
AAS 22-604

NOMINAL AND EMERGENCY ROCKET LANDING GUIDANCE
USING QUADRATIC PROGRAMMING

Hubert Ménou*, Eric Bourgeois†, and Nicolas Petit‡

This paper presents nominal and emergency Powered Descent Guidance meth-
ods for rocket landing, in the presence of atmosphere. Nominal guidance is seen
as a minimum-effort correction problem to a reference trajectory, in free final-
time, with non-trivial aerodynamic effects and mixed state-control constraints. It
is solved using Quadratic Programming. Emergency guidance – dealing with in-
feasible nominal scenarios – is described as a hierarchical negotiation of landing
problem parameters and is solved using Linear Programming. Nominal and emer-
gency guidance are merged into a single unifying algorithm. The overall compu-
tational complexity remains low and compatible with on-board usage. Numerical
simulations are provided.

INTRODUCTION

Reusable launcher design is currently a salient topic in aerospace. Landing guidance - or more
precisely, Powered Descent Guidance (PDG) - aims at providing the launcher with a reference
trajectory for landing, given initial positions and velocities while enforcing multiple constraints.
The subject has been extensively studied for planetary landing,1 when there are no or negligible
atmospheric effects. In the presence of an atmosphere such as Earth’s, it is still a challenging task.
The aerodynamic effects induce non-linearities that rule out analytical guidance methods.2

Several numerical methods are described in the literature. Successive Convexification have been
extensively discussed,3–5 is often used along with Lossless Convexification6, 7 and has been field
tested.8 Also, pseudospectral methods have been explored9 as well as other numerical methods.10–12

See Reference 13 for a recent survey. All these methods have in common that PDG is formulated as
a finite-dimensional optimization problem that must be solved on-board. The inputs of the guidance
problem are the states of the rocket, and known disturbances (such as the wind velocity for instance).

Emergency guidance - sometimes known as abort guidance14, 15 - aims at providing a reference
trajectory when the nominal guidance procedure failed. For example, if the rocket starts its descent
with a horizontal position too far from the desired landing site, the latter is not reachable anymore.
However, providing no trajectory for the PDG is not acceptable, and if some trade-off yields a solu-
tion, then it must be considered. Mathematically, this means that the guidance optimization problem
must be relaxed to partially recover feasibility, by sacrificing landing targets or by weakening desig-
nated safety constraints for instance. Emergency guidance can be formulated in many different ways

*PhD Candidate, hubert.menou@mines-paristech.fr, Centre Automatique et Systèmes (CAS), MINES Paris,
PSL University, 75006 Paris, France.

†eric.bourgeois@cnes.fr, CNES, Direction des lanceurs, 52, rue Jacques Hillairet, 75612 Paris Cedex, France.
‡Pr., nicolas.petit@mines-paristech.fr, Centre Automatique et Systèmes (CAS), MINES Paris, PSL Uni-
versity, 75006 Paris, France.

1

and is deeply related to the nominal guidance method, the latter being the one declaring infeasibility
in the first place.

In this paper, a PDG method defined in the vincinity (ideally large) of a reference trajectory and
computed using only Quadratic Programming (QP) and Linear Programming (LP) is proposed, for
which reliable off-the-shelf solvers exist. Here, QP is used directly for itself, and not as part of
a Successive QP algorithm, hence guaranteeing the termination of the proposed procedure. These
programs exploit offline-computed matrices, defined using standard properties of the flow of Ordi-
nary Differential Equations (ODEs). Extending previous work of the authors,12 we propose a way
to handle emergency scenarios, by negotiating sub-sets of parameters of the landing problem. For
example, the final horizontal position, or the safety incidence bound are parameters that can be sac-
rificed, to some extent. The proposed method explores a hierarchy of problems constructed from
the ranking of constraints. This is the main contribution of the article.

This paper is structured as follows. First, the atmospheric PDG problem is presented in detail for
a planar motion. Second, the QP-based guidance method is presented. Then, introducing modifi-
cations to the PDG problem and the nominal guidance method, the emergency problem is solved
using a sequence of Linear Programs. Finally, numerical assessment and general discussions on this
approach are provided.

ATMOSPHERIC POWERED DESCENT GUIDANCE

This section presents the rocket dynamic model, and introduces the PDG problem.

Dynamics model for guidance

First, let us introduce a planar rocket model. A non-rotating flat Earth model is considered, with
a constant gravity field of magnitude g, oriented vertically. The rocket description presented here
being used for guidance purposes, only its point dynamics is considered. For h ≥ 0 the altitude,
vh < 0 the vertical speed, z the horizontal position, vz the horizontal speed and m ≥ mdry the total
mass of the rocket, the Equations of Motion (EoM) are

ḣ = vh (1a)

v̇h = −g + FL sin θ + (T − FD) cos θ

m
(1b)

ż = vz (1c)

v̇z =
FL cos θ − (T − FD) sin θ

m
(1d)

ṁ = −q (1e)

where q is the engine flow, θ the attitude, and

(Thrust) T := g ISP q − Pa(h)Se,

(Relative Speed) Vr :=
√
v2h + (vz − w(h))2,

(Drag) FD :=
1

2
ρ(h)V 2

r SrefCD(Ma, α),

(Lift) FL :=
1

2
ρ(h)V 2

r SrefCL(Ma, α),

2

(Mach) Ma := Vr/Ssp(h),

(Incidence) α := arctan

(
vz − w(h)

|vh|

)
− θ.

In these equations, ISP the engine specific impulse, Pa and ρ the atmospheric pressure and density,
CD and CL the drag and lift coefficients, Ssp the sound speed and Sref and Se characteristic rocket
surfaces. The pressure bias in the thrust expression conveys the air flow envelop effect on the rocket
when landing. When the rocket descends vertically with no wind, α = θ = 0. The wind is assumed
purely horizontal. Its speed is denoted w(h). Classically, the wind speed profile is assumed to
be piece-wise affine, null at h = 0 and defined by its values w1 at low altitude and w2 at high
altitude. The engine thrust T is assumed to be positive at all times. This very general model has
some specifications detailed below.

The aerodynamic model of a rocket moving in the direction of its thrust flame is notoriously hard
to determine. Early work from 1966 started to describe the aerodynamic effect of an air jet pushing
in front of a body in a supersonic flow. Later work from the early 2000s from JAXA completed
these observations,16 followed by recent experiments of the DLR.17 The common observation of
References 16 and 17 is that for a sufficient jet flow, how it wraps around the rocket body lowers
dramatically the drag along the body axis, though orthogonal effects remain strong for non-zero
incidences. Therefore, for this paper, we consider |CD| << 1 and a non-trivial expression of CL

based on lookup tables. Naturally, CL is taken skew-symmetric with respect to α.

Moreover, the rocket engine thrust is assumed to always generate a greater acceleration than the
rocket weight. Initially, and during the whole flight, it implies that the vertical speed is always
negative, and that the rocket altitude is always decreasing.

