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a b s t r a c t 

An energy management system optimizes the self-consumption of a residential photovoltaic installation, and the 

performance losses due to production uncertainties are evaluated. The specific case under study is an individual 

home equipped with photovoltaic (PV) panels where only an Electric Water Heater (EWH) is manipulated, and 

the rest of the appliances represent a fixed load. By formulating the problem of maximizing self-consumption as 

an unconstrained optimization problem, a novel and computationally efficient optimization algorithm has been 

proposed. The next step was to numerically evaluate the performance of this EWH management strategy under 

various PV power production scenarios, generated through a presented methodology. The reference baseline is 

a rule-based controller using a most likely forecast of PV production. Simulations performed in Dymola over 10 

months demonstrate that, at a 30-minute timestep, the impact of a “perfect ” PV production forecast is negligible 

compared with the impact of the choice of the control algorithm. Besides, a most likely forecast is good enough 

for the proposed algorithm to reach high self-consumption levels. Indeed, although the proposed optimization 

based on a most likely forecast yields an increase of 10 points of self-consumption compared to the baseline, only 

an additional 2 points of increase can be reached using “perfect ” production information. 
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. Introduction 

.1. Self-consumption in individual houses 

The need for decarbonized energy as a response to the climate crisis

as stimulated an international effort to increase the installed capac-

ty of Renewable Energy Sources, which is reflected in various forms

f governments support and unprecedented production cost reductions

1] . In many places, Distributed Energy Resources are expected to con-

ain the costs and faults associated with increasing electrical consump-

ion and extending electrical grids. Both these trends explain the rapid

rowth of worldwide installed capacities of solar power in particular,

hich is the cheapest and easiest-to-install distributed renewable en-

rgy source. Growing renewable generation induces higher variability

n supply. Hence, production and consumption flexibilities become in-

reasingly valuable for the transmission and distribution system opera-

ors as substitutes for substantial grid investments [2] . 

Consumption flexibility is the ability to temporally shift or to mod-

fy the power consumption of electrical appliances. Self-consumption is

ne regulatory framework intended to bolster these consumption flexi-
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ilities, by promoting local consumption over export. Self-consumption

ontributes to the distribution grid stability by avoiding voltage rise dur-

ng peak photovoltaic (PV) generation periods and helps to reach higher

hares of installed PV in the electricity mix [3] . As simplified adminis-

rative procedures [4] and new tariffs have made self-consumption of

enerated power a profitable option, these installations are increasingly

ncouraged and have become popular. They foster local smart man-

gement of electrical appliances because fully benefiting from the self-

onsumption financial regulatory incentives requires optimal manage-

ent of household consumptions. Moreover, the value of these Energy

anagement Systems (EMSs) used to monitor, control, and optimize the

ousehold consumptions is enhanced by the increasing electricity bills

f retail consumers. This trend is due to the electrification of energy

onsumptions traditionally supplied by fossil fuels. 

.2. Appliances and electric water heater control 

To supply maximum flexibility, combined PV-battery setups are

ometimes considered, but still represent a prohibitive overall addi-

ional cost both for individually owned [5,6] and for shared battery sys-
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Table 1 

Nomenclature. 

Notation Description Unit 

𝐸 Thermal energy of the water tank Wh 

𝐸 clear EWH energy level giving clearance to resume heating Wh 

𝐸 sat EWH saturation energy level Wh 

𝐸 PV Energy produced by the PV arrays Wh 

𝐾 Number of stochastic PV scenarios 

𝑘 Thermal loss coefficient of the water tank h −1 

2 𝑀 Deadband around the setpoint temperature ◦C 

𝑁 Index of last EWH clearance time resulting in an activation of the heating power 

𝑃 ewh EWH power consumption W 

𝑃 ewh EWH power rating W 

𝑃 PV Surplus of produced PV power W 

𝑄 Instantaneous power drained from the EWH by hot-water consumption W 

𝑇 ewh Mean water temperature in the water tank ◦C 

𝑇 set Setpoint temperature ◦C 

𝑡 ewh EWH starting time of the heating command h 

𝑡 clear EWH clearance time h 

𝑡 sat EWH saturation time h 

𝑡 lim Latest acceptable starting time of the heating range h 

𝜏ewh EWH ending time h 

𝑆𝐶 Self-consumption over one period Wh 

𝑆 𝑗 _ PV production scenarios for day 𝑗. Indices: ML (most likely) or 𝑘 ∈ [0 , 𝐾] (realization) 

𝑠 P ( ⋅) EWH heating schedule computed by the proposed algorithm 

𝑠 R ( ⋅) EWH heating schedule computed by the reference method 
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ems [7] . As part of investigations into demand response (i.e., the short-

erm modification of consumer demand for energy according to external

ignals [8] ), heating, ventilation and air-conditioning (HVAC) systems

ave attracted wide interest in the recent decades, both for residential

uildings [9,10] and office buildings [11] . However, home HVAC con-

rol is not adopted in this study because the flexibility provided by these

ystems can be fairly low due to the need to maintain the desired indoor

omfort. To further extend the scope of appliances subject to automatic

ontrol, efforts have been made to propose generic models of electri-

al appliances with several energy phases [12,13] . These models can be

sed for white goods control, but individually they represent low energy

onsumptions. With 12% of all European domestic electric consump-

ion dedicated to water heating in 2018 [14] , electric water heating

ppliances (with and without storage) represent a non-negligible share

f residential electricity bills. A type of appliance of particular interest

s Electric Water Heaters (EWHs), which provide storage capability in

hermal form. With their low investment costs, EWHs have the benefit

f being already widespread in various countries, with 57 million units

nstalled in 2014 representing 23% of the total European primary wa-

er heater stock [15] . Hence, they represent a highly suitable appliance

o control in the context of PV self-consumption optimization [16–21] .

his paper focuses exclusively on the control of EWHs. 

.3. Production and consumption uncertainties 

Numerous self-consumption optimization studies have reported im-

ressive figures. However they suffer from requiring perfect knowledge

f user behavior [18] and of the weather forecast (e.g. [17] , which uses

he same production scenario for the forecast, for the decision algo-

ithm and for performance evaluation of the chosen control), which ap-

ears to be an important factor. Indeed, renewable generation is subject

o weather variability, leading to a limit on production forecast pre-

ision [22] . Robust optimization [13,23] can be used to tackle these

ncertainties, but these approaches often lead to considering the least

avorable scenarios and therefore proposing too-conservative strategies.

Alternatively, Model Predictive Control (MPC) enables weather

orecast updates at each prediction step, thus improving perfor-

ance [13,17,18,24–26] . This improvement is even more significant

hen stochastic MPC [11,27] or Stochastic optimal control [21] is used,

ut comes at the price of potentially burdensome computation time. 
2 
.4. Contribution 

This paper focuses on PV self-consumption optimization for an indi-

idual home through sole control of the EWH. The reference situation is

 rule-based basic heuristic representative of the current state-of-the-art

ontroller in commercial products, which relies on a unique determinis-

ic PV production forecast, imperfect but considered as the most likely

rediction. Considering this class of EMS as a baseline, this paper in-

estigates the performance gains provided by an efficient optimization

trategy and the impact of imperfect PV production forecasts on an op-

imal control. 

