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This paper addresses the problem of velocity estimation for a 155 mm
projectile. Indeed, to correctly feed the guidance and control algorithms of
such a guided munition, it is essential to estimate its speed autonomously
(without any external system) onboard and in real-time. Knowledge of the
velocity (and thus the Mach number) is required to infer the aerodynamic
coefficients governing its dynamics. From the analysis of the frequencies
present on one of the radial accelerometers, and from a reduced 6DOF
model describing the epicyclic rotation of the shell, we are able to estimate
the velocity of the ammunition. The roll speed can be determined from mag-
netometers. For frequency estimation, we employ a subspace method of the
Pisarenko type, relying on the auto-correlation matrix of the accerelometer
signal. This matrix is estimated from samples and its dominant eigenvalues
are related to the precession and nutation frequencies. In turn, the velocity
can be estimated from the analytical values of the epicyclic motion. In this
paper, we offer an efficient method to estimate the velocity of an artillery
shell in free-flight, using only embedded sensors. The next step will be to
use these results to improve the estimation of the projectile’s attitude and
position.

INTRODUCTION

This paper addresses the problem of velocity estimation for a 155 mm projectile.
Indeed, to correctly feed the guidance and control algorithms of such a guided
munition, it is essential to estimate its speed autonomously (without any ex-
ternal system) onboard and in real-time. Knowledge of the velocity (and thus
the Mach number) is required to infer the aerodynamic coefficients governing
its dynamics.
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Figure 1: Estimation process.

From the analysis of the frequencies present on one of the radial accelerom-
eters, and from a reduced 6DOF model describing the epicyclic rotation of the
shell, we are able to estimate the velocity of the ammunition (see Figure 1). The
roll speed can be determined from magnetometers.

For frequency estimation, we employ a subspace method of the Pisarenko
type [26] [30], relying on the auto-correlation matrix of the accerelometer sig-
nal. This matrix is estimated from samples and its dominant eigenvalues are
related to the precession and nutation frequencies. In turn, the velocity can be
estimated from the analytical values of the epicyclic motion.

This paper focus on a specific part of the navigation methods developed
in [12], on which we will briefly elaborate in the conclusion.

NOTATIONS AND PROBLEM STATEMENT

REFERENCE FRAMES AND SIX DEGREES OF FREE-
DOM DESCRIPTION

Let the frame L be defined by orthogonal unit vectors 1L,2L,3L where 1L di-
rection is the direction of the shot on the horizontal plane and 3L is vertical
and pointing to the ground. This direct frame, referred to from now on as the
“local frame”, is an adaptation of the classical “North-East-Down” (NED) frame
commonly used in aeronautics, rotated so that its first vector is oriented in the
initial direction of the shot.

Classically, the shell can be modeled as a Six-Degrees-of-Freedom (6-DOF)
rigid body. The full notations are summarized in Table I. The orientation of



Table I: Nomenclature.

x, y, z Position of the shell in the local frame
vx, vy, vz Velocity of the shell w.r.t. the local frame
h = −z > 0 Altitude of the shell
V Velocity of the shell w.r.t. the airflow
v = |V | Scalar velocity of the shell w.r.t. the airflow
Nmach Mach number of the shell
vL

B Velocity of the shell w.r.t. the local frame
X Position of the shell w.r.t. the local frame
R = [T ]LB Attitude matrix of the shell

(transition matrix from the local frame to the body frame)
Ψ, Θ, Φ Tait-Bryan angles
Ψ Yaw angle
Θ Pitch angle
Φ Roll angle
Ω = (p, q, r) Angular velocity of the shell w.r.t. the local

frame expressed in the body frame
ωI

L Angular velocity of the local frame w.r.t.
a geocentric frame (Earth’s rotation, adding Coriolis effect)

p = 〈Ω, 1B〉 Spin rate of the shell (or longitudinal component of Ω)
q = 〈Ω, 2B〉 transverse component of Ω along 2B

r = 〈Ω, 3B〉 transverse component of Ω along 3B

[T ]BW Transition matrix from the body
frame to the wind velocity frame

α, β Incidence angles (see below)
α Attack angle
β Sideslip angle
αt Total angle of attack of the shell