The states are gathered in x := (h, vh, z, vz,m)⊤ of dimension n = 5. The control is conveyed
by u := (q, α)⊤ and is of dimension m = 2. Finally, the dynamics parameters are chosen* as
η := (w1, w2)

⊤. The EoM are of the shape ẋ = f(x, u, η), with initial conditions x(0) = x0 and
are defined on the time interval [0, tf]. The landing problem can now be stated.

Landing targets and constraints

The main goal in PDG is to provide a trajectory that steers the rocket to the proper landing site
while enforcing several constraints. The landing problem is here defined as a correction problem
with respect to a reference trajectory. This trajectory, denoted (x̄, ū, t̄f), is assumed to be computed
offline, to satisfy the EoM, and the problem constraints described below. The idea is to find the best
correction, i.e. that remains as close as possible to the reference control law.

The control correction is described by a parametric function t 7→ uµ(t), where µ is a parameter.
For mathematical convenience, let us impose that µ 7→ uµ(t) be linear for any t, allowing a wide
variety of parametric descriptions such as piecewise affine maps, Cubic Splines or piecewise Her-
mite Polynomials.18 By definition, we also require that u0(.) ≡ 0. Thus, there is a matrix-valued
function t 7→M(t) such that uµ(t) = M(t)µ. This matrix solely depends on the chosen parametric
description. We can now describe the constraints that we wish to enforce.

First, there are pure control constraints. In practice, rockets are equipped with engines that
naturally have non-instantaneous responses. It implies that the control law and its derivative must
be continuous, and should not vary too abruptly. The continuous differentiability can be naturally

*The methodology being generic, one can select another set of variables as dynamics parameters if wanted (e.g. ISP).

3

•

α < 0

~Vr

~n⊥

~n‖

~V

~T

~F

FL

FD •

θ > 0

m~g

w

~V =

(
vh
vz

)

~Vr =

(
vh

vz − w(h)

)

Figure 1. Angles and forces. α denotes the incidence, θ the attitude, V⃗r the relative
speed, F⃗ the aerodynamic reaction (lift and drag) and T⃗ the thrust. The wake of the
thrust flame, depicted in orange shades, induces an altitude bias of the thrust.

ensured by the specific parametric descriptions - such as Cubic Splines for instance.18 Moreover,
for consistency, at t = 0 the control is constrained to equal the current value of the control uinit
(possibly different from ū(0)). This grants continuity of q and α and the initial time. In practice,
this constraint is imposed by enforcing

uµ(0) = ∆uinit := uinit − ū(0).

Moreover, the engine flow is bounded (mechanical limits of the engine) and the incidence should
remain within acceptable limits ±αmax.

Then, mixed state-control constraints are considered. A maximum value is imposed on the load
factor an, i.e. the non-gravitational acceleration of the rocket along the axis n⃗⊥, the latter being
defined as the unit vector perpendicular to the relative velocity, as shown in Figure 1.

Finally, we wish to enforce terminal constraints on the states, conveying the landing site location,
and the final speed at landing, such that h = 0, vh = −εfvh < 0, z = 0, and vz = 0. For
convenience, we write Afx(tf) = bf , where Af is a truncation of the identity matrix of dimension
n, and bf is filled with zeros and the constant εfvh .

The inputs of the PDG problem are ∆x0, ∆η and ∆uinit, where ∆x0 := x0−x̄0 and ∆η = η− η̄,
as shown in Figure 2. The decision variable - or output - is denoted by z := (µ⊤,∆tf)

⊤ and is of
dimension Nz . The cost that assesses how close a trajectory is from the reference control is defined
as a weighted quadratic map of z, i.e. J(z) := 1

2z
⊤Pz, for some positive definite matrix P .

Remark 1. It should be noted that several articles from the literature consider glide-slope con-

4

straints, especially when it comes to planetary landers.1, 5, 13 Considering our high engine thrust
assumption, glide-slope constraints would be less relevant in our framework.

General Powered Descent Guidance problem

Let us introduce the following problem*, which is an optimization problem with a finite-
dimensional variable and an infinite number of constraints

min
z∈RNz

J(z) (2a)

s.t.: ẋ = f(x, ū+ uµ, η̄ +∆η) (2b)

x(0) = x̄0 +∆x0 (2c)

Afx(tf +∆tf) = bf (2d)

uµ(0) = ∆uinit (2e)

u− ≤ ū(.) + uµ(.) ≤ u+ (2f)

amin ≤ an(x(.), ū(.) + uµ(.), η̄ +∆η) ≤ amax (2g)

Note that in this paper, all the inequalities must be understood component-wise.

As mentioned above, the reference trajectory is assumed to satisfy the conditions (2b) to (2g) for
null inputs. Also, note that due to the expression of J , the reference trajectory is the best control
law for null inputs ∆x0 and ∆η, i.e. z = 0 is the unique global optimum for ∆x0 = 0 and ∆η = 0.

In the constraints (2b) to (2g), uµ is implicitly defined on [0, tf +∆tf], which can be ambiguous
when differentiating some quantities with respect to ∆tf (see e.g. Section 2.7 in Reference 19).
To lift this potential ambiguity, Problem (2) is re-written on a fixed and normalized time-interval.
The new time variable is τ := t/(tf + ∆tf) ∈ [0, 1], and tf is considered as an extra state with
null dynamics. The augmented state is x̃ := (x⊤, tf)

⊤ ∈ Rn+1. The augmented dynamics and the
inequality constraints are

f̃(x̃, u, η) :=

(
tff(x, u, η)

0

)
and g(x̃, u, η) :=




ū(τ) + uµ(τ)− u+

u− − ū(τ)− uµ(τ)
an(x, u, η)− amax

amin − an(x, u, η)


 .

Then, Problem (2) is strictly equivalent to

PDG
(
∆x0,∆η

)
:= min

z∈RNz
J(z) (3a)

s.t.: ˙̃x(τ) = f̃(x̃(τ), ū(τ) + uµ(τ), η̄ +∆η), ∀τ ∈ [0, 1] (3b)

x̃(0) =

(
x̄0 +∆x0

t̄f +∆tf

)
(3c)

g(x̃(τ), ū(τ) + uµ(τ), η̄ +∆η) ≤ 0, ∀τ ∈ [0, 1] (3d)

Af x̃(1) = bf . (3e)

uµ(0) = ∆uinit (3f)

*To alleviate the writing, ∆uinit will not be written in the inputs of PDG, as its role is less critical than the others.

5

Horizontal
position z

x̄0 = x̄(τ0)•

•

•

•

•

•

Reference trajectory,
x̄ using ū during t̄f

with η̄

x̄(τ1)

x̄(τ2)

x̄(τ3)

x̄(τ4)

h(0)− •x0
Altitude h

Solving
QP
(
∆x0,∆η

)

at x0 = x̄0 +∆x0

gives µ∗ and ∆t∗f

∆x0

•

•

•
•

•

x1

x2

x3

x4Way points,
expressed with Eq. (5),

using ∆x0, ∆η, µ∗ and ∆t∗f .