To conduct this investigation, a novel optimal EWH control algo-

ithm was derived, and an original method was used to generate a vast

lass of PV power production scenarios. 

First, the optimization problem was formulated in an unconstrained

orm involving a most likely PV production prediction. By modeling the

WH a an homogeneous-temperature tank equipped with a thermostat,

he dynamics at stake can be explicitly resolved, leading to a simple and

fficient optimal EWH control algorithm. This strategy is less general

han MPC approaches, which could have been used in this context, but

eveals less computationally intensive and requires no parameter tun-

ng. Hence, because the computing time of the proposed algorithm is

xtremely low, various instances can be studied in a short time. 

The next step is to assess the impact of 30-minute PV production fore-

ast uncertainties on this optimization algorithm. Thorey et al. [28] pro-

ide a methodology to obtain PV load factor quantile forecasts. Building

n these quantile forecasts, a novel method was developed in this study

o generate PV production scenarios that collectively satisfy a given

robabilistic distribution while individually presenting realistic intra-

ay variability, that is, a realistic correlation factor. 

It was shown in this study that, beyond a given level of forecast

ccuracy, the impact of knowing in advance the exact PV production

orecast is negligible compared with the impact of the choice of the

WH control algorithm. This is the main contribution of the paper. 

.5. Paper organization 

Section 2 details the modeling of appliances in the setup considered

ere, the optimization problem at hand, and the core of the proposed

lgorithm. Section 3 presents a methodology to generate a set of corre-

ated realizations of a stochastic process, the PV production scenarios,
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Fig. 1. Setup under consideration: the Energy Management System regulates 

the EWH. 
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hich are representative of the estimated uncertainties of most likely

V production forecasts. Section 4 presents the numerical experiments

onducted to validate the overall methodology and then assesses the

omparative values of the “perfect ” PV production forecast and the op-

imal control algorithm. Section 5 reports conclusions and perspectives.

. EWH energy management system 

.1. Setup 

The general setup under consideration is depicted in Fig. 1 and

onsists of an individual house connected to the electrical grid. It is

quipped with PV arrays, heating and cooling equipment, an EWH, and

ther electrical appliances such as lights, a fridge, and a dishwasher. 

The heating and cooling systems are assumed to be entirely dedi-

ated to maintaining house thermal equilibrium. Therefore, these appli-

nces are considered as uncontrolled and are not associated with any

ecision variables in the remainder of this work. 

In this paper, the only controllable appliance to be considered is the

WH. 

To solve the optimization problem, the proposed algorithm considers

o have an exact prediction of the following elements: 

• PV production curve; 
• Electrical consumption profile of uncontrollable loads; 
• Hot water drains from the EWH. 

Note that in the final evaluation of the proposed EMS performance,

he imperfect nature of PV production forecasts will be taken into ac-

ount. 

.2. Electric water heater modeling and control 

The EWH is modeled as a homogeneous temperature volume. Leav-

ng aside the modeling of the temperature stratification inside the tank

mplies a loss of precision, but simplifies the control design [29] . Con-

idering an initial energy state at time 𝑡 0 , thermal losses, the power input

rom resistive heating, and the hot-water consumption during the given

eriod, the energy stored at a time 𝑡 2 in the EWH, knowing the energy

 1 stored at a time 𝑡 1 , is given by 

( 𝑡 2 ) = 𝐸 1 𝑒 
− 𝑘 ( 𝑡 2 − 𝑡 1 ) + ∫

𝑡 2 

𝑡 1 

𝑒 − 𝑘 ( 𝑡 2 − 𝑡 ) 
[
𝑃 ewh ( 𝑠, 𝑡 ) − 𝑄 ( 𝑡 ) 

]
𝑑𝑡 (1)

here 
3 
• 𝐸( 𝑡 ) is the energy stored in the EWH at time 𝑡 ; 
• 𝑘 is the thermal loss coefficient [29] ; 
• 𝑃 ewh ( 𝑠, 𝑡 ) is the electrical power input of the EWH at time 𝑡, following

heating strategy 𝑠 ; 
• 𝑄 ( 𝑡 ) is the energy used at time 𝑡 by a hot-water drain. 

In this work, the EWH is assumed to be equipped with an internal

hermostat that is adjusted on a setpoint temperature 𝑇 set and a dead-

and 2 𝑀 . Hence, the internal thermostat stops any heating command

hen the measured temperature reaches 𝑇 set + 𝑀, and enables heating

o resume when the temperature drops below 𝑇 set − 𝑀 . Because the tem-

erature inside the EWH is considered homogeneous, these specific tem-

eratures 𝑇 set + 𝑀 and 𝑇 set − 𝑀 correspond to energy levels, denoted as

 sat and 𝐸 clear . 

Correspondingly, the power input of the EWH can be written as 

 ewh ( 𝑠, 𝑡 ) = 

(
1 − 𝛿sat ( 𝑡 ) 

)
𝑃 °ewh ( 𝑠, 𝑡 ) (2) 

here 𝑠 is the control strategy, 𝑡 is the time, 𝑃 ◦
ewh 

is the chosen autho-

ized heating power, and 𝛿sat is the hysteresis function describing the

aturation state of the tank, equal to 1 if saturation is occurring and 0

therwise: 

sat ( 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 if 𝐸( 𝑡 ) < 𝐸 clear 

1 if 𝐸( 𝑡 ) ≥ 𝐸 sat 

𝛿sat ( 𝑡 − ) if 𝐸( 𝑡 ) ∈ [ 𝐸 clear , 𝐸 sat [ 
(3)

ith 𝑡 − denoting the time directly preceding 𝑡 . 

The variable 𝛿sat in Eq. (2) describes the behavior of the EWH inter-

al thermostat, allowing heating to remain activated if the water tem-

erature has not yet reached the saturation threshold or to resume if it

as dropped below the clearance temperature. 

The function 𝑃 ◦
ewh 

is defined as follows. The EWH under consider-

tion has a power consumption of either 0 or 𝑃 ewh , its constant power

ating, triggered by an On/Off authorization mechanism. In this work,

o simplify the heating control strategy, this authorization is chosen to

e On only during a unique and continuous period 𝑠 = [ 𝑡 ewh , 𝜏ewh ] de-

ermined by the EMS, which corresponds to choosing a strategy 𝑠 . In

etail, 

 

◦
ewh 

( 𝑠, 𝑡 ) = 𝑃 ewh 𝟙 [ 𝑡 ewh ,𝜏ewh ] ( 𝑡 ) (4)

n which 𝟙 I is the indicator function of the time interval I. Inside this

uthorized period, the EWH internal thermostat might start and stop

ffective power activation according to Eq. (3) . 

.3. Optimization problem formulation 

.3.1. Objective function and decision variables 

This study focuses on optimizing the self-consumption ( 𝑆𝐶) because

t is a key evaluation criterion for such installations. It is usually consid-

red as a proxy for reducing electricity bills, and high 𝑆𝐶 levels can be

ritical in locations where the state of the distribution grid cannot allow

arge volumes of PV surplus to be injected. 

