4577-1096-4/12/$26.00 ©2012 AACC 2669



to circumvent the impossibility to build explicit control
deviations to desaturate a constrained trajectory (whereas
it is possible in both [20], [21]). Considering converging
sequences and elementary topological properties of well-
chosen subspaces is the main tool of Section IV. This new
view-point impacts the proofs but not the spirit of the results
formulated in [21]. The algorithm of [21] is thus relevant
here.

This paper is organized as follows: in Section II, the COCP
is presented together with two penalized optimal control
problems (POCP): a state and input constrained one, and
an input constrained one, respectively POCP1 and POCP2.
POCP2 is the easiest to solve. We give sufficient conditions
for these two POCPs to be equivalent. In Section III a
sufficient condition on the state penalty is derived such that
this condition holds. In Section IV, a sufficient condition on
the control penalty is given such that the second condition
holds as well. In Section V, a constructive choice of the
penalty is given such that the two aforementioned conditions
hold and a completely unconstrained algorithm converging to
the solution of the COCP is given. The proposed algorithm is
tested on an illustrative example in Section VI. Conclusions
and perspectives are given in Section VII.

II. NOTATIONS, PROBLEM STATEMENT AND PENALTY
METHOD.

A. Constrained optimal control problem and notations

In this article, we investigate the following state and input
constrained COCP

min
u∈U ad

[
J(xu, u) =

∫ T

0

`(xu, u)dt

]
(1)

where ` : Rn × R 7→ R is a Lipschtiz function of its
arguments with Λ a Lipschitz constant, xu(t) ∈ Rn and
u(t) ∈ R are the state and the control of the following SISO
non linear dynamics

ẋ = f(x, u), x(0) = x0 (2)

Further, over the time interval [0, T ], T > 0 given, it is
assumed that f is C1 and that there exists a constant 0 <
C < +∞ such that the following inequality holds:

‖ f(x, u) ‖≤ C(1+ ‖ x ‖), ∀x, ∀|u| ≤ 1 (3)

This assumption allows one to guarantee that finite time
trajectories remain bounded. The control u is constrained
to belong to the following set

U = {u s.t. |u(t)| ≤ 1 a.e. t ∈ [0, T ]} (4)

which is the unit closed ball of Lebesgue essentially bounded
measurable functions [0, T ] 7→ R. The set U ad in (1) is the
following

U ad , {u ∈ U s.t. g− ≤ g(xu(t)) ≤ g+,∀t ∈ [0, T ]} (5)

where g : Rn 7→ R is assumed to be of class C1. The
state constraints are given in equation (5). Let us define the

functions G : U × [0, T ] 7→ R and ψ : U 7→ R as follows

G(u, t) , max
{
g(xu(t))− g+, g− − g(xu(t))

}
(6)

ψ(u) , sup
t∈[0,T ]

G(u, t) (7)

From this definition, the function ψ is such that

u ∈ U ad ⇔ ψ(u) ≤ 0 (8)

For the analysis developed in the rest of the paper, we
define two useful subsets of U ad

V ad , {u ∈ U s.t. g− < g(xu(t)) < g+,∀t} (9)

W ad , {u ∈
◦
U s.t. g− < g(xu(t)) < g+,∀t} (10)

where
◦
U denotes the interior of U w.r.t. the L∞ norm. In the

following we consider that the set V ad is not empty. These
sets satisfy

W ad ⊂ V ad ⊂ U ad

B. Presentation of the penalized problems

Following the approach of interior methods in their ap-
plication to optimal control [20], we introduce two penalty
functions

γg(.) : [g−, g+] → [0,+∞)
γu(.) : [−1, 1] → [0,+∞)

which are assumed to be strictly convex, symmetric, and go
to infinity as their argument approaches one of the bounds
of the definition interval. These functions serve to define the
following POCPs

1) POCP1: note ε > 0, solve:

min
u∈U ad

[
K(u, ε) =

∫ T

0

`(xu, u) + ε [γg ◦ g(xu) + γu(u)] dt

]
(11)

under the dynamics (2). At this stage, not much has been
gained since the POCP1 is just as difficult to solve as the
COCP (1). The main difficulty is the state constraint. This
is a well-known fact in optimal control, as discussed in
the introduction, stemming from the difficulty to handle the
calculus of variations in this case. Interestingly, this point
can be alleviated as will be shown.