Figure 2. Optimal correction framework. The reference trajectory is chosen depend-
ing on the mission’s needs. Solving QP

(
∆x0,∆η

)
provides an optimal correction, to

stay close to the reference, enforce several constraints and land at the expected spot.
See Figure 4 for the application of this principle on an actual model.

To alleviate the writing, we keep the same notation for Af , since the matrix Af from (3e) only
has an additional null column compared to the one from (2d). Note that bf on the other hand does
not change.

With this new writing, the variable ∆tf becomes a freely chosen initial condition. From now
on, the state and control variables will always be expressed on the time interval [0, 1]. Providing a
solution to PDG

(
∆x0,∆η

)
, even for relatively large values of ∆x0 and ∆η, is the goal of the next

sections.

Remark 2. Note that in practice, to improve the numerical conditioning of the following sub-
problems, all the variables are normalized, such that they have the same order of magnitude.20

RESOLUTION OF NOMINAL GUIDANCE VIA QUADRATIC PROGRAMMING

This section describes the method used to solve PDG
(
∆x0,∆η

)
, and extends previous work

of the authors.12 First, Problem (3) is converted to a Non-Linear Program (NLP). Then, using
sensitivity analysis, a Quadratic Program (QP) is introduced to compute its solutions.

Conversion to Nonlinear Programming

First, dynamic equation (3b) is represented using the flow Φf̃ of f̃ , whose definition and first
order expansion are recalled in the Appendix. For any time τ ∈ [0, 1], the augmented state at τ is
defined such that

x̃(τ, z) := Φf̃

(
τ,

(
x̄0 +∆x0

tf +∆tf

)
, η̄ +∆η; ū+ uµ

)
∈ Rn+1. (4)

6

τ

Parametric control uµ(τ)

• • • •

| | | | | | | | | | | ||
τ ′0 τ ′1 τ ′Nc

τ0 = 0 τ1 τ2 τ3 = 1

µ0
µ1 µ2

µ3

µ4
µ5

•

•

Figure 3. Control discretization and constraint time instances. The correction is
described by a parametric function τ 7→ uµ(τ). Here is represented a Cubic Spline,
described by its values µ0, . . . , µ3 at several time instances, and by its slopes µ4 and
µ5 at the starting and end points. The inequality constraints are enforced on the
subdivision τ ′0, . . . , τ

′
Nc

.

To alleviate the writing, note that x̃(τ, z) depends on ∆x0 and ∆η but this dependency is not written
explicitly. The term x̃(τ, z) has a first order expansion with respect to all the previous problem
variables such that

x̃(τ, z) ≈ x̃[τ] +
∂x̃

∂x0
[τ].∆x0 +

∂x̃

∂η
[τ].∆η +

∂x̃

∂µ
[τ].µ+

∂x̃

∂x0n+1

[τ].∆tf (5)

where [τ] means that the associated term is evaluated at τ for null values of ∆x0, ∆η, µ and ∆tf .

Second, let us enforce the constraints (2f) and (2g) on a finite number of points. In all of the
above-mentioned examples of parametric descriptions, the map µ 7→ uµ(t) is defined in practice
with respect to a time subdivision (τi)i such that 0 = τ0 < . . . < τNu = 1. For example, for
continuous piecewise affine functions, µ simply conveys to the values of uµ at each prescribed time
instance τi. Using this fact, we choose to enforce (2f) and (2g) on the subdivision 0 = τ ′0 < . . . <
τ ′Nc

= 1, which is a uniformly over-sampled version of the subdivision (τi)i, as pictured in Figure 3.

By introducing the maps

cin(z,∆x0,∆η) :=




g(x̃[τ ′0, z], ū(τ
′
0) + uµ(τ

′
0), η̄ +∆η)

...
g(x̃[τ ′Nc

, z], ū(τ ′Nc
) + uµ(τ

′
Nc

), η̄ +∆η)




ceq(z,∆x0,∆η) :=

(
Af x̃[τ ′0, z]− bf

uµ(0)−∆uinit

)
,

one can approximate Problem (2) into a Nonlinear Problem (NLP) fitting the following standard
form

NLP
(
∆x0,∆η

)
:= min

z
J(z) (6a)

s.t.: cin(z,∆x0,∆η) ≤ 0, (6b)

ceq(z,∆x0,∆η) = 0. (6c)

Resolution via Quadratic Programming

The solution of NLP
(
∆x0,∆η

)
can be approximated using perturbation methods, also know as

sensitivity analysis. For ∆x0 = 0 and ∆η = 0, the solution is known and is z = 0. As it is well

7

established in Reference 21, for small values of ∆x0 and ∆η, if local preservation of the set of active
constraints can be guaranteed, then the solution of NLP

(
∆x0,∆η

)
is continuously differentiable.

However, such a property is often guaranteed by assuming Strict Complementarity Slackness, which
is unsufficient in the above-defined framework. We need to be able to handle local changes in the
set of active constraints. Thus, we overcome this difficulty by using more subtle results from the
literature.22, 23 Below are presented the key aspects of the method. For a more detailed description,
see Reference 12.

The goal is to provide a way to compute a first order expansion of the optimal solution map of
NLP

(
∆x0,∆η

)

∆x0,∆η 7→ z∗(∆x0,∆η).

Under mild conditions,12 this map exists and is directionally differentiable (in the sens of the Dini
derivatives), in the vincinity of (∆x0,∆η) = (0, 0). To state this result in more details, let us first
introduce the following QP written in standard form*

QP
(
∆x0,∆η

)
:= min

z

1

2
z⊤Pz

s.t. Gz ≤ h,

Az = b.

where the vectors h and b bear the dependency on the inputs ∆x0 and ∆η such that

h := h0 +Hx∆x0 +Hη∆η

b := b0 +Bx∆x0 +Bη∆η

and where the remaining constant matrices are

G :=
∂cin
∂z

[0], h0 := −cin[0], Hx := − ∂cin
∂∆x0

[0], Hη := −∂cin
∂η

[0],

A :=
∂ceq
∂z

[0], b0 := −ceq[0], Bx := − ∂ceq
∂∆x0

[0], Bη := −∂ceq
∂η

[0].

where [0] means that the associated terms are evaluated at (0, 0, 0).

For this subsection only, denote respectively by znlp and zqp the solutions of NLP
(
∆x0,∆η

)

and QP
(
∆x0,∆η

)
. As discussed earlier, z = 0 globally minimizes J and satisfies the constraints

for null inputs, the znlp(0, 0) = zqp(0, 0) = 0. Then, for ε ≥ 0, sensitivity analysis results12, 22, 23

allow us to write the expansion

znlp(ε∆x0, ε∆η) = zqp(ε∆x0, ε∆η) + o(ε). (7)

The main advantages of approximating znlp by solving QP
(
∆x0,∆η

)
is that on one hand it sup-

ports local changes in the active set, and on the other hand it provides reasonable approximations of
the solutions of NLP

(
∆x0,∆η

)
even for non-local values of ∆x0 and ∆η. For more details, see

previous work of the authors12 and the references therein. Also, note that the constant matrices G,
h0, Hx, Hη, A, b0, Bx and Bη depend directly on the nominal reference trajectory.