(angle between vectors 1B and V )
θ Slope angle

(“pitch” angle of [T ]LW in “ZYX” decomposition)

the rigid body is defined by a set of three Tait-Bryan angles (here “ZYX” angles
are chosen, following the nomenclature of [20], where, as commonly considered,
the spin is defined as the rotation about its axis of least inertia). As a result,



the orientation of the body with respect to the local inertial frame is described
by the Tait-Bryan angle sequence:

yaw: Ψ, pitch: Θ, roll: Φ

The shell state comprises 12 variables, namely the position, velocity, attitude
(under the form of the three angles previously introduced) and angular velocity.
It reads

Xfull =
(
x y z vx vy vz Ψ Θ Φ p q r

)T (1)

This vector contains several groups of variables of interest. Let us define the
following partial state variables : the position X, the velocity V (and its norm
v = |V |), three angles defining the attitude matrix R (and the corresponding
quaternion q) and the angular velocity ω. Details are given in (2).

We note (e1, e2, e3) a canonical base of R3, Ra,v the matrix defining the
3D-rotation of angle a about the vector v, and qa,v one of the two unit quater-
nions representing Ra,v. Conversely, the Ra,v matrix can be derived from the
quaternion qa,v. 

X =
(

x y z
)T

V =
(

vx vy vz

)T

R = [T ]LB = RΨ,e3RΘ,e2RΦ,e1

q = qΨ,e3 ⊗ qΘ,e2 ⊗ qΦ,e1

Ω =
(

p q r
)T

(2)

Besides the local (inertial) frame L and the body B frame, a third frame
is considered and referred to as the “wind velocity frame”, denoted W . It is
defined from the body frame using the velocity of the shell with respect to the
airflow, denoted vA

B or V , as described by Figure 2.
The attack angle α and the sideslip angle β are defined by

[T ]BW = R−α,e2Rβ,e3 (3)

where [T ]BW is the transition matrix from the body frame to the wind velocity
frame

The angles between the frames L, B and W are illustrated in Figure 2.

ENVIRONMENT MODEL

The environment of the shell is modeled with standard atmosphere, gravity,
and Earth magnetic field reference models. In details, following the Standard-
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Figure 2: Definition of Tait-Bryan and incidence angles at Φ = 0 ; α refers to a
rotation around 2B and β around 3W .



ization Agreement STANAG 4355 from NATO, the gravitational acceleration
at altitude h is

g(h) = g0

(
R

R + h

)2

(4)

where
g0 = 9 80665 × (1 − 0 0026 cos (2 Lat))

while R is an average value of the Earth radius and Lat is the geodetic latitude
of the local frame L (g slightly increases when moving away from the equator).

At any altitude h, the air density is given, following [15],

ρ(h) = ρ0

(
T0 − 0 0065h

T0

)4 2561

(5)

with ρ0 the air density on the ground. In turn, this defines the sound velocity

vsound(h) = a0

(
T0 − 0 0065h

T0

) 1
2

(6)

where a0 is the velocity of the sound at ground level. The Mach number is, as
usual,

Nmach(v, h) ≜ v

vsound(h)
(7)

This variable is a main input of the aerodynamic forces and moment look-up
tables introduced in Section .

The various constants appearing in the previous equations are given in Ta-
ble II.

Table II: Environment constants.

Constant value unit
ρ0 1 225 kg.m−3

a0 340 429 m.s−1

R 6 356766 × 106 m
Lat 45 deg
T0 288 16 K

Throughout the thesis (in simulation and for the analysis of actual flight
data), the values for the environment constants are those reported in Table II.



PROJECTILEMODEL: DIMENSIONAL PARAM-
ETERS ANDAERODYNAMIC COEFFICIENTS

In the thesis, we consider two types of projectiles : 155 mm shells, fired with a
high spin rate thanks to a rifled barrel (granting gyroscopic stability), and Basic
Finners, which are smaller and lighter, fired without any initial spin rate but
possessing roll-inducing fins3.