2) POCP2: note ε > 0, solve:

min
u∈

◦
U

[
K(u, ε) =

∫ T

0

`(xu, u) + ε [γg ◦ g(xu) + γu(u)] dt

]
(12)

under the dynamics (2).

C. Sufficient conditions for equivalence of POCPs.

In fact, POCP1 and POCP2 are not equivalent. In POCP1
the control is constrained to belong to U ad, while, on the
other hand, in POCP2 it belongs to

◦
U . In more details, the

output constraint used to define U ad is not present in the
formulation of POCP2. This is precisely what makes (12)
appealing as it is easy to solve. In the following, we wish
to show that, provided γg and γu are suitably chosen, these
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two problems have the same solution. To establish this point,
we introduce two preliminary assumptions and prove a result
that establishes the relation between POCP1 and POCP2.

Assumption 1 (existence, uniqueness): There exists an
unique global solution u∗ for POCP1.
This assumption can be easily satisfied by adding a strong
convexity assumption on the cost (1) and linearity of the
dynamics with respect to u. Under Assumption 1 one obtains
the following lemma.

Proposition 1: Assume that the following holds
(C1) For any u ∈ U \ V ad, K(u, ε) = +∞ for all ε > 0,
(C2) For all ε > 0, for any u1 ∈ V ad \ W ad there exists

u2 ∈W ad such that K(u1, ε) > K(u2, ε),
then, there exists a unique solution u] for POCP2 and one
has

u] = u∗

Proof: Condition (C1) implies that

min
u∈U ad

K(u, ε) = min
u∈U ad\V ad∪V ad

K(u, ε) = min
u∈V ad

K(u, ε)

and

min
u∈V ad

K(u, ε) = min
u∈V ad∪(

◦
U\V ad)

K(u, ε) = min
u∈
◦
U
K(u, ε)

which shows the existence of a solution to POCP2. Then,
using condition (C2) one has

min
u∈
◦
U
K(u, ε) = min

u∈U ad
K(u, ε) = min

u∈W ad
K(u, ε) (13)

To conclude, one now has to prove uniqueness. Let us
consider an optimal control u] for POCP2. From (C1), this
control belongs to

◦
U ∩V ad = W ad. Then it is admissible for

POCP1 and is such that K(u], ε) = K(u∗, ε) from (13). By
uniqueness of u∗, one has u∗ = u].

III. INTERIORITY OF THE OPTIMAL CONSTRAINED STATE

In this section, we study how the penalty function γg(.)
can be used to guarantee that Condition (C1). To do so, we
recall the following result

Lemma 1 ([21]): In POCP1, if the penalty function γg is
such that

lim
α↓0

γg(g+ − α)µg(α) = +∞ (14)

where
µg(α) , meas ({t s.t. G(u, t) ≥ −α}) (15)

with meas(.) is the Lebesgue measure of its argument, then
(C1) holds.

Since the measure µg appears in equation (14), it is handy
to give a lower bound on it. This will be used in Section V,
in the explicit construction of suitable penalty functions. A
lower bound is given by the following result.

Lemma 2: Considering an input u ∈ U , and assuming that
ψ(u) = 0. Then, there exists a constant K < +∞ such that
the measure µg(α) defined in equation (15) is lower-bounded
under the form

µg(α) ≥ α

K
(16)

Proof: The proof is given in Appendix A together with
the expression of K.

Using Lemmas 1 and 2, one finally obtains
Proposition 2: If the state penalty γg is such that

lim
α↓0

αγg(g+ − α) = +∞ (17)

then Condition (C1) holds.

IV. INTERIORITY OF THE OPTIMAL CONSTRAINED
CONTROL

In this section, we determine sufficient conditions on the
penalty functions γu(.) and γy(.) such that Condition (C2)
holds. Consider u1 ∈ V ad \W ad, it serves to build another
control u2 ∈ W ad by using a density argument detailed
below. This density allows us to approach any control in V ad

by a sequence of controls in W ad. Section IV-B exposes the
existence of a control u2 ∈W ad arbitrary close of u1 in the
L∞ sense. In Section IV-C, the conditions on the penalties
are exhibited and the main result is given in Proposition 5.