To summarize, our nominal guidance method consist in computing the optimal solution of
QP
(
∆x0,∆η

)
, which provides an approximate solution of NLP

(
∆x0,∆η

)
.

*The fact that the costs of QP
(
∆x0,∆η

)
and NLP

(
∆x0,∆η

)
coincide comes from the fact that J is already

quadratic in z and that z = 0 is the solution of the latter problem for null inputs. See Reference 12 for more details.

8

Remark 3. Note that this approach cannot be realistically used as an elementary step for online
Successive Quadratic Programming,3, 20 for the matrices of each QPs would take too much time
to compute. Yet, the strength of QP

(
∆x0,∆η

)
is twofold: it provides an excellent solution in a

non-trivial neighborhood of the reference trajectory and the values returned for high magnitudes of
∆x0 and ∆η remain very consistent, as demonstrated by extensive simulations.

EMERGENCY GUIDANCE

A salient source of concern is what happens when QP
(
∆x0,∆η

)
is not feasible, due to the values

of ∆x0 and ∆η being too large. For instance, this occurs when the initial horizontal position is too
far from the landing site, because the incidence is bounded. The landing problem must be modified
to some extent to gain enough margin to recover feasibility. The main questions that arise are: what
can we negotiate to recover feasibility, and how do we determine it?

Negotiable parameter choices

The parameters that can be negotiated are the ones describing the goals of the landing. The
physics-based equations of motion are not negotiable. However, the location of the landing site is
negotiable, to some extent. If the landing site is located in a wide and flat area, it is of interest to
allow landings in a neighborhood of the ideal landing site*. Moreover, some of the other parameters
defining the constraints can be partially loosened. For example, the incidence limit should be seen
more as a safety constraint and could be slightly widened if necessary, whereas the engine flow
limitations are non-negotiable mechanical constraints.

Most of the available negotiable variables can be added with ease in the original guidance prob-
lem, as illustrated below. For instance, to negotiate the final horizontal position, the terminal con-
straint (3e) can by altered by a parameter ∆zf , such that

Afx(1) = bf +
(
0 0 ∆zf 0

)⊤
.

Likewise, to negotiate the incidence limit, the control bounds of PDG
(
∆x0,∆η

)
are shifted by a

parameter ∆αmax such that

u− − (0,∆αmax)
⊤ ≤ ū(t) + uµ(t) ≤ u+ + (0,∆αmax)

⊤.

Following these examples, we will study negotiable parameters that have a linear influence on the
constraints of PDG

(
∆x0,∆η

)
. For the sake of this article, we illustrate our approach with an

arbitrary subset of negotiable parameters, which includes the incidence limits (∆αmax) and the
final horizontal position (∆zf). In the following, the variable p will be used to denote the chosen
negotiable parameters, i.e. p = (∆αmax,∆zf)⊤ above. Thus, we introduce matrices Hp and Bp

such that the constraints of QP
(
∆x0,∆η

)
become the following negotiated constraints:

Gz ≤ h+Hpp and Az = b+Bpp. (8)

There is hierarchy of importance between the negotiable parameters. Indeed, accepting to have
a slightly higher incidence during the flight is often less critical than landing outside the landing

*Note that this would not apply to landings on offshore platforms, for obvious reasons.

9

site. Thus, the negotiable parameters are partitioned in R ≥ 1 different sub-parameters p(j) of equal
importance, sorted in ascending importance between each other, such that

p =
(
(p(1))⊤ . . . (p(R))⊤

)⊤ ∈ Rnneg .

The higher the index j, the more critical is p(j).

Finally, it is assumed that all negotiable parameters are negotiable within prescribed limits, i.e.
that p is bounded such that: plow ≤ p ≤ pup.

For our illustration example with p = (∆αmax,∆zf), we consider that it is less critical to sac-
rifice a few degrees of incidence limit than to land outside the desired landing site. Thus, we have
R = 2, p(1) = ∆αmax and p(2) = ∆zf .

Remark 4. Recovering feasibility has been tackled using various formalisms. In an important pa-
per by Blackmore et al.,24 the problem of finding the actual landing site that minimizes the distance
to the desired landing site is described in details, for Mars landing (i.e. without atmosphere), using
Successive Convexification. Using the above-mentioned taxonomy, they had two different negotiable
parameter that they negotiated at the same time, which were the two final horizontal positions of
their 3D lander model.

Basic parameters negotiation

Now comes the second question: how does one negotiate these parameters? When landing is not
feasible anymore, the goal is to find the smallest change in the negotiable parameters that recovers
feasibility. Once these best negotiated parameters have been computed, the set of feasible param-
eters is not empty anymore. The latter set can be transferred to the original guidance problem, in
order to re-optimize z and get the optimal trajectory z∗. One of the main challenges is to negotiate
p such that the map p 7→ z∗(p) is continuous, while enforcing the parameters hierarchy.

Qualitatively, we propose to successively minimize the magnitude of the negotiable parameters
while enforcing the existence of at least one feasible trajectory at each step. This minimization will
focus on each sub-parameter, starting by the last one (i.e. p(R)), down to the first one (i.e. p(1)).
This means that the most critical negotiable parameters are minimized first. At each step, only the
proper sub-parameter p(j) is minimized, such that the result be p(j) = 0 if it is not necessary to
use this parameter to recover feasibility. Also, in order to enforce the desired hierarchy, a sort of
memory effect will be needed so that each step takes into account the results of the previous steps,
by preserving the penalty levels. This will be the role of condition (9e) below. Also, as will appear,
Linear Programming will play a key role to implement these negotiation steps.

Quantitatively, let us first introduce the negotiation problems LPj such that

LPj := min
z,p

∥p(j)∥1 (9a)

s.t.: Gz ≤ h+Hpp (9b)

Az = b+Bpp (9c)

plow ≤ p ≤ pup (9d)

∥p(i)∥1 = P∗
i , i = j + 1, . . . , R (9e)

where P∗
i denotes the optimal value of LPi. To make this problem definition well-posed, note that

the constraint (9e) does not exist when j = R. Moreover, note that the inputs of each LPj are ∆x0,

10

∆η and P∗
i for i = j + 1, . . . , R. To alleviate the writing, these are omitted wherever the context is

clear enough. Finally, it is important to highlight the fact that z and p are both optimization variables
in LPj , even though only a few coefficients of p are penalized in the cost (9a).

The role of LPj is to minimize a penalty on the j−th negotiable sub-parameters, while making
sure that there are still feasible trajectories z, and that the level of penalty of the previous negotiation
problems are satisfied. The reason why constraint (9e) must be satisfied instead of a constraint
of the type “p(j) = p(j)

∗
” is that LPj does not necessarily have a unique solution*. Imposing

∥p(j)∥1 = P∗
i makes sure that the level of negotiation reached at step i remain satisfied in the

follow-up negotiations. Descending from j = R down to j = 1 and imposing this latter constraint
is what makes sure that the hierarchy is enforced.