𝑆𝐶 is defined as the part of local photovoltaic production that is

ocally consumed to meet electric consumption (see Fig. 4 ). Maximiz-

ng it is equivalent (see [30] for details) to maximizing the positive

art of the remaining PV production, which is obtained after subtract-

ng the uncontrollable electric consumption (heating and cooling, lights,

hite goods). Observing from Eqs. (2) –(4) that 𝑃 ewh ( 𝑠, 𝑡 ) is null when

 ∉ [ 𝑡 ewh , 𝜏ewh ] , the mathematical definition of the 𝑆𝐶 becomes the in-

egral over a period [ 𝑡 ewh , 𝜏ewh ] of the minimum between the positive

art of the surplus of local production 𝑃 PV , and the controllable load

see Fig. 2 ): 

𝐶( 𝑠, 𝑃 PV ) = ∫
𝜏ewh 

𝑡 ewh 

min ( 𝑃 ewh ( 𝑠, 𝑡 ) , 𝑃 PV ( 𝑡 )) 𝑑𝑡 (5)

here 𝑠 = ( 𝑡 ewh , 𝜏ewh ) ∈ ℝ 

2 is the decision variable and 𝑃 PV ( 𝑡 ) ≥ 0 , ∀𝑡 . 
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Fig. 2. Optimizing 𝑆𝐶, which is the controllable part of the self-consumption, 

corresponds to maximizing the size of the gray area. 
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Fig. 3. Hot-water drains (lower figure, dashed curve) decrease the EWH energy 

(top figure). EWH heating intervals [ 𝑡 clear ( 𝑛 ) , 𝑡 sat ( 𝑛 +1) ] (lower figure, plain curve), 

calculated from a chosen 𝑡 ewh , increase the EWH energy and keep it oscillating 

between the deadband [ 𝐸 clear , 𝐸 sat ] . 

Fig. 4. The optimized placement of the EWH heating period maximizes the gray 

area, i.e. the objective 𝑆𝐶. 

 

s  

v  

e  

t

 

l  

(

2

 

o

P  

f

𝑡
 

w  

f

𝑃

.3.2. Constraints 

The optimal control problem considers the following boundary and

ontrol constraints: 

( 𝑡 0 ) = 𝐸 0 (6) 

( 𝑠, 𝑡 f ) ∈ [ 𝐸 clear , 𝐸 sat ] (7) 

here 𝑡 0 is a generic starting time at which the energy level is known. 

Eq. (7) is a comfort constraint: the control shall guarantee that the

WH reaches an energy interval at a final time 𝑡 f . Here, this energy

nterval is chosen to be centered around the energy level corresponding

o a hot-water tank and the final time is the beginning of the evening.

nforcing this constraint ensures that the tank has stored enough energy

o cover the hot-water consumption of the end of the day. 

.3.3. Reducing the number of variables 

Once the energy reaches the interval [ 𝐸 clear , 𝐸 sat ] , it remains in it as

ong as heating is allowed by Eq. (4) . Hence, the constraint (7) naturally

eads to the choice 𝜏ewh = 𝑡 f . 𝜏ewh is no longer a decision variable, and

his makes it possible to replace 𝑠 with only the starting time 𝑡 ewh . 

Furthermore, taking Eq. (6) into account, one obtains the existence

f an upper bound 𝑡 lim 

for 𝑡 ewh . According to (1) –(4) , it is defined as the

nique solution of the equation 

 clear = 𝑒 − 𝑘 ( 𝑡 𝑓 − 𝑡 0 ) 𝐸 0 + ∫
𝑡 𝑓 

𝑡 lim 

𝑒 − 𝑘 ( 𝑡 𝑓 − 𝑡 ) [ ̄𝑃 ewh − 𝑄 ( 𝑡 )] 𝑑𝑡 (8) 

hat is, the latest acceptable heating starting time to reach 𝐸 clear at

ewh = 𝑡 f . 

Combining these two transformations makes it possible to replace

he constraints (6) - (7) with the simple inequality constraint 𝑡 ewh ≤ 𝑡 lim 

. 

As a result, after the EWH reaches the interval [ 𝐸 clear , 𝐸 sat ] , the in-

ernal energy will keep on oscillating inside it. Fig. 3 gives an example

f such an evolution for one day and a specific starting time. 

This behavior defines (i) saturation times, when the EWH internal

hermostat detects a temperature reaching the allowed upper limit and

alts the heating signal, and (ii) clearance times, when thermal losses or

ot-water consumption have led the internal temperature to drop below

he lower hysteresis value, thus making heating resume. These times

re respectively denoted by 𝑡 sat ( 𝑛 +1) and 𝑡 clear ( 𝑛 ) , 𝑛 ∈ ℕ and are defined

athematically as the unique solutions to 

 sat = 𝑒 − 𝑘 ( 𝑡 sat ( 𝑛 +1) − 𝑡 clear ( 𝑛 ) ) 𝐸 clear + ∫
𝑡 sat ( 𝑛 +1) 

𝑡 clear ( 𝑛 ) 

𝑒 − 𝑘 ( 𝑡 sat ( 𝑛 +1) − 𝑡 ) [ ̄𝑃 ewh − 𝑄 ( 𝑡 )] 𝑑𝑡 (9) 

 clear = 𝑒 − 𝑘 
(
𝑡 clear ( 𝑛 ) − 𝑡 sat ( 𝑛 ) 

)
𝐸 sat − ∫

𝑡 clear ( 𝑛 ) 

𝑡 sat ( 𝑛 ) 

𝑒 − 𝑘 
(
𝑡 clear ( 𝑛 ) − 𝑡 

)
𝑄 ( 𝑡 ) dt (10) 

ith the initialization 𝑡 clear (0) = 𝑡 ewh . Note that 𝑁 is the index of the

ast clearance time 𝑡 clear ( 𝑛 ) before 𝑡 f , that is, such that 𝑡 clear ( 𝑁) ≤ 𝑡 f <

 clear ( 𝑁+1) . 
4 
Therefore, the EWH consumption curve can be represented by a

um of non-overlapping boxcar functions corresponding to the inter-

als where 𝛿sat ( 𝑡 ) = 0 : the EWH is On between [ 𝑡 ewh , 𝑡 sat (1) ] and between

ach [ 𝑡 clear ( 𝑛 ) , 𝑡 sat ( 𝑛 +1) ] pair, with the last interval potentially shortened

o [ 𝑡 clear ( 𝑁) , 𝑡 f ] if 𝑡 f < 𝑡 sat ( 𝑁+1) . 

Note that the hot-water drains depicted by orange dashed lines in the

ower part of Fig. 3 have a visible impact on the internal EWH energy

upper part). 