A. Density of W ad in V ad

The main purpose of this section is to prove that the
control sets V ad and W ad have the same closure in the L∞

sense (Proposition 3).
Proposition 3: The sets V ad and W ad satisfy

W ad = V ad

Proof: First, W ad ⊂ V ad, thus W ad ⊆ V ad. Now let
us prove the inverse inclusion. Consider any v ∈ V ad \W ad.
Define −β , ψ(v) < 0. One can build a sequence (un)n∈R
such that un = (1 − εn)v, where (εn)n∈N is a sequence
converging to 0, with εn > 0. The sequence (un)n∈N
converges to v in the topology of L∞. From equation (3)
and using Grönwall Lemma [22], ‖ xu ‖ is bounded for
all u ∈ U , moreover f(., .) being C1 this implies that f is
Lipschitz with respect to its arguments. Thus ‖ ẋun(t) −
ẋv(t) ‖≤ λ(‖ xun(t) − xv(t) ‖ + ‖ un(t) − v(t) ‖),
λ < +∞. Using Grönwall Lemma, there exists K <∞ such
that ‖ xun−xv ‖L∞≤ K ‖ un−v ‖L1 . Thus, if un converges
to v in the L∞ sense, it converges in the L1 sense and xun
uniformly converges to xv . Using the continuity of g, the
sequence (g(xun))n∈N uniformly converges to g(xv). Then,
there exists N such that ∀n > N , ‖ g(xun)−g(xv) ‖L∞< β

2 .
Then, the sequence (un)n>N belongs to W ad. Therefore, v
is an adherent point to W ad and V ad ⊆W ad. Eventually, this
yields W ad = V ad.

B. Construction of u2

Let us consider any control u1 ∈ V ad \ W ad and note
ψ(u1) = −2β0 ≤ 0. From Proposition 3 we have the
following existence result: there exists u2 ∈W ad and α > 0
such that

‖ u2 ‖L∞= 1−α, ‖ u1−u2 ‖L∞≤ α, ψ(u2) ≤ −β0 (18)
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C. Condition guaranteeing the strict interiority of the opti-
mal trajectory

The following result gives an upper estimate on the
difference K(u2, ε)−K(u1, ε). This estimate is the sum of
three terms, representing respectively
(i) the integral variation of the original cost (1)

(ii) the integral variation of the state penalty εγg ◦ g
(iii) the integral variation of the input penalty εγu

Proposition 4: For any u2 satisfying (18), for any ε > 0
one has

K(u2, ε)−K(u1, ε) ≤ α [U` + Ug(ε)− L(ε, α)] (19)

with

U` , ΛT [KE + 1]
Ug(ε) , εTKgKEγ

′
g(g

+ − β0)

L(ε, α) , εµu1(α)γ′u(1− 2α)

where KE and Kg are positive constant (definied in Ap-
pendix B) and, for any measurable function u1

µu1(s) , meas ({t s.t. |u1| ≥ 1− s}) (20)

where meas(.) is the Lebesgue measure of its argument.
Proof: See Appendix B.

Finally, using (19), the following result holds.
Proposition 5: If for all ε > 0, there exists α > 0 such

that
L(ε, α) > U` + Ug(ε) (21)

then
K(u2, ε) < K(u1, ε), ∀ε > 0

and Condition (C2) holds.

V. MAIN RESULTS AND ALGORITHM

In Section III and IV, conditions have been given, under
the form of Proposition 2 and Proposition 5 respectively,
such that the Conditions (C1)-(C2) required in the statement
of Proposition 1 hold. These propositions are given under
the form of an equation (17) and an inequality (21). In this
section, a class of penalty functions γg and γu are given such
that these actually hold.

A. Penalty design

The inequality (21) is now studied. Depending on the
nature of the optimal trajectory of (11), the desired strict
positivity of L(ε, .)−U`−Ug(ε) stems from the term L(ε, .).
Thus, our study requires that an assumption on the behavior
on the measure µu∗(.) is formulated.