Thus, solving successively LPj for j = R, . . . , 1 (decreasing indices) provides a way to recover
feasibility, while hierarchically minimizing what is sacrificed from the original guidance problem,
by building the sequence P∗

1 , . . . ,P∗
R from the end. Among others, a noteworthy property of this

sequence is that if landing is feasible without any negotiation, then solving LPj will return ∥p(j)∥1 =
0 at each step, implying p = 0. Once this negotiation sequence has been computed, there may be
many possible values for p, and for z as well. It is thus necessary to pick the best trajectory among
these ones, by solving

REFINE := min
z,p

1

2
z⊤Pz (10a)

s.t.: Gz ≤ h+Hpp (10b)

Az = b+Bpp (10c)

plow ≤ p ≤ pup (10d)

∥p(i)∥1 = P∗
i , i = 1, . . . , R (10e)

Note that like LPj , the problem REFINE takes as inputs ∆x0, ∆η and P∗
i for i = 1, . . . , R.

Remark 5. Using standard techniques from the litterature (see Example 1.13 of Reference 20),
LPj can be written as a Linear Program using slack variables p+ ≥ 0 and p− ≥ 0, such that
p = p+ − p−. Thus: ∥p∥1 = 1⊤(p+ + p−), where 1⊤ = (1, . . . , 1) is of dimension nneg.

Remark 6. It is important to note that any other choice of cost function in (9a) would deeply
change the way Problems (9) and (10) are solved. Also, it is worth mentioning that if it is required
to favor negotiations in some directions more specifically within a sub-parameter p(j), one can
easily consider a weighted variant of the 1-norm instead.

Remark 7. From a very general mathematical programming point of view, recovering feasibility
in Linear Programs has been discussed extensively in the literature, see Chinneck25 for instance.
Problem 9 builds upon right-hand side constraint “alteration” methods, by exploiting the available
levers conveyed through the parameter p, the matrices Hp and Bp, and the need to enforce the
parameter hierarchy.

Error anticipation using margins

The above-mentioned approach would be sufficient to correctly handle emergency problems if
QP
(
∆x0,∆η

)
was an exact representation of NLP

(
∆x0,∆η

)
, which is not true in practice for

large values of ∆x0 and ∆η which cause the first order constraint approximations to be erroneous.
*This is a common with Linear Programs. The solution set is often non-trivial and forms a convex set.

11

NLP (.) is feasible NLP (.) is not feasible
QP (.) is feasible Matching behavior Dangerous

QP (.) is not feasible Conservative Matching behavior

Table 1. List of possible outcomes. The riskiest situation is when QP
(
∆x0,∆η

)
declares guidance

feasible but NLP
(
∆x0,∆η

)
would state the opposite.

There are two independent issues to deal with. First, the approximation performed in Equation (7)
is not exact, and some errors build up when using the linearized constraints for high values of ∆x0

and ∆η. Second, the linear nature of the constraint approximation implies that QP
(
∆x0,∆η

)
may

declare the landing infeasible when it is actually feasible, and vice versa, as summarized in Table 1.

Thus, let us describe a simple way to cope with these issues, and improve the guidance algorithm
robustness. Denote by Feas

(
∆x0,∆η, p

)
the set of feasible vectors z for the negotiated constraints

from Equation (8). We want to restrict this set in order to reduce the “false positive” scenarios of
Table 1, i.e. when NLP

(
∆x0,∆η

)
is not feasible but QP

(
∆x0,∆η

)
is. The idea is to impose that

Feas be non-empty for p, and also that Feas be non-empty for all p+∆p where ∆p belongs to some
prescribed set M. This set M represents all the margins that one wishes to enforce. Therefore,
Equation (8) is changed into the more abstract conditions

z ∈ Feas

(
∆x0,∆η, p

)
, (11a)

Feas

(
∆x0,∆η, p+∆p

)
̸= ∅, ∀∆p ∈M. (11b)

The former is equivalent to (8), and the latter represents the new margin constraints - i.e. an infinite
number of conditions. Due to the linear nature of our constraints, and with mild assumptions on
M, it is possible to reduce it to a finite number of constraints. Let us assume thatM is a convex
set with a finite number K of extreme points*, that are denoted ∆p1, . . . ,∆pK . In other words, it
means thatM = ConvexHull

(
∆p1, . . . ,∆pK

)
. Moreover, if we assume thatM contains the null

vector, then there exist non-negative scalars σk such that

K∑

k=1

σk = 1 and
K∑

k=1

σk∆pk = 0.

These two last assumptions are handy to transform the abstract condition (11b) into the equivalent
condition

Feas

(
∆x0,∆η, p+∆pk

)
̸= ∅, ∀k = 1, . . . ,K.

Due to the linearity of the underlying conditions, the latter expression can be directly plugged into
LPj and REFINE.

Guidance method summary

The Powered Descent Guidance approach described above provides a way to compute a guidance
control law, as well as guidance way-points.

The inputs of the guidance algorithm are simply the difference of the current rocket states and
dynamic parameter with respect to mission-specific reference values. To compute the guidance

*x ∈ M is an extreme point of M⇔ ∄ a, b ∈ M and λ ∈ (0, 1) such that a ̸= b and x = (1− λ)a+ λb.

12

trajectory, conveyed by the variable z = (µ⊤,∆tf)
⊤, it is then necessary to minimize the nego-

tiable parameters and optimize z, as summarized by Algorithm 1, using a sequence of Linear and
Quadratic Programs.

Algorithm 1 Nominal and emergency guidance methods, merged as a single algorithm.
Require: Difference with respect to the reference: ∆x0, ∆η.

for j = R, . . . , 1 (decreasing indices) do
P∗
j ← min LPj

(
∆x0,∆η,P∗

j+1, . . . ,P∗
R

)

end for
z∗ ← argmin REFINE

(
∆x0,∆η,P∗

1 , . . . ,P∗
R

)

return z∗

For the argmin operation, the value of p is voluntarily ignored, since it is not needed nor unique. However, z is unique.

It is important to observe that for any scenario for which landing is naturally feasible - i.e.
near ∆x0 = 0 and ∆η = 0 for example - Algorithm 1 ends up doing exactly the same thing as
QP
(
∆x0,∆η

)
. Therefore, Algorithm 1 naturally provides nominal and emergency guidance in a

unifying framework.

The optimal values µ∗ and ∆t∗f returned by Algorithm 1 via z∗ enable us to describe the guidance
control law as a continuous time function. Indeed, interpreting ū and uµ as functions defined on
[0, 1], the guidance law becomes

u∗(t) = ū

(
t

t̄f +∆t∗f

)
+ uµ∗

(
t

t̄f +∆t∗f

)
, ∀t ∈ [0, t̄f +∆t∗f]. (12)

Finally, the guidance trajectory can be expressed in terms of way-points xk using the approxima-
tion of Equation (5). Indeed, if we want the way points to be expressed at some time instances (τk)
- distributed on the normalized time interval [0, 1] - we can define the augmented state way-points
x̃k such that

x̃k := x̃[τk] +
∂x̃

∂x0
[τk].∆x0 +

∂x̃

∂η
[τk].∆η +

∂x̃

∂µ
[τk].µ

∗ +
∂x̃

∂x0n+1

[τk].∆t∗f (13)

where we recall that x̃ embeds the state and the time-of-flight, i.e. x̃k =
(
(xk)⊤, t̄f +∆t∗f

)⊤

where the regular state way-points are the points xk sought for.