.3.4. Problem statement 

From previous considerations and as illustrated in [30] , the problem

f optimizing self-consumption can be summarized as: 

roblem 1. Given a PV production curve 𝑃 PV and a final time 𝑡 f , solve

or each day 

max 
 ewh ≤ 𝑡 lim ∫

𝑡 f 

𝑡 ewh 

min ( 𝑃 ewh ( 𝑡 ewh , 𝑡 ) , 𝑃 PV ( 𝑡 )) 𝑑𝑡 (11)

here 𝑡 lim 

is defined in (8) and 𝑃 ewh is defined as the sum of boxcar

unctions 

 ewh ( 𝑡 ewh , 𝑡 ) = 𝑃 ewh 

𝑁 ∑
𝑛 =0 

𝟙 [ 𝑡 clear ( 𝑛 ) , min ( 𝑡 sat ( 𝑛 +1) ,𝑡 f )] ( 𝑡 ) 
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ith 𝑡 clear (0) = 𝑡 ewh and 𝑡 clear ( 𝑛 ) and 𝑡 sat ( 𝑛 +1) depending on 𝑡 ewh and defined

n (9) –(10) along with 𝑁 . 

.4. Optimization algorithm 

Problem 1 is non-concave. To solve it, this study proposed to identify

he critical points of its objective function. 

.4.1. Smoothness analysis of the objective function 

Following steps similar to those used in [30] , one can prove that 𝑆𝐶

s continuously differentiable with respect to 𝑡 ewh (the proof is omitted

or brevity). Furthermore, with 𝑡 clear (0) = 𝑡 ewh , its derivative is given as 

𝑑𝑆𝐶( 𝑡 ewh , 𝑃 PV ) 
𝑑𝑡 ewh 

= 

𝑁 ∑
𝑛 =0 

[ 
𝑑𝑡 sat ( 𝑛 +1) 

𝑑𝑡 ewh 

min ( 𝑃 ewh ( 𝑡 ewh , 𝑡 sat ( 𝑛 +1) ) , 𝑃 PV ( 𝑡 sat ( 𝑛 +1) )) 

− 

𝑑𝑡 clear ( 𝑛 ) 

𝑑𝑡 ewh 

min ( 𝑃 ewh ( 𝑡 ewh , 𝑡 clear ( 𝑛 ) ) , 𝑃 PV ( 𝑡 clear ( 𝑛 ) )) 
] 

(12) 

f 𝑡 sat ( 𝑁+1) ≤ 𝑡 f , and a similar expression otherwise, omitted for brevity. 

.4.2. Algorithm description 

Because the problem is non-concave, it is necessary to assess the

ature of every stationary point. The stationary condition can be written

s 

𝑑𝑆𝐶( 𝑡 ewh , 𝑃 PV ) 
𝑑𝑡 ewh 

= 0 (13)

Corresponding 𝑆𝐶 values are then evaluated and compared to solve

he optimization problem. Typically, for the examples treated in the pa-

er, fewer than ten extrema need to be considered. 

A key advantage of this approach is that evaluating this stationary

ondition through Eq. (12) is much less computationally costly than

valuating the integral in Eq. (11) . 

.4.3. Implementation 

The specific times 𝑡 sat ( 𝑛 +1) and 𝑡 clear ( 𝑛 ) , 𝑛 ∈ ℕ , as well as their deriva-

ives, must be computed because they are involved in the expression of

he derivative of the objective function in Eq. (12) , but cannot be ex-

licitly determined from their definitions (9) –(10) . Besides, the deriva-

ives of these times, 
𝑑𝑡 sat ( 𝑛 +1) 
𝑑𝑡 ewh 

and 
𝑑𝑡 clear ( 𝑛 ) 
𝑑𝑡 ewh 

, also appear in (12) and involve

 sat ( 𝑛 +1) and 𝑡 clear ( 𝑛 ) . The following discussion will clarify how these terms

re evaluated numerically. 

Simplified description of the calculation of the 𝑡 𝑠𝑎𝑡 times For the EWH

aturation times 𝑡 sat ( 𝑛 +1) , a fixed-point algorithm is used. For 𝑛 = 0 , one

annot deduce an explicit expression for 𝑡 sat(1) from (9) due to the pres-

nce of the integral term corresponding to the hot-water drains. How-

ver, one can rewrite (9) for 𝑛 = 0 as 𝑡 sat(1) = 𝑔 1 ( 𝑡 ewh , 𝑡 sat(1) ) with 

 1 ( 𝑡 ewh , 𝑡 sat(1) ) = 

1 
𝑘 

[ 

log ( ̄𝑃 ewh 𝑒 
𝑘𝑡 ewh − 𝑘𝐸 0 𝑒 

𝑘𝑡 0 ) (14) 

− log 

( 

𝑃 ewh − 𝑘𝐸 sat 

− 𝑘 ∫
𝑡 sat(1) 

𝑡 0 

𝑒 − 𝑘 ( 𝑡 sat(1) − 𝑡 ) 𝑄 ( 𝑡 ) 𝑑𝑡 

) ] 

hich can be shown to be a contractive mapping with respect to 𝑡 sat(1) 

or the parameter values under consideration in this study. Hence, fixed-

oint iterations were used to estimate 𝑡 sat(1) numerically, with successive

stimates of 𝑡 sat(1) computed through 𝑔 1 ( 𝑡 ewh , 𝑡 sat(1) ) and progressively

eaching this fixed point. Usually, fewer than one dozen iterations are

eeded to reach an accurate value. 

Similarly, 𝑡 sat(n+1) , for 𝑛 > 0 , satisfies a relation of the type 𝑡 sat ( 𝑛 +1) =
 2 ( 𝑡 clear ( 𝑛 ) , 𝑡 sat ( 𝑛 +1) ) with 𝑔 2 a contractive mapping, and this can be cal-

ulated with fixed-point iterations as well. Note that 𝑔 2 requires a prior

alculation of 𝑡 clear ( 𝑛 ) , which will now be described in detail. 
5 
Simplified description of the calculation of the 𝑡 𝑐𝑙𝑒𝑎𝑟 times The 𝑡 𝑐𝑙𝑒𝑎𝑟 ( 𝑛 ) 
imes satisfy a similar fixed-point equation; however, the resulting map-

ing is not contractive. Hence, a dichotomy procedure was followed

nstead to evaluate 𝑡 𝑐𝑙𝑒𝑎𝑟 ( 𝑛 ) . Indeed, it can be proven that the energy ob-

ained from Eq. (10) between a saturation time 𝑡 sat ( 𝑛 ) and a clearance

ime 𝑡 clear ( 𝑛 ) , 𝑛 ∈ ℕ 

∗ is a decreasing function of 𝑡 clear ( 𝑛 ) , ensuring the con-

ergence of the method. 

Hence, in a nutshell, the proposed procedure computes alternatively

 sat ( 𝑛 +1) through a fixed-point procedure and 𝑡 clear ( 𝑛 ) with a dichotomy

lgorithm and repeats this process iteratively until 𝑡 f is reached. 