Assumption 2 (touching of input constraint): Define

mu∗(α) = meas ({t s.t. |u∗(t)| ≤‖ u∗ ‖L∞ −α}) (22)

There exists M > 0 and q ≥ 0 such that the asymptotic
behavior close to zero of the measure mu∗ defined in
equation (22) satisfies:

mu∗(α) ≥Mαq (23)
We are now ready to state our main result.

Theorem 1 (Main Result): Under Assumptions 1 and 2,
there exists penalty functions γg(.) and γu(.) such that
POCP1 and POCP2 are equivalent: their respective unique
solutions are equal. A particular choice of penalty is:

γg(g) =

[
1
2

(
g+ − g−√

(g+ − g)(g − g−)
− 1

)]ng
(24)

γu(u) =
[

1
2

(
2√

1− u2
− 1
)]nu

(25)

with ng > 2 and nu > max{1, 2(q − 1)}, q being given in
(23)

Proof: The existence is proven by showing that (24)
and (25) are suitable penalties. The penalty (24) is such that
equation (17) is satisfied; therefore Condition (C1) holds.
Now, let us prove that if the optimal solution u∗ of (11)
belongs to V ad, then it belongs to W ad. The proof considers
two mutually exclusive cases.
• If ‖ u∗ ‖L∞< 1, then u∗ ∈W ad which proves (C2).
• If ‖ u∗ ‖L∞= 1, then using equations (20) and

(22), one has mu∗ = µu∗ . This implies γ′u(1 −
2α)mu∗(α) = γ′u(1 − 2α)µu∗(α) ≥ γ′u(1 − 2α)Mαq .
The control penalty (25) is such that limα↓0 L(ε, α) ≥
limα↓0 γ

′
u(1−2α)Mαq = +∞, U` < +∞ and Ug(ε) <

+∞. Moreover, γ′u is a continuous function of α and
mu∗ is lower bounded by a continuous function of α
(see (23)). As a consequence, there always exists α > 0
such that Proposition 5 holds. Then (C2) holds and
u∗ ∈ W ad. This contradiction shows that this case is
impossible and u∗ ∈W ad.

We have proven that (C1) and (C2) are always satisfied
provided that the penalty functions are appropriately chosen.
This implies that problems POCP1 and POCP2 are equiva-
lent.

B. Investigation of convergence

Theorem 1 allows us to solve POCP2 instead of POCP1.
Our ultimate goal is to solve (1), which as announced earlier
in Section II, is approached by a sequence of POCP1, or
much simpler, thanks to the equivalence of Theorem 1,
a sequence of POCP2. One such algorithm is presented
below. Now, let us mention a few facts on convergence of
the constructed sequence (uεn , εn)n∈N where (εn)n∈N is a
decreasing sequence converging to zero, and u∗εn the solution
of (12) for ε = εn. The proof of convergence of the cost
limn→+∞K(u∗εn , εn) = J∗ follows along the same lines as
the proof in [23] and [24]. To prove the convergence of u∗εn
an assumption on the strong convexity of J can be used.
More details can be found in [24]. The only difference is
that we do not need the assumption of the interiority of the
solution of the POCP anymore. Nevertheless, the sequence
(u∗εn) of solutions of POCP2 converges to a solution in V ad

which can be different from U ad. Then, to ensure that (1)
is actually solved, assuming that this problem has a unique
solution, one has to ensure that V ad = U ad. A necessary and
sufficient condition such that it is true is given in Appendix
C.
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C. Algorithm

1) Change of variables: First, the following change of
variable is used

u , φ(ν) = tanh(kν) (26)

Where k 6= 0 is a factor allowing to set the slope of the
function about zero, ν is an unconstrained variable such that
tanh(kν) ∈ U , and such that the corresponding POCP

min
ν

[
P (ν, ε) =

∫ T

0

`(x, φ(ν)) + ε[γg ◦ g(x) + γu ◦ φ(ν)]dt

]
(27)

is defined with the penalty functions from (24) and (25).
Corollary 1: Under Assumptions 1 and 2, and from The-

orem 1, POCP1 and (27) are equivalent in the sense that
there exists an optimal solution ν∗ of (27) such that

u∗ = tanh(kν∗)

where u∗ is the optimal solution of POCP1.
Proof: The proof is exactly the same as Theorem 5 in