Remark 8. As long as the widest negotiation problem is feasible - i.e. LPR - then Algorithm 1 will
necessarily return a solution. Indeed, by construction, the solution of each problem LPj defines
a feasible point for the next-to-be-solved problem LPj−1, and the solution of LP1 is feasible for
REFINE. Moreover, it can be proved that the solution z∗ is unique (contrary to p), using that P ≻ 0.

Remark 9. The map (∆x0,∆η) 7→ z∗(∆x0,∆η) defined by Algorithm 1 is Lipschitz-continuous.
However, the proof of this result is out of scope for this paper. Basically, it relies on properties of
Quadratic Programs such as the Lispchitz-continuity of the feasible set with respect to the constraint
right-hand side.26 This will be part of a future publication.

13

NUMERICAL RESULTS

Let us now illustrate the behavior of Algorithm 1 from a numerical point of view.

Let us start by describing an arbitrary landing scenario defined by (q̄, ᾱ), as shown in Figure 4-b
and c, in plain black. On one hand, the engine flow is described by a smooth time law with a high-
low-medium thrust structure. On the other hand, the incidence is also described by a smooth time
law, that is positive and non-zero only for a third of the descent. This boils down to a trajectory that
does one main turn and ends vertically, as shown in Figure 4-a. For the rest of this section, the states
are normalized with respect to the reference initial condition x̄(0), such that all the initial states
equal±1. The reference time-of-flight t̄f has been arbitrarily set to 30 s. Also, as mentioned earlier,
it must be recalled that the choice of negotiable parameters for this article is p := (∆αmax,∆zf)⊤.

Now, let us check several aspects of Algorithm 1. First, a salient topic focuses on the quality of
the outputs of Algorithm 1. This will be represented in terms of u∗, as described in Equation (12),
and in terms of way-points xk.

Then, since QP
(
∆x0,∆η

)
, LPj , REFINE and Equation (13) are based on linearized data, it is

possible that integrating the control law u∗ in an open-loop fashion on the non-linear dynamics (1)
does not result in a trajectory that lands at the proper place. However, we want to point-out how
even a simple feedback law is sufficient to go from a near acceptable control law to a completely
acceptable one. To this purpose, let us introduce the following feedback.

The engine flow law q∗ is modified into q̂ in order to take into account the vertical speed errors
“vh(t)− v̂h(t)”, and saturated to enforce the mechanical limits, such that

q̂(t) := Satqmax
qmin

(q∗(t)−Kvh(vh(t)− v̂h(t))) . (14)

where Kvh > 0 is a small scalar. The same kind of feedback law is added to the incidence, taking
into account deviations in horizontal speed and in horizontal position. This new incidence law α̂
is saturated at ±(αmax +∆α∗

max), where ∆α∗
max is the optimally negotiated limit. Contrary to the

latter, the feedback of Equation (14) only considers vertical speed errors and not altitude errors,
for the speed tracking error accumulation mainly implies (small) time-of-flight changes - since it is
implicitly defined by the condition h = 0 - which has little consequences in practice. All of this
leads to a control law û = (q̂, α̂)⊤, which tracks the states x̂. Thus, another way to assess the quality
of the results of Algorithm 1 is to integrate the non-linear dynamics (1) with this new control û, as
summarized in Algorithm 2.

Algorithm 2 Simulation procedure
Require: ∆x0 and ∆η.

Compute z∗ from Algorithm 1.
Build u∗ using z∗ and compute the way-points xk from Equation (13).
Build the function x̂ = (ĥ, v̂h, ẑ, v̂z, m̂) defined on [0, t̄f +∆t∗f], that interpolates the points xk.
Build the function û, using x̂, as in Equation (14).
Integrate ẋ = f(x, û, η̄ +∆η) from x(0) = x̄(0) + ∆x0, until h = 0.
return Values of x and û.

Variation of a single variable

To illustrate the basic principle of Algorithm 1, let us consider that only the value of the initial
horizontal position changes, as shown in Figure 4. It allows us to highlight two important features.

14

On one hand, it clearly shows how the emergency modes - i.e. when either ∆αmax or ∆zf are non-
zero - are successively triggered, providing continuously varying results with respect to the inputs.
On the other hand, observe that the thin lines representing the feedback (x̂, û) almost completely
blends with the control law u∗ and the way-points xk. It demonstrates how little effort is needed to
remain on the way-point based trajectories.

As far as computation time is concerned, it was measured that, on average, once the matrices
defining the problems LPj and REFINE have been stored in memory and for the choice of nego-
tiable parameters of this article, executing Algorithm 1 takes several milliseconds using of-the-shelf
solvers such as cvxopt.27

Variation of multiple variables

To illustrate many other behaviors of Algorithm 1, its results are displayed in Figure 5, in which
the inputs are dispersed for many different values of the inputs.

DISCUSSIONS

Some side elements regarding the above-mentioned topics have been omitted for the sake of
clarity and are commented below.

First, the choice of the reference trajectory has a handy influence on the performance of the
trajectories returned by Algorithm 1. For example, computing a reference trajectory that is fuel-
optimal will make the optimal correction near fuel-optimal by nature, even though the cost J does
not directly relate to fuel-consumption. For further development on this topic, see e.g. Reference 28.
Also, note that in general, optimal reference trajectories are likely to be bang-bang.29–31

Second, instead of the cost J(z) = 1
2z

⊤Pz, it would have been possible to consider more gen-
eral non-linear costs, such as Mayer-costs20 for instance. In this case, the linearization needed by
QP
(
∆x0,∆η

)
would have required to expand the Lagrangian of NLP

(
∆x0,∆η

)
to the second or-

der, and in the remaining of the paper the term 1
2z

⊤Pz would have to be replaced by an expression
of the shape

1

2
z⊤Pz +

(
Qx∆x0 +Qη∆η

)⊤
z

for some matrices Qx and Qη depending only on the reference trajectory. For further details on
how to do it, see previous work of the authors.12 Considering this new cost would actually favor the
corrections that are closed to the reference trajectory. However, it is important to note that changing
the cost function does not change anything in the above-mentioned feasibility analysis, nor in the
execution of the problems LPj .

Finally, the way points computed using Equation 5 are a rather good approximation in practice,
but are not exact. If it is required that the way-point be exactly dynamically feasible, then several
options are possible. Among others, a simple way to solve it is to project the guidance trajectory
that is not exactly feasible onto the set of feasible trajectories by integrating the optimal control
law on the non-linear dynamic model (1), while using an extra feedback term tracking the guidance
trajectory. This approach will generate a new guidance trajectory that will land close to the desired
landing site, but most importantly that will be exactly dynamically feasible. For further details on
this kind of approach see e.g. Reference 32.