Algorithm The solutions to the stationary condition were exhaustively

etermined, and the corresponding values of the objective function were

hen compared to solve Problem 1 . This procedure is summarized in

lgorithm 1 . Note that this algorithm is of course intended to be used

lgorithm 1 Calculate 𝑡 ⋆ 
ewh 

solution of Problem 1 . 

equires: 𝑃 PV , 𝑃 ewh , 𝑡 0 , 𝐸 0 , 𝑡 f , 𝐸 f , 𝐸 sat , 𝐸 clear , 𝑄, 𝐼 = [0 , 𝑡 lim 

] 
1: for all 𝑡 ∈ 𝐼 do 

2: Compute times = [every 𝑡 sat ( 𝑛 ) and 𝑡 clear ( 𝑛 ) up to 𝑡 f ]. 

3: if times are solution of Eq. (13), then 

4: Compute 𝑆𝐶( 𝑡, 𝑃 PV ) 
5: Update Buffer = [Buffer, 𝑆𝐶( 𝑡, 𝑃 PV ) ] 
6: end if 

7: end for 

8: Identify 𝑡 ⋆ 
ewh 

= argmax 𝑡 Buffer 

ver a finite time grid. Specifically steps 1 and 8 consider a finite number

f elements, and a solution of Eq. (13) is identified in step 3 when the

bjective function derivative (12) goes from a positive to a non-positive

alue between two consecutive timesteps. This algorithm can now be

pplied in a high-fidelity environment. 

Fig. 4 displays an example of the result of Algorithm 1 , with the EWH

eating period chosen so that the 𝑆𝐶 will be maximized. 

. Generation of stochastic PV production scenarios 

Now that an optimization strategy for self-consumption has been pro-

osed, it is desirable to evaluate the impact of a discrepancy between the

nique deterministic production forecast used in the Energy Manage-

ent System and the actual realized production. To the authors’ knowl-

dge, only a few studies in the literature have numerically evaluated

his kind of impact on their EMS, among them Thomas et al. [31] and

abiee et al. [32] . However, in both cases, only a few scenarios were

onsidered, which cannot account for potential intra-day variability. 

The following discussion describes in detail the methodology de-

igned to generate a representative set of PV production scenarios. 

.1. Context 

Starting from a unique deterministic forecast named here most likely ,

 set of PV production scenarios is needed to illustrate the uncertainties

inked to the initial deterministic forecast. The set as a whole shall rep-

esent with proportionality the range of possible production outcomes,

nd each individual scenario shall present a realistic intra-day variabil-

ty. 

Associated with weather-based power models, ensemble forecasts

rovided by meteorological services could serve this purpose. Indeed,

hey give an indication of the range of possible future states of the at-

osphere. However, only a limited number of possible outcomes are

roduced. In addition, their standard timestep is several hours, hence

roviding low resolution. Therefore, these data were discarded as a data

ource for our study. 

Instead, the uncertainties of deterministic PV load factor forecasts

an be described by quantile forecasts. In Thorey et al. [28] , quantile

egressions are applied to deterministic PV production forecasts to build
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Fig. 5. Quantile values at each timestep associated with the PV production fore- 

cast for one day in June with a cloudy afternoon (timezone: UTC+2). Data gen- 

erated using the method of [28] . 
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Fig. 6. The cumulative distribution function for two consecutive timesteps for 

the same day in June do not follow any standard random process a priori . The 

differences between the consecutive curves demonstrate the changing weather 

conditions. 
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9 quantile forecasts (of order 5 to 95). Each deterministic PV produc-

ion forecast itself is the result of a statistical model fed with the fol-

owing variables from a deterministic weather forecast: solar irradiance,

otal cloud cover and 2-m temperature. The PV load factor quantile fore-

asts are the input data to the presented method. 

At each 30-minute timestep, 1 for each day, an estimation of the un-

ertainties is available in the form of quantile values. Fig. 5 displays

hese quantile curves, with one color for each quantile value. The dark-

st and lowest curve is the 0.01 quantile curve: for each timestep, there

s a 1% chance that the PV load factor will be below the value of this

urve. The lightest and highest curve is the 0.99 quantile curve: there

s a 99% chance that the PV load factor will be below the value of this

urve. The 19 curves in-between correspond to all the quantile values be-

ween 0.05 and 0.95, with a 0.05 increment. This method is a priori not

limate-dependent, but was tested exclusively for an oceanic temperate

limate (covering the vast majority of the French continental territory).

Thanks to these quantile values, the cumulative distribution func-

ions of the PV load factor are known for all the consecutive times in

 discretized day. Note that each cumulative distribution function ob-

ained by quantile regression as inspired by Thorey et al. [28] is con-

trained so that the scenario values cannot be greater than the maximum

oad factor at the given timestamp. This upper limit is obtained assuming

 completely clear sky at a given location. Without a means to ascertain

he lower limit of the load factor (through a completely cloud-covered

ky, for instance), it is simply set to 0 without loss of generality. With

hese cumulative distribution functions, the next step is to generate nu-

erous PV load factor scenarios. 

.2. Methodology for generating correlated scenarios 

Creating the daily scenarios by successively picking one of the values

rawn for each timestep according to the cumulative distribution is not

 suitable option. Indeed, the generated PV load factor scenarios might

ot be consistent, with important changes of values from one timestep

o another. 

Hence, the aim is to introduce some correlation of the PV load factor

etween two consecutive timesteps. 

Unfortunately, the cumulative distribution function obtained by the

uantile regression inspired by [28] has no analytical form and does not

orrespond to any standard random process a priori (see Fig. 6 ). Hence,

t is necessary to design an ad hoc procedure to introduce correlation
1 Note that we consider PV production forecasts with a 30-minute timestep to 

e possibly exact, thus knowingly disregarding faster variations in solar irradi- 

nce, for instance due to passing clouds. 

 

d  

s  

t  

6 
etween two random variables 𝐗 𝟏 and 𝐗 𝟐 of fixed and known respective

umulative distributions 𝐹 1 and 𝐹 2 . 

The solution proposed here is based on the Probability Integral

ransform. This result states that if 𝐗 is a continuous random vari-

ble with cumulative distribution function 𝐹 𝑋 , then the random variable

 = 𝐹 𝑋 ( 𝐗 ) has a uniform distribution on [0 , 1] . 
Let there be two random variables 𝐗 𝟏 and 𝐗 𝟐 , of respective cumu-

ative distribution functions 𝐹 1 and 𝐹 2 . Consider 𝐔 𝟏 = 𝐹 1 ( 𝐗 𝟏 ) and 𝐔 𝟐 ,

wo uniformly distributed random variables on [0,1]. Another random

ariable is built with the following relation: 

 = (1 − 𝛼) 𝐔 𝟏 + 𝛼𝐔 𝟐 (15)

ith 𝛼 ∈ ]0 , 1[ . 
The probability density function 𝑓 of 𝐖 can be calculated as 

( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑥 

𝑎𝑏 
if 0 ≤ 𝑥 ≤ 𝑎 

1 
𝑏 

if 𝑎 ≤ 𝑥 ≤ 𝑏 
1− 𝑥 
𝑎𝑏 

if 𝑏 ≤ 𝑥 ≤ 1 
(16)

ith 𝑎 = min { 𝛼, 1 − 𝛼} and 𝑏 = max { 𝛼, 1 − 𝛼} . Integrating 𝑓 yields the

umulative distribution function 𝐹 of 𝐖 as follows 

 ( 𝑥 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑥 2 

2 𝑎𝑏 if 0 ≤ 𝑥 ≤ 𝑎 
𝑎 

2 𝑏 + 

𝑥 − 𝑎 
𝑏 

if 𝑎 ≤ 𝑥 ≤ 𝑏 

𝑎 

2 𝑏 + 

𝑏 − 𝑎 
𝑏 

+ 

𝑥 − 𝑏 − 𝑥 
2 − 𝑏 2 
2 

𝑎𝑏 
if 𝑏 ≤ 𝑥 ≤ 1 

(17)

𝐹 ( 𝐖 ) is then uniformly distributed according to the Probability

ntegral Transform. Besides, when the same result is applied again,

 

−1 
2 ( 𝐹 ( 𝐖 )) has the same probability density function as 𝐗 𝟐 . Interest-

ngly, it is correlated with 𝐗 𝟏 through Eq. (15) , which is the desired

esult. 