[21].
2) Solving algorithm: The purpose of the main result of

this paper, i.e. Theorem 1 (and Corollary 1 which stems from
it), is to allow one to solve a simple OCP (Problem (27))
instead of POCP1 because they are equivalent. Each problem
(27) penalized by ε from a sequence (εn) can be solved
using the calculus of variations. Define the Hamiltonian of
the penalized problem (27) as follows

Hε(x, ν, p) , `(x, φ(ν)) + ε [γg ◦ g(x) + γu ◦ φ(ν)]
+pT f(x, φ(ν)) (28)

where p ∈ Rn is the adjoint state of Pontryagin solution
of dp

dt = −∂Hε∂x and where the penalty functions are chosen
according to Theorem 1. The choice of nu can be made
by trial and error which solely depend on the nature of the
desired (but a-priori unknown) optimal solution u∗. Now,
defining a positive decreasing sequence, one can approach
the solution of (1).
• Step 1: Initialize the continuous functions x(t) and p(t)

such that the initial g− < g(x(t)) < g+ for all t ∈
[0, T ], and set ε = ε0. Note that x(t) and p(t) need not
satisfy any differential equation at this stage, even if it
is better if they do.

• Step 2: Solve for each time ∂Hε
∂ν = 0, and note ν∗ε the

solution.
• Step 3: Solve the 2n differential equations dx

dt =
f(x, φ(ν∗ε )) and dp

dt = −∂Hε∂x (x, ν∗ε , p) forming a two
point boundary values problem using bvp4c (see [25]),
with the following boundary constraints x(0) = x0 and
p(T ) = 0.

• Step 4: Decrease ε, initialize x(t) and p(t) with the
solutions found at Step 3 and restart at Step 2.

Convergence of the state in L∞([0, T ];Rn) and conver-
gence of the control in L2([0, T ];R) for COCP (11) ([24],
[23]) can be established as well.

VI. NUMERICAL EXAMPLE

To illustrate the proposed methodology, we consider the
following simple example of COCP with control affine non
linear dynamics

ẍ(t) = x(t) + x(t)3 − ẋ(t) + 10x(t)2u(t) (29)

with the constraints |u(t)| ≤ 1 and −.05 ≤ x(t)3 + ẋ(t)/2 ≤
g+, with g+ = 0.3 if 1 ≤ t ≤ 1.5 and g+ = 0.4 everywhere
else. The criterion to minimize is J(x, u) =

∫ 2

0
−x(s)

2

2 ds.
We set u = tanh(ν/2). The state penalty γg is chosen
according to (24) with ng = 2.1 > 2. Since the cost
does not depend on u and since the system is a control-
affine system, we chose the derivative of the control penalty
γ′u(.) such that γ′u ◦ tanh(ν/2) = sinh(ν). It is convenient
(but not required) as it allows one to analytically solve
the step 2 of our algorithm. Besides, this choice is such
that limα↓0 L(ε, α) = +∞ (see (21)) if µu∗(α) > Kα.
In our case, u∗ is a succession of bang-bang control and
constrained arcs, so µu∗(0) > 0, q = 0 and the penalty is
well designed since it makes (21) hold. Another equivalent
possibility would have been to use the penalty (25) with
nu = 2 and to numerically solve the Step 2 of our algorithm.
The initial state is x0 = (.3, 0)T . The algorithm has been
initialized with x(t) = x0 and p(t) ≡ 0 for all t ∈ [0, T ]. The
sequence (εn)n∈[1,36] is a logarithmic decreasing sequence
from 1 to 10−7. By construction, the solver produces a
sequence of feasible solutions, that are simple suboptimal
with respect to the original cost (1). The optimal cost is
J(x∗, u∗) = −0.34476.

TABLE I
ITERATIONS

] iter ε Cost
1 1 J = −0.16312
6 10−1 J = −0.18571
11 10−2 J = −0.28331
16 10−3 J = −0.33055
21 10−4 J = −0.34113
26 10−5 J = −0.34382
31 10−6 J = −0.34456
36 10−7 J = −0.34476
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Fig. 1. Optimal state constraint for ε = 10−8.
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Fig. 2. Optimal control for ε = 10−8.
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Fig. 3. Adjoint vector p(t) for ε = 10−8. One can see that both adjoint
variables exhibit discontinuities at some junction points (i.e. at the transition
between an unconstrained and a constrained arc).