The 155 mm is an all-purpose standard for NATO armies. The Basic Finner
is a more recent experimental shell which has served for many years as a reference
projectile and was tested extensively in numerous aero-ballistic ranges and in
wind tunnels. The model consists of a 20 deg nose cone on a cylindrical body
with four rectangular fins. The main dimensional parameters of the projectiles
are listed in Table III with typical values detailed in Table IV. Reliable look-up
table for their aerodynamic coefficients have been established (see e.g. [31, 5, 10,
1]).

Table III: Dimensional parameters.

D Caliber of the shell
S Reference area of the shell
M Mass of the shell
Il Longitudinal moment of inertia
It Transverse moment of inertia
δfin cant Angle of the fins with the shell outer surface

(for Basic Finner only)

Table IV: Type of projectiles studied.

Type D (m) S (m2) M (kg) Il (kg.m2) It (kg.m2)
Basic Finner 0 028 6 16 × 10−4 0 4 4 36 × 10−5 2 14 × 10−3

155 mm 0 155 1 89 × 10−2 43 25 0 15 1 61

The coefficients defining the aerodynamics forces and moment are listed in
Table V. Their values are reported as a function of the Mach number in Figure 3
for the 155 mm artillery shell and in Figure 4 for the Basic Finner, for a total
angle of attack of zero degree. All the variables in Table V are functions of
(Nmach, αt).
3more precisely, a specific spin rate can be achieved by setting the initial velocity of the
projectile and the angle δfin cant of its fins.



Table V: Aerodynamics coefficients. All the variables in Table V are functions
of (Nmach, αt).

CD Drag force coefficient
CLα Lift force coefficient
Cmag−f Magnus force coefficient
Cmag−m Magnus moment coefficient
Clδ Rolling moment coefficient
Cspin Roll damping moment coefficient
CMq Pitch damping moment coefficient
CMα Overturning moment coefficient

0 1 2 3

Mach number

CD > 0

0 1 2 3

Mach number

CL, > 0

0 1 2 3

Mach number

Cmag!f < 0

0 1 2 3

Mach number
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Mach number

Cl/ = 0

0 1 2 3

Mach number

Cspin < 0

0 1 2 3

Mach number

CMq < 0

0 1 2 3

Mach number

CM, > 0

Figure 3: Aerodynamic coefficients profiles for 155 mm artillery shell.

FLIGHT DYNAMICS

For generality, the high velocity shell under consideration is a 6-DOF rigid
body which is given both initial translational velocity and spin rate4 by the
gun launch. By contrast with rocket-propelled devices, the shell has a constant
4in the case of the Basic Finner, the initial spin rate can be simply set to zero.
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Figure 4: Aerodynamic coefficients profiles for Basic Finner.

mass during the whole flight. It is subjected to drag and lift forces, Magnus
forces, Coriolis force, gravity, and several moments: Magnus, overturning 5,
rolling 6, pitch damping and roll damping moments [24, 21]. These forces and
moments have been extensively studied and measured using wind tunnels, free-
flight ballistic ranges, spark and Schlieren photography among others methods.
Experimentally established look-up tables are available for the two projectiles
under consideration (see e.g. [31, 5]). Concise expressions are given in Table VI
and Table VII, respectively.

TRANSLATIONAL DYNAMICS

After some reordering, the application of Newton Second Law yields, in a concise
form

v̇ = −ρSC̃Dv2

2M
− g sin θ, ḣ = v sin θ (8)

with
C̃D(h, v, αt) ≜ CD(Nmach(h, v), αt) (9)

5aerodynamic moment associated with the lift which is applied at the center of pressure.
6only for differentially canted finned shells, as the Basic Finner.



Table VI: Forces applied on the shell.

Force Expression
Drag force − 1

2 ρSCDvvA
B

Lift force 1
2 ρSCLα

(
vA

B ×
(
1B × vA

B

))
Magnus force 1

2 ρS
(

pD
V

)
Cmag−f v

(
vA

B × 1B
)

Coriolis force 2MvL
B × ωI

L

Weight Mg

Table VII: Moments applied on the shell.