In a nutshell, denoting by 𝐹 𝑘 the cumulative distribution function

f the random variable 𝐗 𝐤 , the stochastic process used to generate the

cenarios is 
 

𝑥 𝑘 +1 = 𝐹 −1 
𝑘 +1 ( 𝐹 ((1 − 𝛼) 𝐹 𝑘 ( 𝑥 𝑘 ) + 𝛼𝑢 𝑘 +1 )) , for 𝑘 > 0 

𝑥 0 = 0 
(18) 

ith 𝛼 ∈]0 , 1[ , 𝐹 defined in Eq. (17) and 𝑢 𝑘 +1 uniformly distributed on

0,1]. 

The degree of correlation, given by 
𝐶𝑜𝑣 ( 𝑥 𝑖 ,𝑥 𝑗 ) 
𝜎𝑥 𝑖 

𝜎𝑥 𝑗 

(where 𝜎𝑥 𝑖 is the stan-

ard deviation of 𝑥 𝑖 ), is customizable by varying the value of 𝛼. In the

imulations in this study, the value of the parameter 𝛼 was chosen so

hat the impact of a past random selection fades after a given number of
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imesteps. The choice of 𝛼 = 0 . 25 leads to a steady decrease in the cor-

elation between two values 𝑥 𝑖 and 𝑥 𝑗 separated by an increasing dura-

ion, with a median correlation of 0.45 between two values separated by

 hours. 

With 500 values drawn for each timestep, the original estimated un-

ertainty quantile values and the dispersion of the scenarios generated

y this method match almost perfectly. This limited number of scenar-

os does not generate any computational burden and thus represents a

easonable compromise in terms of accuracy. 

. Numerical experiments 

From the forecast and production data of a PV installation, a set of PV

roduction scenarios was generated according to the method presented

n the previous section. Because the data used were not available for

wo months from the middle of August to the middle of October, the

xperiments described were conducted over 309 dates only, instead of

65. 

Using these scenarios, the impact of PV production uncertainties on

he self-consumption performances of two EMSs was investigated in an

ndividual house case study. 

.1. Test scenario 

Consider two crystalline silicon PV arrays of 1.5kW p each, both in-

lined at 35 ◦ relative to the horizontal and facing south. An EWH of

olume 𝑉 = 200L and power rating 𝑃 ewh = 3kW is assumed, to cover the

onsumption of two inhabitants ( Table 2 ). The scenario of outdoor tem-

erature, input cold water temperature, and solar irradiance predictions

orrespond to a house located at the research and development facil-

ty of EDF near Fontainebleau, in the French region of Ile-de-France.

t is stressed that though the results of this study stand only for simi-

ar weather conditions (the oceanic temperate climate found in most of

orth-western Europe), the method is not climate-dependent. 

The hot-water drain scenario is perfectly known, and therefore the

MS can predict accurately when and how much energy will be con-

umed from the EWH. This consumption scenario is repeated each day

ith the same pattern reported in Fig. 7 , with drains in the morning

from 7 a.m. to 9 a.m.) and in the evening (from 6 p.m. to 7 p.m. and

rom 8 p.m. to 10 p.m), ranging between 26.8L h −1 and 27.7L h −1 , for

 total consumption of 956L per week at 40 ◦. Only slight quantity vari-

tions occur seasonally, with the same pattern at lesser amplitude in

ummer. 

The final time 𝑡 f was set to 6 p.m. to satisfy the main hot-water drains

f the day. 
Table 2 

Case study specifications. 

PV capacity 3kW p 

EWH Power rating 3kW 

EWH volume 200L 

Weekly hot-water consumption 956L 

ig. 7. Hot-water drains for a winter day are distributed between morning and 

ate afternoon consumptions. 
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.2. High fidelity model and hardware specifications 

The numerical experiments required the controller to communicate

ith a simulation model. The controller corresponds to the optimization

lgorithm presented in Section 2.4 based on the simplified EWH model.

t is implemented using Python 3.7.3. The simulation model is imple-

ented using the Dymola 2018 software (based on the Modelica 3.2.2

bject-oriented modeling language, see [33] ). It includes a model for

he EWH, and readings of simulated datasets for the house uncontrolled

lectric loads and for the PV power production. The EWH simulation

odel is more complex but more accurate than the model described in

ection 2.2 for the control algorithm proposed here. It models the strat-

fication phenomenon, with three layers of water constituting the whole

olume. The thermal energy dissipated by the resistive element, as well

s the incoming cold water, are situated in the lower layer of the tank,

hereas the hot-water outlet is situated in the upper layer. As described

n [29] , at rest, the layers are mixed only by heat diffusion. The effects

f this phenomenon are relatively slow compared to the forced convec-

ion and mixing induced by draining. Heat losses at the walls of the tank

re more precisely accounted for in this simulation model than in the

ontrol model. 

All computations are run on a Core i3 2.4 GHz processor, with 8 Go

AM. Running the entire calculations took approximately 70 hours for

09 days. 

.3. Performance evaluation procedure 

The performances of two EWH control algorithms was compared un-

er two settings regarding PV production uncertainties, resulting in four

onfigurations. 

Strategies Two control algorithms can be considered to compute the

eating strategy: 

• an industrial reference heuristic control; 
• the optimization algorithm presented in Section 2.4 . 

Both are deterministic, meaning that they consider a unique and sup-

osedly exact PV power prediction to decide on the corresponding op-

imal heating strategy. 

The industrial reference control was developed for commercial use

n residential housing equipped with PV arrays with the double aim of

aximizing consumption of local PV production and ensuring a reduced

lectricity bill. It follows priority rules to choose each day whether to

tart the heating authorization according to the following principles: 

1. determine when to start the EWH according to a PV surplus threshold

set up in advance depending on various criteria; 

2. figure out whether heating the tank without PV production is neces-

sary according to whether a daily heating duration target has been

met. 

Note that the reference control does not require the hot-water drain

equence to perform an estimation of the next heating duration target,

hereas the method proposed here requires exact knowledge of it. 

Subsequently, 𝑠 R denotes a strategy computed with the reference

euristic, whereas 𝑠 P denotes a strategy computed with the proposed

ethod. 