VII. CONCLUSIONS

As a result of the proposed study, a practical method to
solve constrained optimal control problems for non linear
systems has been given. It solely requires the mathematical
formulation of a suitably penalized OCP. A constructive
choice has been given. This unconstrained problem can
then be handled using a classic two-point boundary value
problem solver. The presented iterative algorithm using an
off-the-shelf routine is quite easy to implement and provides
satisfactory results.
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APPENDIX

A. Proof of Lemma 2
First, using equation (3) together with Grönwall Lemma,

one has ‖ x ‖≤ eCT (1+ ‖ x0 ‖) − 1 , KT . Now, let us
define:

Kx , sup
‖x‖≤KT ,|u|≤1

‖ f(x, u) ‖ (30)

Kg , sup
‖x‖≤KT

‖ ∂g(x)
∂x

‖ (31)

The continuity of f and ∂g
∂x yields Kx,Kg < +∞ . Let us

recall that x(t) − x(s) =
∫ t
s
f(x(τ), u(τ))dτ . Now, let us

consider that G(u, s) = g+ − g(xu(s)) = α and G(u, t) =
g+ − g(xu(s)) = 0. This yields: g(x(t)) − g(x(s)) = α ≤
Kg ‖ x(t) − x(s) ‖≤ KgKx(t − s). This yields t − s ≥
α(KxKg)−1. Since the measure µg cannot be lower than the
minimal time needed to reach the constraint g+ starting from
g(x(s)) = g+−α, we finally obtain: µg(α) ≥ t−s ≥ α

KxKg
.

Note K , KxKg . The same argument holds when replacing
g+ by g−.

B. Proof of Proposition 4
To prove Proposition 4, we need to exhibit an upper bound

on ‖ xu2 −xu1 ‖L∞ . From equation (3) and using Grönwall
Lemma [22], ‖ xu ‖ is bounded for all u ∈ U , moreover
f(., .) being C1 this implies that f is Lipschitz with respect
to its arguments. Thus ‖ ẋu2(t) − ẋu1(t) ‖≤ λ(‖ xu2(t) −
xu1(t) ‖ + ‖ u2(t) − u1(t) ‖), λ < +∞. Using Grönwall
Lemma, there exists K < +∞ such that ‖ xu2 −xu1 ‖L∞≤
K ‖ u2−u1 ‖L1 . Noting u2 = u1 +αv, v ∈ U , there exists
KE < +∞ such that the following holds

‖ xu2 − xu1 ‖L∞≤ KEα (32)

Now, we can prove Proposition 4: let us study the dif-
ference K(u2, ε) − K(u1, ε) which can be decomposed as
follows K(u2, ε)−K(u1, ε) = K+ +K−. Where K+ ≥ 0
(resp. K− ≤ 0) represents the possible increase (resp.
decrease) on the penalized cost (11) when compared to u.

1) An upper bound on the possible increase K+: To
exhibit an upper bound on the possible increase, K+ is split
into two parts itself: the possible increase of the original
cost

∫
`(x, u, t)dt and the possible increase due to the state

penalty, separately.
a) Possible increase of the original cost: There, an

upper bound on the possible increase of
∫ T
0
|`(xu2 , u2)| −

|`(xu1 , u1)|dt is exhibited. Let us call K` this upper bound.
Now, let us consider that the cost function

∫
`(x, u, t)dt is

Lipschitz with constant Λ, then from equations (18) and (32),
one has

K` ≤ Λ
∫ T

0

‖ xu2 − xu1 ‖L∞ + ‖ u2 − u1 ‖L∞ dt

≤ ΛT [KEα+ α]

We define this upper bound as follows:

αU` , αΛT [KE + 1] (33)

b) Possible increase due to the state penalty: Note
Kγg , ε

∫ T
0
γg ◦ g(xu2) − γg ◦ g(xu1)dt. The integrand is

positive when G(u2, .) ≥ G(u1, .). But, from the construc-
tion of u2 and equation (18), one has G(u2, .) ≤ −β0. Using
the convexity and symmetry properties of the penalties, and
equation (31) one obtains

Kγg ≤ ε

∫ T

0

Kg ‖ xu2 − xu1 ‖L∞ γ′g(g
+ − β0)dt

Kγg ≤ εTKgKEαγ
′
g(g

+ − β0)

We define this upper bound as follows:

αUg(ε) , αεTKgKEγ
′
g(g

+ − β0) (34)

Finally, using equations (33) and (34), we have:

K+ ≤ α [U` + Ug(ε)] (35)

2) A lower bound on the possible decrease K−: The aim
of this part is to exhibit a lower bound on |K−|. Here,
we consider that the decrease can only be provided by the
control penalty. Let us define Ku , ε

∫ T
0
γu(u2)−γu(u1)dt.

Equation (18) yields that the integrand of the previous
equation is never negative since |u2(t)| ≤ |u1(t)|. Using
convexity and symmetry properties of the penalty functions
and equation (20) one has

K− ≤ ε

∫
|u1|≥1−α

γu(u2)− γu(u1)dt

K− ≤ −ε
∫
|u1|≥1−α

‖ u2 − u1 ‖L∞ γ′u(|u2(t)|)dt

K− ≤ −εαγ′u(1− 2α)µu1(α) (36)

We define this lower bound as follows:

K− ≤ −αL(ε, α) , −αεγ′u(1− 2α)µu1(α) (37)

3) An upper bound on K(u2, ε) − K(u1, ε): Gathering
equations (35) and (37), one finally obtains

K(u2, ε)−K(u1, ε) ≤ α [U` + Ug(ε)− L(ε, α)] (38)

This concludes the proof of Proposition 4.

C. Well-posedness

Proposition 6: The subset U ad is a closed subset of U .
Proof: Consider a sequence (un)n∈N, un ∈ U ad,

which converges (uniformly) to uf ∈ U : limn→+∞ ‖ un −
uf ‖L∞= 0. the sequence (g(xun)) uniformly converges to
g(xuf ). Thus limn→∞ ψ(uf ) ≤ 0. From (8), uf ∈ U ad. This
concludes the proof.

Definition 1: Considering ψ : U 7→ R defined in (7), then
one says that u0 ∈ U is a minimum of ψ if

ψ(u0) = 0 (39)

and if there exists a neighborhood V of u0 such that for all
v ∈ V ∩ U

ψ(v) ≥ ψ(u0) (40)
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Theorem 2: Consider ψ defined by (7), the following
propositions are equivalent
(i) ψ has no minimum.

(ii) U ad = W ad

Proof: First, we need the following Lemma:
Lemma 3: Considering ψ defined in (7), the following

propositions are equivalent:
(i) ψ has no minimum (in the sense of Definition 1).

(ii) U ad = V ad

Proof: The proof is inspired by [30]. (i) ⇒ (ii). By
contraposition: From Proposition 6, the set U ad is closed,
so V ad ⊆ U ad. Now, let us suppose V ad 6= U ad, then there
exists u0 ∈ U ad \ V ad. Thus, there exists a neighborhood
V(u0) such that U ∩ V(u0) ∩ V ad = V(u0) ∩ V ad = ∅. This
yields, ∀u ∈ U ∩ V(u0), ψ(u) ≥ ψ(u0) = 0. Then u0 is a
minimum.
(ii) ⇒ (i). By contraposition: Let u0 be a minimum of ψ.
Then, one has ψ(u0) = 0 and there exists a neighborhood
V(u0) such that ∀v ∈ U ∩ V(u0), ψ(v) ≥ ψ(u0) = 0. Thus,
u0 is such that U ∩ V(u0) ∩ V ad = V(u0) ∩ V ad = ∅. This
yields that, u0 is not an adherent point of V ad, and one has
u0 ∈ U ad \ V ad which yields U ad 6= V ad. This concludes the
proof.
From Proposition 3, one has V ad = W ad. Substituting V ad

by W ad in (ii) from Lemma 3 yields the result.

2676


