Mathematical Programming Approach to Hybrid Systems
Analysis and Control

Manfred Morari
Alberto Bemporad Giancarlo Ferrari Trecate
Mato Baotic, Francesco Borrelli, Francesco Cuzzola,
Tobias Geyer, Domenico Mignone, Fabio Torrisi

Automatic Control Laboratory
Swiss Federal Institute of Technology
ETH Zürich
Drivers for Control Research

Novel Applications
enabled by
• new computer power
• new actuators
• new sensors

Novel Theory
motivated by
• system integration
• system failures
Hybrid Systems

\[\begin{aligned}
S & \triangleq (X, U, \varphi), \\
X & = \{1, 2, 3, 4, 5\}, \\
U & = \{a, b, c\}, \\
\varphi : & \quad X \times U \to X \\
\end{aligned} \]

\[\begin{aligned}
\frac{dx(t)}{dt} & = Ax(t) + Bu(t) \\
y(t) & = Cx(t) + Du(t) \\
\end{aligned} \]

with

\[x \in \mathbb{R}^n, u \in \mathbb{R}^m \]

\[y \in \mathbb{R}^p \]
Hybrid Systems in Control - Motivation

• Switches *occurring naturally*

because plant operates in different modes

• Switches *introduced by controller*

to accommodate constraints: anti-windup, MPC
 to implement sequence: PLC
Switches introduced by controller: Model Predictive Control (MPC)

Theorem: The solution of the MPC problem yields a piecewise affine state feedback law.
(Bemporad, Morari, Dua, Pistikopoulos, 2000)

Example: \[y = \frac{s + 1}{s^2 + s + 2} u \quad T_s = 0.2 \]
\[-1 \leq u \leq 1 \quad x_1, x_2 \geq -0.5 \]
• Switches introduced by controller: MPC

• Explicit MPC = PWA controller

\[
\begin{cases}
-1.0000 & \text{if } \begin{bmatrix} 0.2425 & 0.0000 \\ 0.0000 & 0.2425 \\ -2.5336 & -1.3548 \\ -2.4411 & 0.5570 \\ 0.0000 & -2.0000 \end{bmatrix} x \begin{bmatrix} 1.0000 \\ 1.0000 \\ 1.0000 \\ 1.0000 \end{bmatrix} \\
[-4.3528, 1.0000] x - 2.7954 & \text{if } \begin{bmatrix} 0.0000 & 0.2425 \\ -2.0000 & 0.0000 \\ 0.6615 & -0.8424 \\ -1.1548 & 0.2635 \\ 2.4411 & -0.5570 \end{bmatrix} x \begin{bmatrix} 1.0000 \\ 1.0000 \\ -1.0000 \\ 1.0000 \end{bmatrix} \\
[-2.5336, -1.3548] x & \text{if } \begin{bmatrix} -0.6615 & 0.8424 \\ -2.5336 & -1.3548 \\ 2.5336 & 1.3548 \\ -2.0000 & 0.0000 \\ 0.0000 & -2.0000 \end{bmatrix} x \begin{bmatrix} 1.0000 \\ 1.0000 \\ 1.0000 \\ 1.0000 \end{bmatrix} \\
1.0000 & \text{if } \begin{bmatrix} 0.0000 & -2.0000 \\ -0.6615 & -1.7922 \\ -2.0000 & 0.0000 \\ 0.0000 & -2.0000 \end{bmatrix} x \begin{bmatrix} 1.0000 \\ 1.0000 \\ -1.0000 \\ 1.0000 \end{bmatrix}
\end{cases}
\]

• Closed-loop MPC
Hybrid Systems in Control - Motivation

• Switches *occurring naturally*

because plant operates in different modes

• Switches *introduced by controller*

to accommodate constraints: anti-windup, MPC
to implement sequence: PLC

• Switches *introduced by model simplification*

to realize model hierarchy: approximate
lower level dynamics by switches
Hybrid Systems in Control - Motivation