Moment Expression
Magnus moment 1

2 ρSD
(

pD
v

)
Cmag−mv

(
1B ×

(
vA

B × 1B
))

Overturning moment 1
2 ρSDCMαv

(
vA

B × 1B
)

Rolling moment 1
2 ρSDδfin cantClδv21B

Pitch damping moment 1
2 ρSD2CMqv

(
1B ×

(
Ω × 1B

))
Roll damping moment 1

2 ρSD
(

pD
v

)
Cspinv21B

Equation (8) is obtained with some approximations, namely neglecting the
difference between V the velocity of the shell w.r.t. the airflow and Ẋ the
velocity in the local frame, and the contribution of the Coriolis force.

In (8), the drag is a dominant effect and deserves some more comments.
Some effects of the shell shape on the drag coefficient at various Mach numbers
have long been studied. Those effects depend on a number of dimensionless vari-
ables. The fluid mechanism that transmits the drag force to the shell consists of
two parts: surface pressure and surface shear stress (a.k.a. skin friction drag).
The force generated on the forebody and the base of the shell are different.
Therefore, the various components of the drag force behave in significantly dif-
ferent ways in the various speed regions. At subsonic flight speeds (below Mach
1.0), the drag coefficient is essentially constant. It rises sharply near Mach 1.0,
then slowly decrease at higher supersonic speeds. The sudden rise appearing
just below Mach 1.0 is caused by the formation of shock waves in the flow-field
surrounding the shell [24]. This rise is visible in the CD profiles of Figure 3 and
Figure 4.

ROTATIONAL DYNAMICS

Euler equation of rotation of a rigid body subjected to external aerodynamic mo-
ments can be written under the following form. One shall note the cancellation



of the bilinear term q r in (10) due to the symmetric nature of the shell.

ṗ = ρ(h)SD2Cspinv

2Il
p + 1

2
ρ(h)SDδfin cantClδv2 (10)

q̇ = 1
It

(
(Il − It)p r + 1

2
ρSpD2Cmag−mvβ + 1

2
ρSDCMαv2α + 1

2
ρSD2CMqvq

)
(11)

ṙ = 1
It

(
(Il − It)p q + 1

2
ρSpD2Cmag−mvα − 1

2
ρSDCMαv2β + 1

2
ρSD2CMqvr

)
(12)

As is exposed in the early work of [16], the complex reaction of the shell
to aerodynamic forces and moment has a much simplified form when its axis
of symmetry, its axis of rotation and the direction of motion of its center of
mass though the air all coincide. This is precisely the case for the shells studied
in the thesis. Actually, more advanced calculus, and several steps of careful
first-order approximations 7, see [24, Chapter 10], allow one to derive the equa-
tion governing the Pitching and Yawing motion of the rotationally symmetric
projectiles.

Our choice of incidence angles α, β differ from [24]. Ours are attached to
the body, which makes it easier to relate them to the measurement of both
strapdown transverse accelerometers (these angles are oscillating at the spin
rate frequency), whereas in [24] the angles correspond to the horizontal and
vertical oscillating motion as could be observed from the ground. Note α2 and
β2, the angles considered by [24]. The correspondence is given, under a small
total angle of attack assumption by{

α2 = sin (pt) α − cos (pt) β

β2 = − cos (pt) α − sin (pt) β
(13)

By introducing the complex yaw

ξ = α2 + iβ2

one obtains the following complex valued ordinary differential equation

ξ̈ + v

D
(H − iP )ξ̇ − v2

D2 (M + iPT )ξ = −iPG (14)

with

H = C∗
Lα − C∗

D − MD2

It
(C∗

Mq + C∗
Mα), P = Il

It

pD

v

M = MD2

It
C∗

Mα, T = C∗
Lα + MD2

Il
C∗

mag−m, G = gD cos Φ
v2

7during the whole flight (typically lasting less than 45 s for ballistic flight and less than 2 s for
flat-fire) the spin rate remains very high, and the angles of attitude w.r.t. the wind frame
remain small. Therefore, it is possible to study the attitude dynamics, and, in turn, the
translational dynamics, under the assumption of small-angles.



where for each aerodynamic coefficient CX one uses the scaled proxy

C∗
X = ρSD

2M
CX

The complex equation (14) will be central in the works presented in the
thesis. It has been established by several authors, under various forms, which
are all equivalent: [17, 18, 25, 15], among others. Also, it has been shown to be
a very good approximation to the actual flight of symmetric projectiles.