Scenarios The most likely PV production scenario on day 𝑗 is denoted

y 𝑆 
𝑗 

ML 
. The range of outcomes for the PV production on this day 𝑗

s represented by the set of 𝐾 distinct PV production scenarios being

enerated. The 𝑘 th realization scenario belonging to this set, with 𝑘 ∈
0 , 𝐾] , is denoted by 𝑆 

𝑗 

𝑘 
. 

We either consider to know only the most likely PV production sce-

ario, or to know the exact PV power predictions. In the first case,

 R ( 𝑆 
𝑗 

ML 
) denotes a strategy computed with the reference heuristic, and

 P ( 𝑆 
𝑗 

ML 
) denotes a strategy computed with the proposed algorithm, both

ptimized over 𝑆 
𝑗 

ML 
, the most likely scenario on day 𝑗. In the second
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Table 3 

Scores computed for the proposed algorithm in the conducted numerical simulations. (Crosses indicate scores 

that were not evaluated.) 

Strategies PV production scenarios for day 𝑗

Most Likely, 𝑆 
𝑗 

ML 
Realization 1, 𝑆 

𝑗 

1 ... Realization 𝑘, 𝑆 
𝑗 

𝑘 
... Realization 𝐾, 𝑆 

𝑗 

𝐾 

Most Likely, 𝑠 P ( 𝑆 
𝑗 

ML 
) 𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

ML 
) , 𝑆 𝑗 

ML 

)
𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

ML 
) , 𝑆 𝑗 1 

)
... 𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

ML 
) , 𝑆 𝑗 

𝑘 

)
... 𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

ML 
) , 𝑆 𝑗 

𝐾 

)
Realization 1, 𝑠 P ( 𝑆 

𝑗 

1 ) × 𝑆 𝐶 
(
𝑠 P ( 𝑆 

𝑗 

1 ) , 𝑆 
𝑗 

1 

)
× × × ×

... × × ⋱ × × ×
Realization 𝑘, 𝑠 P ( 𝑆 

𝑗 

𝑘 
) × × × 𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

𝑘 
) , 𝑆 𝑗 

𝑘 

)
× ×

... × × × × ⋱ ×
Realization 𝐾, 𝑠 P ( 𝑆 

𝑗 

𝐾 
) × × × × × 𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

𝐾 
) , 𝑆 𝑗 

𝐾 

)
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Fig. 8. The cumulated expected 𝑆𝐶 is significantly more impacted by the algo- 

rithm choice than the forecast precision. 
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ase, 𝑠 R ( 𝑆 
𝑗 

𝑘 
) denotes a strategy computed with the reference heuristic,

nd 𝑠 P ( 𝑆 
𝑗 

𝑘 
) denotes a strategy computed with the proposed algorithm,

oth optimized over 𝑆 
𝑗 

𝑘 
, the realization scenario 𝑘 of day 𝑗. This case cor-

esponds to the availability of what is named a “perfect ” PV production

orecast. 

For a given date 𝑗, the performance of the reference control rely-

ng on a most likely forecast is the mean 𝑆𝐶 achieved by this heating

trategy evaluated with respect to all the realization scenarios of the

enerated set. The corresponding mathematical formulation is given in

q. (19) . This configuration is hereafter called Reference - Most Likely.

his mean can be considered as an approximation of the expected value

f 𝑆𝐶 for all possible PV production. 

Eq. (22) shows the mathematical definition of the mean 𝑆𝐶 score

chievable by the proposed algorithm for a given date 𝑗, in the case

here a “perfect ” forecast is available for every realization scenario of

he set. This configuration is hereafter named Proposed - Exact. 

Reference - Exact is the mean 𝑆𝐶 score attainable by the refer-

nce heuristic with knowledge of each production realization scenario

 Eq. (20) ); Proposed - Most Likely is the mean 𝑆𝐶 score achieved by

he heating strategy designed by the proposed algorithm relying only on

he most likely forecast ( Eq. (21) ). 

eference - Most Likely: 
1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑠 R ( 𝑆 

𝑗 

ML 
) , 𝑆 𝑗 

𝑘 

)
(19) 

eference - Exact: 
1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑠 R ( 𝑆 

𝑗 

𝑘 
) , 𝑆 𝑗 

𝑘 

)
(20) 

roposed - Most Likely: 
1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

ML 
) , 𝑆 𝑗 

𝑘 

)
(21) 

roposed - Exact: 
1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑠 P ( 𝑆 

𝑗 

𝑘 
) , 𝑆 𝑗 

𝑘 

)
(22) 

Logically, it should hold that (19) < (20) , and (21) < (22) . However,

20) < (21) is not guaranteed, and quantifying the relation between these

alues is one of the purpose of this study. 

Table 3 details the simulations conducted for the proposed algorithm

n this plan of action. Equivalent calculations were conducted for the

eference control. Small crosses designate combinations that are not as-

ociated with calculations. 

.4. Results 

The impact of the exact PV load factor predictions and of the cho-

en algorithm can be seen in Fig. 8 . It displays the sum, from January

 st to the end of each month, of the expected daily 𝑆𝐶 over the set

f drawn scenarios 𝑆 
𝑗 

𝑘 
, 𝑘 ∈ [0 , 𝐾] . The control can use either the refer-

nce heuristic (orange color) or the proposed tailored algorithm (blue

olor). The strategy has been optimized either following a most likely

V production forecast (dashed lines) or assuming that the exact PV

roduction forecast is available for each realization (solid lines). The
8 
ollowing equation gives the corresponding mathematical formulation

ith 𝐽 ∈ [ Jan. 31 st , … , Dec. 31 st ] , the date of each end of month: 

𝐽 ∑
= Jan. 1 st 

[ 

1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑋, 𝑆 

𝑗 

𝑘 

)] 

(23) 

ith 𝑋 taking the following values in each case: 

eference - Most Likely: 𝑋 = 𝑠 R ( 𝑆 
𝑗 

ML 
) (24) 

eference - Exact: 𝑋 = 𝑠 R ( 𝑆 
𝑗 

𝑘 
) (25) 

roposed - Most Likely: 𝑋 = 𝑠 P ( 𝑆 
𝑗 

ML 
) (26) 

roposed - Exact: 𝑋 = 𝑠 P ( 𝑆 
𝑗 

𝑘 
) (27) 

The cumulated 𝑆𝐶 values reached at the end of the year and the cor-

esponding relative increase compared with the Reference - Most Likely

ase are listed in Table 4 . 

It is clear that, for the studied setup, the impact of a “perfect ” PV pro-

uction forecast is negligible compared with the impact of the choice of

ontrol algorithm. The hypothetical benefit of switching from a most

ikely PV power prediction to an “exact ” one (at a 30-minute timestep)

ould be slightly greater with the proposed algorithm (+1.97%) than

ith the Reference heuristic (+0.85%), but remains limited compared

ith the gains coming from the choice of control algorithm. Note that

he 𝑆𝐶 values consider both the components due to EWH consump-

ion and those due to uncontrolled demand. It is recalled that the most

ikely forecast already conveys some information about the PV produc-

ion curves that will finally occur. Shall a “perfect ” PV production fore-

ast be compared with a very low level production forecast (e.g. based

n clear-sky solar irradiance only), the impact of the forecast precision

ould be much greater. 
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Table 4 

The cumulated self-consumed energy for 309 days can be increased by 11% with a 

smarter optimization algorithm. 