15

1.0 0.5 0.0 0.5
Horizontal position: z

0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

Landing site

x(0)

(a)
Nominal

max 0
(max, zf) 0
Reference

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

qmin

qmax

E
ng

in
e

flo
w

: q

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max

In
ci

de
nc

e:

up
max

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Input, i.e. value of initial horizontal error = z0

0.0

0.1

0.2

0.3

0.4

Pe
na

lty
 o

n
ne

go
tia

te
d

pa
ra

m
et

er
s (d)

| max| = *
1

| zf| = *
2

Figure 4. Computing guidance with Algorithm 1, for several values of the initial
position error ∆z0. The trajectories in Figure (a) are computed using Equation (5).
The control laws for Figures (b) and (c) rely on Equation (12). Finally, Figure (d)
illustrates the continuity of the penalties P∗

i with respect to the inputs.

16

2.5 2.0 1.5 1.0 0.5 0.0 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

z0 < 0
Fig. (1, 1)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
z0 = 0

Fig. (1, 2)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
z0 > 0

Fig. (1, 3)

2.5 2.0 1.5 1.0 0.5 0.0 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

Fig. (2, 1)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0 Fig. (2, 2)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0 Fig. (2, 3)

2.5 2.0 1.5 1.0 0.5 0.0 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

Fig. (3, 1)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0 Fig. (3, 2)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0 Fig. (3, 3)

2.5 2.0 1.5 1.0 0.5 0.0 0.5
Horizontal position: z

0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

Fig. (4, 1)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Horizontal position: z

0.0

0.2

0.4

0.6

0.8

1.0 Fig. (4, 2)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Horizontal position: z

0.0

0.2

0.4

0.6

0.8

1.0 Fig. (4, 3)

D
is

pe
rs

io
n:

v0 z

D
is

pe
rs

io
n:

m

0
D

is
pe

rs
io

n:
 w

lo
w

D
is

pe
rs

io
n:

 w
hi

gh

Figure 5. Showing guidance provided by Algorithm 1, for various input values. The
legend is the same as in Figure 4-a. As in Figure 4, both way-point based trajecto-
ries, and trajectories computed using Algorithm 2 are displayed. Each column corre-
sponds to a different value of ∆z0. Each row corresponds to the dispersion of a cer-
tain variable, known to the algorithm, respectively the initial horizontal speed ∆v0z ,
the initial mass ∆m0, and the winds w1 and w2 at low and high altitudes. The val-
ues of these variables have been dispersed over significantly wide intervals in order to
trigger emergency modes. It is noteworthy that some input combinations tend to have
a naturally constructive or destructive behavior on the PDG problem. For example in
Fig. (1, 3), ∆z0 and ∆v0z have a constructive behavior for the left-most trajectories
(descent starts horizontaly closer to the landing site but slower), and a destructive
behavior for the right-most trajectories (which require emergency guidance).

17

CONCLUSION

In this paper, we exposed a method to provide nominal and emergency guidance for atmospheric
powered descent guidance of a high-thrust reusable launcher. The method boils down to a sequential
minimization of the amplitude of negotiable parameters, enforcing a prescribed hierarchy between
these parameters. Algorithm 1 gathers nominal and emergency guidance methods together thanks
to a unifying framework. Numerical simulations demonstrated a high numerical efficiency.

Future work will focus on extending this approach to more complex scenarios - especially with
3D rocket models, non-instantaneous engine dynamics and a wider list of negotiable parameters -
and exposing theoretical guarantees of the behavior of Algorithm 1.

APPENDIX

Flow differentiation

The sensitivity computations used through this paper are standard material in the literature,
though different ways of writing it exist. The formalism chosen in this paper, and more precisely
the way the control u is considered is specified below. Material can be found in Section 3.2 of
Reference 33 for a rigorous definition in Banach spaces, and more applied methods can be found in
well-known standard text books, such as Appendix A4 in Reference 19, Section 2.4 in Reference
34 or Equation 4.13 in Reference 35.

Consider a smooth dynamic function f depending on a state x, a control u and a parameter η.
Considering a function u : [0, 1] 7→ Rm and some t ∈ [0, 1], the flow Φf

(
t, x0, η;u

)
is defined

based on the following Initial Value Problem (IVP)

Φf

(
t, x0, η;u

)
:= x(t)⇔

{
ẋ(s) = f(x(s), u(s), η), ∀s ∈ [0, t]
x(0) = x0

(15)

Consider a parametric control t 7→ uµ(t), continuously differentiable in t and µ. The following
expansion holds

Φf

(
t, x0 +∆x0, η +∆η;uµ

)
= Φf

(
t, x0, η;u0

)
+A(t)∆x0 +B(t)∆η + C(t)µ

+ ε(∆x0,∆η, µ)

where ε is a function such that ε(⋆)/∥⋆∥2 tends to zero when ⋆ = (∆x0,∆η0, µ) tends to zero, and
where A, B and C are matrix valued functions defined by the following IVPs

Ȧ(t) =
∂f

∂x
(x(t), u0(t), η) ·A(t), A(0) = In,

Ḃ(t) =
∂f

∂x
(x(t), u0(t), η) ·B(t) +

∂f

∂η
(x(t), u0(t), η), B(0) = On×nη ,

Ċ(t) =
∂f

∂x
(x(t), u0(t), η) · C(t) +

∂f

∂u
(x(t), u0(t), η) ·

∂uµ
∂µ

∣∣∣∣
µ=0

(t), C(0) = On×nµ .

18

REFERENCES

[1] B. A. Steinfeldt, M. J. Grant, D. A. Matz, R. D. Braun, and G. H. Barton, “Guidance, Navigation, and
Control System Performance Trades for Mars Pinpoint Landing,” Journal of Spacecraft and Rockets,
Vol. 47, Jan. 2010, pp. 188–198, 10.2514/1.45779.

[2] A. R. Klumpp, “Apollo Lunar Descent Guidance,” Automatica, 1974, pp. 133–146, 10.1016/0005-
1098(74)90019-3.

[3] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone, and B. Açikmeşe, “Convex
Optimization for Trajectory Generation,” arXiv:2106.09125 [cs, eess, math], June 2021.

[4] B. Açikmeşe and S. R. Ploen, “Convex Programming Approach to Powered Descent Guidance for
Mars Landing,” Journal of Guidance, Control, and Dynamics, Vol. 30, Sept. 2007, pp. 1353–1366,
10.2514/1.27553.

[5] M. Szmuk and B. Açikmeşe, “Successive Convexification for 6-DoF Mars Rocket Powered Landing
with Free-Final-Time,” 2018 AIAA Guidance, Navigation, and Control Conference, American Institute
of Aeronautics and Astronautics, 2018, 10.2514/6.2018-0617.

[6] B. Açıkmeşe and L. Blackmore, “Lossless convexification of a class of optimal control problems with
non-convex control constraints,” Automatica, 2011, pp. 341–347, 10.1016/j.automatica.2010.10.037.