This equation is a linear, second order differential equation with “almost
constant” (slowly-varying) complex coefficients. Assuming now that the coeffi-
cients are indeed constants (as a short-term approximation), solving (14) reveals
that the pitching and yawing motion of a symmetric projectile consists of two
modes that rotate at different frequencies so that the complex yaw ξ follows an
epicyclic motion in the complex plane, i.e. a motion of the general form8

ξ(t) = Aneiωnt + Apeiωpt + A0 (15)

where ωn and ωp << ωn designate the so-called “nutation” and “precession”
angular frequencies, respectively. The epicyclic motion is pictured in Figure 5.

The nutation and precession frequencies have symmetrical expressions

ωn = p
Il

2It
+ v

2
(P 2

1 + P 2
2 ) 1

4 cos
[

1
2

arctan
(

P2

P1

)]
(16)

ωp = p
Il

2It
− v

2
(P 2

1 + P 2
2 ) 1

4 cos
[

1
2

arctan
(

P2

P1

)]
(17)

where analytic expression of P1, P2 in terms of the aerodynamics parameters
of the shell and the variables (v, h, p) are given in [12]. The “body-attached”
incidence angles are given by

α + iβ = −i
(

Anei(p−ωn)t + Apei(p−ωp)t + A0eipt
)

FREQUENCY CONTENT OF THE 3-AXIS ACCELEROM-
ETER SIGNALS

The angular frequencies appearing in the last equation are observed in the aero-
dynamics forces, and therefore, in the 3-axis accelerometer signals.

Figure 6 reports the theoretical values of the angular frequencies at stake over
the course of a typical ballistic flight. This plots were obtained using the analytic
expressions of the frequencies and a detailed aerodynamic model. As appears
in eqs. (16) and (17), the frequencies of the epicyclic motion carry information
on the velocity v. This property is instrumental in the study conducted in this
article.
8This expression is only a short-term approximate solution.
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ONBOARD SENSORS

The strapdown sensors embedded into the shells (see Figure 7) consists of a
3-axis accelerometer and a 3-axis magnetometer. The data from the sensors is
collected and sent by the radio frequency transmitter using the cone of the shell
as a monopole antenna during the flight. The bandwidth allows to stream 2
megabytes of data per second with a low level of data losses9. All sensors are
synchronous and sampled at the same rate (8064 Hz). The embedded systems
is pictured in Figure 7.

Below, we describe several detrimental effects impacting the sensors and
present mitigation means.

EDDY CURRENTS

Once embedded into the shell, the 3-axis magnetometer is heavily corrupted by
an induction effect created by the high spin rate of the electrically conductive
9as will be visible when treating data, some outliers appears, especially at the end of the flight
when the shell is the farthest from the receiving antenna.
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Figure 7: Embedded Instrumentation, from [6], used for the experiments stud-
ied in this article. 1: Power supply unit, 2: 3-axis magnetometer, 3: 3-axis ac-
celerometer, 4: CPU (for signal conditioning), 5: RF Transmitter, 6: Monopole
Antenna.

shell. This rotation around its main axis is the root cause for eddy currents.
Fortunately, these effects can be mitigated by suppressing the known induction
response to a given spin rate, previously modeled and measured on a testbed [6].
Using this compensation, it can be assumed that the induction effects are negli-
gible. Accurate compensation requires to know the spin rate, the estimation of
which is explained in Section .

MISALIGNMENT

Ideally, the sensors should be perfectly aligned with the body frame. In prac-
tice, there exists a small rotation between the sensors frame and the body frame,
which results in a malicious modulation visible in the signals. In theory, there
should be no oscillations at the spin rate frequency on the longitudinal mag-
netometer, but it is clearly seen in raw measurements. This fact suggests a
procedure to address the misalignment. Simply, an additional rotation is ap-
plied to the measurements which minimizes the variance of the longitudinal
component. The benefits of the misalignment compensation, and the reduction
of the variance of the signal are illustrated in Figure 8.