Strategy Cumulated Expected 𝑆𝐶

Relative increase w.r.t. 

Reference - Most Likely 

Reference - Most Likely (24) 1.42MWh - 

Reference - Exact (25) 1.43MWh + 0.85% 

Proposed - Most Likely (26) 1.58MWh + 11% 

Proposed - Exact (27) 1.61MWh + 13% 

Fig. 9. The daily 𝑆𝐶 gains for each configuration with respect to the Reference - Most Likely configuration are higher during summer days. 
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Remark The figures display a gap from the middle of August to the

iddle of October, because the PV production forecasts were not avail-

ble for these dates. The “annual ” values were hence calculated for 309

ays only. 

Fig. 9 shows the daily expected self-consumption gains for each con-

guration compared with the Reference heuristic - Most Likely forecast

onfiguration. For greater clarity, the daily mean Reference - Most Likely

𝐶 score on day 𝑗 is denoted as 

ML ( 𝑗) = 

1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑠 R ( 𝑆 

𝑗 

ML 
) , 𝑆 𝑗 

𝑘 

)
(28)

The curves correspond to the following equation, with 𝑗 ∈
 Jan. 1 st , Dec. 31 st ] : 

1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑋, 𝑆 

𝑗 

𝑘 

)
− RML ( 𝑗) (29)

he equation is evaluated for these three values of 𝑋: 𝑠 R ( 𝑆 
𝑗 

𝑘 
) , 𝑠 P ( 𝑆 

𝑗 

ML 
) ,

 P ( 𝑆 
𝑗 

𝑘 
) . 

The gains are almost always greater with the Proposed algorithm

han with the Reference heuristic and Exact PV forecasts. Neither the

eference heuristic nor the Proposed algorithm succeeds in benefiting

ensibly from the exact PV forecasts. The ratio of these 𝑆𝐶 gains over the

aily score of the Reference - Most Likely configuration is not depicted

ecause it follows almost the same pattern, with y-values ranging from

10% to +30%. 

Fig. 9 suggests that the performance difference depends on the

eather conditions of the day (e.g., a sunny summer day associated with

 high load factor or an intermittently cloudy autumn day associated

ith a low one). To further analyze these differences, the 309 days of

he simulation were partitioned according to their distribution profile.

he clustering was made automatically through a K-means method fed

ith the quantile values of the distribution of the PV load factor values

t noon for the 500 scenarios. Because it seems that the partitioning de-

ends mainly on the median value of this distribution, the partitioning

s represented in Fig. 10 with only the median noon value for each day.
9 
he “Low ” cohort represented in blue contains 104 days, the “Medium ”

ne, corresponding to the orange dots, contains 86 days, and there are

19 “High ” PV scenario days represented by green dots. Unsurprisingly,

t can be observed that winter days are mainly grouped in the “Low ”

ohort, and summer days are in the “High ” one. 

The clustering makes it possible to break down the relative and abso-

ute expected 𝑆𝐶 gains (w.r.t. the Reference - Most Likely configuration)

ccording to the type of day. The lower window of Fig. 11 represents the

ariability of the 309 absolute 𝑆𝐶 gains (same data as Fig. 9 ), according

o the PV scenario types classification. The upper window displays the

ariability of the 309 relative 𝑆𝐶 gains according to the classification,

s detailed in the following equations 

1 
RML ( 𝑗) 

[ 

1 
𝐾 

𝐾 ∑
𝑘 =0 

𝑆 𝐶 

(
𝑋, 𝑆 

𝑗 

𝑘 

)
− RML ( 𝑗) 

] 

(30) 

ith RML ( 𝑗) defined in Eq. (28) . The equation is valued for the three

ame values of 𝑋 as in Eq. (29) . 
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Fig. 11. The relative and absolute expected 𝑆𝐶 gains w.r.t. Reference - Most 

Likely tend to be higher with the proposed algorithm, and especially during 

“High ” PV production days. 
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It is clear that the gains over the Reference - Most Likely case, both

bsolute and relative, are observed during high PV power production

ays. Because the reference control is activated as soon as the PV pro-

uction reaches a threshold, it cannot tap into the higher production

alues later in the day, thus leading to lower self-consumption scores

n clear sunny days. Besides, sunny summer days usually display low

ariability. Hence a most likely forecast is good enough for the proposed

lgorithm to reach high 𝑆𝐶 scores. Moreover, it is evident that a too-

asic heuristic control can poorly benefit from the valuable information

arried by an “exact ” PV production forecast. This underlines the fact

hat further research efforts might be better spent on developing better

ontrol algorithms than on finding better forecasting methods for the

onsidered time resolution. 

. Conclusions 

This paper has studied the impact of PV production forecasts uncer-

ainties on the performance of an EMS optimizing the self consumption

f a residential PV installation. To this end, an optimal EWH scheduling

lgorithm has been proposed. A novel methodology to generate a set of

ealistic PV production scenarios was also presented. This method en-

ures that the ensemble of PV power scenarios is representative of the

ariability associated with most likely weather forecasts. When com-

ined, the efficient optimization algorithm and these sets of PV produc-

ion scenarios make it possible to assess the performance of such an

nergy management system according to various production scenarios,

ither assuming the availability of “perfect ” PV production predictions

r of only the most likely forecasts. 

This study has shown that self-consumption performance benefits

ore from an efficient optimal management system like the one pro-

osed in this paper than from “perfect ” PV production predictions at a

0-minute timestep. Indeed, considering a simple rule-based commer-

ial heuristic accessing a unique deterministic most likely forecast as a

aseline and upgrading to the proposed optimization algorithm yields

n 11% increase in annual cumulated expected self-consumed energy,

hereas combining this proposed optimization algorithm and a “per-

ect ” PV production forecast at a 30-minute timestep brings only an ad-
10 
itional two-percentage-point increase (from +11% to +13%). A de-

ailed analysis shows that these gains are concentrated in days of high

V power production. 

This study suggests that for these installations: 

• the current level of accuracy of PV production forecasts is good

enough; 
• improving the control algorithms can be valuable. 

This work should be extended to study as well the impact of inhab-

tants’ behavior uncertainties, both for hot-water usage and for uncon-

rolled electrical demand. 

Assuming that PV production scenarios with a 30-minute timestep

an be exact is also an oversimplification, so future research is needed

o assess the performance loss of this kind on system due to faster pro-

uction variations. 

A shift towards jointly minimizing the total electricity bill and con-

rolling multiple appliances would be a useful extension resulting in a

ore valuable EMS. Additional optimization criteria could also be con-

idered, such as user discomfort when appliances are not run at desired

imes. Finally, this work could lead to a transition towards optimizing

he behavior of a microgrid of diverse houses with multiple controlled

ppliances and shared energy resources, with guarantees of individual

rofits and data privacy. 
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