[7] L. Blackmore, B. Açıkmeşe, and J. M. Carson, “Lossless convexification of control constraints for a
class of nonlinear optimal control problems,” Systems & Control Letters, Vol. 61, Aug. 2012, pp. 863–
870, 10.1016/j.sysconle.2012.04.010.

[8] B. Açikmeşe, J. Casoliva, J. M. Carson, and L. Blackmore, “G-FOLD: A Real-Time Implementable
Fuel Optimal Large Divert Guidance Algorithm for Planetary Pinpoint Landing,” 2012.

[9] M. Sagliano, A. Heidecker, J. M. Hernández, S. Farı̀, M. Schlotterer, S. Woicke, D. Seelbinder, and
E. Dumont, “Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered Landing,”
Jan. 2021, p. 35.

[10] L. Ma, K. Wang, Z. Shao, Z. Song, and L. T. Biegler, “Trajectory Optimization for Plan-
etary Multi-Point Powered Landing,” IFAC-PapersOnLine, Vol. 50, July 2017, pp. 8291–8296,
10.1016/j.ifacol.2017.08.1404.

[11] L. Ma, K. Wang, Z. Xu, Z. Shao, Z. Song, and L. T. Biegler, “Multi-point powered descent guidance
based on optimal sensitivity,” Aerospace Science and Technology, Vol. 86, Mar. 2019, pp. 465–477,
10.1016/j.ast.2019.01.028.

[12] H. Ménou, E. Bourgeois, and N. Petit, “Sensitivity Analysis for Powered Descent Guidance: Overcom-
ing degeneracy,” 2022 European Control Conference, London, 2022. Accepted for publication.

[13] Z.-y. Song, C. Wang, S. Theil, D. Seelbinder, M. Sagliano, X.-f. Liu, and Z.-j. Shao, “Survey of au-
tonomous guidance methods for powered planetary landing,” Frontiers of Information Technology &
Electronic Engineering, Vol. 21, May 2020, pp. 652–674, 10.1631/FITEE.1900458.

[14] J. Hanson, D. Coughlin, G. Dukeman, J. Mulqueen, and J. McCarter, “Ascent, transition, entry, and
abort guidance algorithm design for the X-33 vehicle,” Guidance, Navigation, and Control Confer-
ence and Exhibit, Boston,MA,U.S.A., American Institute of Aeronautics and Astronautics, Aug. 1998,
10.2514/6.1998-4409.

[15] P. Lu and S. A. Sandoval, “Abort Guidance during Powered Descent for Crewed Lunar Missions,” AIAA
Scitech 2021 Forum, Virtual Event, American Institute of Aeronautics and Astronautics, Jan. 2021,
10.2514/6.2021-0505.

[16] S. Nonaka, H. Nishida, H. Kato, H. Ogawa, and Y. Inatani, “Vertical Landing Aerodynamics of Reusable
Rocket Vehicle,” Transactions Of The Japan Society For Aeronautical And Space Sciences, Aerospace
Technology Japan, Vol. 10, No. 0, 2012, pp. 1–4, 10.2322/tastj.10.1.

[17] A. Marwege, J. Riehmer, J. Klevanski, A. Gülhan, T. Ecker, B. Reimann, and E. Dumont, “First Wind
Tunnel Data of CALLISTO Reusable VTVL Launcher First Stage Demonstrator,” 2019, p. 15.

[18] D. Kraft, “On Converting Optimal Control Problems into Nonlinear Programming Problems,” Schit-
tkowski K. (eds) Computational Mathematical Programming, Vol. 15 of NATO ASI Series (Series F:
Computer and Systems Sciences), 1985.

[19] A. E. Bryson and Y.-C. Ho, Applied optimal control: optimization, estimation and control. CRC Press,
1975.

[20] J. T. Betts, Practical methods for optimal control and estimation using nonlinear programming. Ad-
vances in Design and Control, SIAM, 2001.

[21] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Vol. 165 of
Mathematics in Science and Engineering. Elsevier, 1983, 10.1016/S0076-5392(08)X6041-2.

19

[22] K. Jittorntrum, “Solution point differentiability without strict complementarity in nonlinear program-
ming,” Sensitivity, Stability and Parametric Analysis, Vol. 21, pp. 127–138, Berlin, Heidelberg: Springer
Berlin Heidelberg, 1984.

[23] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. New York, NY: Springer
New York, 2000, 10.1007/978-1-4612-1394-9.

[24] L. Blackmore, B. Açikmeşe, and D. P. Scharf, “Minimum-Landing-Error Powered-Descent Guidance
for Mars Landing Using Convex Optimization,” Journal of Guidance, Control, and Dynamics, 2010,
pp. 1161–1171.

[25] J. W. Chinneck, Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods.
Springer Science & Business Media, 2007.

[26] O. L. Mangasarian and T.-H. Shiau, “Lipschitz Continuity of Solutions of Linear Inequalities, Pro-
grams and Complementarity Problems,” SIAM Journal on Control and Optimization, Vol. 25, May
1987, pp. 583–595, 10.1137/0325033.

[27] M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: Convex Optimization,” Aug. 2020.
[28] S. A. Deshpande, D. Bonvin, and B. Chachuat, “Directional Input Adaptation in Parametric Optimal

Control Problems,” SIAM Journal on Control and Optimization, Vol. 50, Jan. 2012, pp. 1995–2024,
10.1137/110820646.

[29] J. Meditch, “On the problem of optimal thrust programming for a lunar soft landing,” IEEE Transactions
on Automatic Control, Vol. 9, Oct. 1964, pp. 477–484, 10.1109/TAC.1964.1105758.

[30] H. Ménou, E. Bourgeois, and N. Petit, “Fuel-optimal program for atmospheric vertical powered land-
ing,” 60th Conference on Decision and Control, 2021.

[31] C. Leparoux, B. Hérissé, and F. Jean, “Structure of optimal control for planetary landing with control
and state constraints,” arXiv:2204.06794 [math], Apr. 2022.

[32] I. Notarnicola, F. A. Bayer, G. Notarstefano, and F. Allgower, “Final-State Constrained Optimal Control
via a Projection Operator Approach,” arXiv:1703.08356 [cs], Mar. 2017.

[33] J. F. Bonnans, Course on Optimal Control, Part I: the Pontryagin approach. SOD311 Ensta Paris Tech,
Aug. 2019.

[34] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2 sub ed., 1995.
[35] E. D. Sontag, Mathematical Control Theory, Vol. 6 of Texts in Applied Mathematics. New York, NY:

Springer New York, 1998, 10.1007/978-1-4612-0577-7.

20

	Introduction
	Atmospheric Powered Descent Guidance
	Dynamics model for guidance
	Landing targets and constraints
	General Powered Descent Guidance problem

	Resolution of Nominal Guidance via Quadratic Programming
	Conversion to Nonlinear Programming
	Resolution via Quadratic Programming

	Emergency Guidance
	Negotiable parameter choices
	Basic parameters negotiation
	Error anticipation using margins
	Guidance method summary

	Numerical results
	Variation of a single variable
	Variation of multiple variables

	Discussions
	Conclusion