FICTITIOUS FORCES

The accelerometers are disturbed by fictitious forces. Indeed, due to the high
values of the spin rate under consideration (above 900 rad/s), even small residual
misalignments (see § ) or lateral shift of the sensors from the shell main axis
induce substantial fictitious forces which directly corrupt the readings of the
3-axis accelerometer. Sensors are located in the nose of the shell, approx. 20 cm
away from the center of mass of the shell. Interestingly, this is harmless for
the frequency-based methodology. For reasons detailed below, the dominant
fictitious forces share the same frequency content as the useful signals.
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In details, let Yacc0 denote the proper acceleration measured at the center
of mass of the shell, then the proper acceleration occurring at a location shifted
by a vector d is

Yacc = Yacc0 + Ω × (Ω × d) + dΩ
dt

× d (18)

The longitudinal component of d is large. Furthermore, despite significant efforts
in the mechanical design and construction phases, the sensors are not located
right onto the shell symmetry axis, which correspond to small but non negligible
transverse components in d. The high spin rate has a tremendous effect in (18)
even for small such transverse shift. This effect is clearly visible in Figure 9 which
compares experimental signals and their theoretical counterparts. According
to (18), the factors that can cause fictitious forces are, and their orders of
magnitude: Long. shift d1 = 10−1 , Trans. shift d2 = 10−4, d3 = 10−4 (m),
p = 103, q = 101, r = 101 (rad.s−1). In turn, the various disturbance terms
appearing in (18) are listed by descending order of magnitude in Table VIII. The
“frequency content” column in Table VIII describes the oscillating contribution
of each term (q and r obeying (11) and (12), respectively, and p being almost
linearly damped according to (10)). It is worth mentioning that the term d1 (p q+
d
dt r) is actually much smaller than its constituting factors because, as can be seen
in the last part of the rotational dynamics (12), one has that It >> Il implies



that d
dt r ≈ −p q. This term is not negligible but it has the same frequency

content as Yacc0. Then, it appears that the dominant fictitious force is −d2 p2

and that it acts as a (slowly drifting) bias on the 3-axis accelerometer. This
drifting bias is visible in Figure 9 (bottom-left and -right plots). Interestingly,
the bias is very large but it does not alter the frequency content of the 3-axis
accelerometer signals.
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Table VIII: Signal at the center of mass and fictitious forces in one transverse
accelerometer. Values in m.s−2.

Expression Range of value Frequency content
Yacc0 101 → 100 p, p − ωn, p − ωp

−d2 p2 102 None
d1( p q + d

dt r) 101 → 100 p, p − ωn, p − ωp

d3 q r 10−2 Interference10 of p, p − ωn, p − ωp

−d2 r2 10−2 Interference of p, p − ωn, p − ωp

−d3
d
dt p 10−3 None



FREQUENCY-BASED ESTIMATION OF THE
TRANSLATIONAL VELOCITY

ESTIMATION OF THE SPIN RATE

As seen in (10), the spin rate p has a practically autonomous dynamics with
almost linear damping. Various methods can be employed to estimate the (vec-
tor) angular velocity without rate gyro, e.g. [13, 9, 22, 29, 23, 3]). Here, a
simpler approach (complex argument method) can be used because the angular
velocity (p, q, r) is actually close to (p,0,0). To estimate p, we apply the com-
plex argument method presented in Appendix. Further, to filter any outliers,
an extended Kalman filter with a model p̈ = 0 is employed. Figure 10 reports
estimates obtained from experimental signals.
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Figure 10: Estimation of spin rate [experimental results].

FREQUENCY DETECTION METHOD

From the expressions in eqs. (16) and (17), several frequencies can be used
as sources to estimate the velocity from can be explored. We will choose to
focus on ωn >> ωp for two reasons. It is easier to measure on short time



windows (because a larger number of its periods can be observed over a given
time window) and easier to distinguish from the spin rate in the accelerometer
signal (see Figure 6-right).

The sensor signals contains the frequency p − ωn, while our interest lies in
detecting ωn. A solution is to treat the signal directly, detect p − ωn as one of
the frequencies of the signal, and deduce ωn by substracting the known value of
p (see § ). This is possible, but is not the best option because, as illustrated in
Figure 6, the frequencies peaks p − ωn < p − ωp < p of the signal are relatively
close, and the accuracy of the obtained estimate can be poor.

Several methods have been tested for frequency detection in this particular
context, see [12]. Although all produce good results on simulation data, when
employed on experimental data they are clearly outperformed by the subspace
methods. They rely on the spectral decomposition of the autocorrelation matrix.
Historically, the first subspace method was introduced by Pisarenko [26] and is
now seen as a particular case of the MUSIC method introduced by Schmidt
[28]. More details on the subspace method we used and the others we tested for
comparison are given in [14].

APPLICATION TO THE TRANSVERSE ACCELEROM-
ETER SIGNAL

The vectorspace algorithm we settled for is implemented to treat the trans-
verse accelerometer signal. Analysis of the successive maxima of the frequency
discriminating function gives the value of p − ωn. Once combined with the
estimation of p from § , this gives an estimate of ωn.

Signals measured during the flight suffer from a decreasing Signal-to-Noise
Ratio (SNR) during the flight, consistently with the observed decay of the
epicyclic motion pictured in Figure 5. We report the SNR of the 1-axis trans-
verse accelerometer, as estimated from filtering, in Figure 11a. Also, data is also
more corrupted when the shell gets further away from the receiving antenna, at
the end of the flight. A time window [8.75, 43.5] is selected. On average over the
window, 4.6% of points in the dataset are corrupted. The obtained frequency
estimate is of good quality at the beginning of the sequence and gets more noisy
at the later stages, see Figure 11b. They are fitted to a fourth order polynomial
in the time variable. The estimate is debiased so that it matches the model
predictions at the end of the window.

REFERENCE VELOCITY

For reference, we use the velocity w.r.t. the local frame which is measured, on
the shooting range with a ground-based position radar. The instant when the
shell reaches Mach 1 is easily detected on the longitudinal accelerometer, under
the form of a sudden jump of the signal. Comparing the value of 317 8 m/s
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Figure 11: Experiments on frequency detection.

obtained from the frequency estimate through the velocity model with Mach 1
(332 m/s) 11, we deduce that our velocity estimate is biased (at this particular
instant) by ≈ 13 2 m/s. Applying the inverse of the velocity model, we deduce
our frequency estimate is biased by ≈ 2 Hz, and decide to apply a constant
bias correction over the whole time interval. The result of this bias correction
is reported in Figure 11b.

DESIGN OF ANOBSERVER FOR THE VELOCITY FROM
FREQUENCY MEASUREMENTS

To estimate the translational velocity, a simple state observer can be used. It
uses the open-loop dynamics of the translation velocity, which includes h and
θ dependent terms that can be replaced with reference histories provided that
they are well synchronized, which is easily done by detecting gun fire from any
of the embedded signal, e.g. any of the accelerometers. The dynamics rewrite as
a single-state time-varying nonlinear dynamics, with a nonlinear measurement
equation (stemming from (16))

d

dt
v(t) ≜ f(v, t), y(t) ≜ g(v, t) (19)

Observer design for this nonlinear dynamics (19) seems, at first, a routine prob-
lem. The main difficulty here is that g in (19) is not one-to-one. The behavior
of aerodynamic drag-induced effects near Mach 1.0 implies that for any given t,
the mapping v 7→ ∂g

∂v (v, t) has a fixed number N of zeros (at least 2). They
represent time-varying critical velocities. Although f becomes steep near these
11assuming the altitude is equal to the reference altitude for such a 155 mm fired at nominal

speed, which is corroborated by the ground-based position radar measurements for sake of
completeness.



points, it remains monotonic w.r.t. v at all times. Some analytical study re-
veals that ∂CD

∂v remains small enough, for all v and t of interest in this study,
so that ∂f

∂v stays strictly negative and bounded [12]. Therefore, the mapping f
is a contraction in the sense of [19] and an observer is quite easy to design. To
speed-up the convergence, we make an active usage of the measurement y using
a gain having the same sign as ∂g

∂v . Following common practice, see e.g. [4, 2, 7]
and references therein, near the critical velocities, the gain is set to zero. This
defines a gain-switching observer where the gain is a function of the current es-
timate. Exponential convergence analysis is given in [12]. The obtained results
are reported in Figure 12.
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Figure 13: Velocity estimation [experimental results].

CONCLUSION AND ASSOCIATED WORKS

We have offered an efficient method to estimate the velocity of an artillery shell
in free-flight, using only 3-axis magnetometer and 3-axis accelerometer (one
axis was used only). Experimental results have been presented, and compar-
isons with high-fidelity measurements from a ground based position radar were



provided. These results stress the feasibility of the method, which uses a mini-
mal set of sensors and induces a computational burden that is compatible with
the specifications of standard embedded processors.

Two main possible follow-ups to the presented work are described next. First,
the velocity estimation obtained without any ground-based position radar offers
novel ways to calibrate shells’ aerodynamic models simply by performing shots
on the shooting range and treating on-board data. Second, the in-flight velocity
estimation is a valuable intermediate variable to estimate the the projectile’s
position in a GNSS-denied environment. Even if the accuracy of the position
will not be as good as with a GNSS receiver, it could be sufficient to make the
projectile navigate to the basket where the seeker-head will detect the target.

Another natural follow-up is to use these results to improve the estimation
of the projectile’s attitude and position [11][27][8]

*

Outline of an attitude estimation method
As explained earlier, classic attitude estimation methods can not work as-

is on-board a smart shell. We will not use any rate gyro, but when needed,
an estimate of the angular velocity will be developed (this estimation will be
referred to as a “virtual gyro”). The 3-axis magnetometer will be used as a
body-frame measurement of the Earth magnetic field, whose coordinates b0 in
the local frame are known Besides, an additional input will compensate for the
missing direction measurement usually given by the 3-axis accelerometer. The
attitude will be represented under the form of a rotation matrix R̂. A pictorial
view of the estimation method is given in Figure 14.

Attitude filtering
3-axis magnetometer, b0

R̂

(virtual gyro)

Additional input

Figure 14: Attitude Filtering proposed in the thesis.

The “virtual gyro” can be a simple estimation of the dominant roll rate,
which will be shown to be easily determined using the large oscillations observed



in both transverse accelerometers and transverse magnetometers signals12.
The norm of the velocity w.r.t. the air can be obtained through a frequency

analysis of the pitching and yawing motion induced by the aerodynamic mo-
ments. This estimation uses one of the transverse accelerometer as pictured in
Figure 15.

Velocity observer v̂
1-axis transverse accelerometer

Figure 15: Velocity Estimation.

To compensate for the missing direction, one attitude angle will be directly
estimated. Measuring only one direction makes one able to compute the attitude,
up to a rotation by an unknown angle around the single known direction. If an
additional “well-chosen” attitude angle is available, then the attitude estimation
has only two isolated solution, that can be discriminated easily. The angle under
consideration is the pitch angle. It is obtained from the estimate of the velocity
w.r.t. the air, as pictured in Figure 16, which gives an approximation of it under
the form of the slope angle. The pitch angle serves as “additional input” for the
attitude observer of Figure 14 as pictured in Figure 17.

Slope angle observerv̂ θ̂

Figure 16: Slope angle Estimation.

Attitude observerθ̂ ≈ Θ̂ R̂

(Virtual gyro)

Figure 17: Attitude Estimation.

Finally, by connecting all the estimates described above, one obtains the
overall attitude estimation methodology proposed in the thesis. It is described
in Figure 18. It uses a 3-axis accelerometer (actually, only one of its transverse
12alternatively, one could use the knowledge of the aerodynamic moments, and the fact that

3-axis accelerometer provides a good estimation of the angular velocities through that mod-
eling. Of course, using aerodynamic coefficients accordingly requires the knowledge of the
velocity.



sensors) and a 3-axis magnetometer. Experimental results obtained with this
method are given in [12].

Velocity observer Slope angle observer Attitude observer

Spin observer

2-axis transverse magnetometer

1-axis transverse accelerometer 3-axis magnetometer

Attitude

Figure 18: Attitude Estimation Algorithm from on-board sensors.
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