• Switches *occurring naturally*

 because plant operates in different modes

• Switches *introduced by controller*

 to accommodate constraints: anti-windup, MPC
 to implement sequence: PLC

• Switches *introduced by model simplification*

 to realize model hierarchy: approximate lower level dynamics by switches
Modeling Framework

- Complex enough to be practically important
- Simple enough to allow analysis and synthesis

"Things should be made as simple as possible but not simpler" ….Einstein

Discrete Time Piecewise Affine Systems

\[
\begin{align*}
 x(t + 1) &= A_i x(t) + B_i u(t) + f_i \\
 y(t) &= C_i x(t) + g_i \\
 L_i x(t) + M_i u(t) &\leq N_i
\end{align*}
\]
Modeling Framework

Too restrictive?

Piecewise Affine Systems, equivalent to:

- Mixed Logic Dynamical Systems
- (Extended) Linear Complementarity Systems
- Max-Min-Plus -Scaling Systems

(Heemels, De Schutter, Bemporad, 2000)

(Each framework has its advantages)

May be too general, …..
Hybrid Systems

Hybrid Control Systems

symbols δ_i \rightarrow automaton / logic \rightarrow symbols δ_0

A/D \rightarrow continuous dynamical system \rightarrow D/A

continuous states \rightarrow inputs

Sastry, Lygeros, Tomlin, Godbole, Pappas
Alur, Pnueli, Maler, Henzinger, Krogh, ...

Switched (PWA) Systems

\[
\dot{x} = \begin{cases}
 f_i(t, x, u) & \text{if } x \in \mathcal{R}_i \\
 & i = 1, \ldots, N
\end{cases}
\]

\[
\dot{x} = \begin{cases}
 A_i x + B_i u + f_i & \text{if } H_i x \leq K_i \\
 & i = 1, \ldots, N
\end{cases}
\]

Sontag, Branicky, Johansson, Rantzer,
Morse, Hespanha, van der Schaft, Tsitsiklis,
Blondel, ...

ETH Eidgenössische Technische Hochschule Zürich
From Algebraic Equalities to Mixed-Integer Linear Inequalities

<table>
<thead>
<tr>
<th>Propositional logic</th>
<th>Mixed product</th>
<th>Threshold condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic equalities</td>
<td>MI linear inequalities</td>
<td></td>
</tr>
<tr>
<td>Truth value operator: $[X] \in {0, 1}$</td>
<td>$\bar{\delta} = [\delta_1, \ldots, \delta_n]' \in {0, 1}^n$</td>
<td>$[x \leq 0] = \delta$</td>
</tr>
<tr>
<td>$[P(X_1, \ldots, X_n)] = 1$</td>
<td>$A\bar{\delta} \leq B$</td>
<td>$x \leq M(1 - \delta)$</td>
</tr>
<tr>
<td>$z = \delta x$</td>
<td>$\begin{cases} z \leq M\delta \ z \geq m\delta \ z \leq x - m(1 - \delta) \ z \geq x - M(1 - \delta) \end{cases}$</td>
<td>$x \geq \epsilon + (m + \epsilon)\delta$</td>
</tr>
<tr>
<td>$\delta \in {0, 1}$</td>
<td>$x \in [m, M]$</td>
<td></td>
</tr>
<tr>
<td>$x \in [m, M]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Williams, 1977) (Glover, 1975) (Witsenhausen, 1966)
MLD Hybrid Models

Mixed Logical Dynamical (MLD) form (Bemporad, Morari, *Automatica*, March 1999)

\[
\begin{align*}
x(t + 1) &= Ax(t) + B_1 u(t) + B_2 \delta(t) + B_3 z(t) \\
y(t) &= Cx(t) + D_1 u(t) + D_2 \delta(t) + D_3 z(t) \\
E_2 \delta(t) + E_3 z(t) &\leq E_4 x(t) + E_1 u(t) + E_5
\end{align*}
\]

\[
x, y, u = \begin{bmatrix} x^c \\ x^l \end{bmatrix}, \quad x^c \in \mathbb{R}^{n_c}, x^l \in \{0, 1\}^{n_l}, \quad z \in \mathbb{R}^{r_c}, \quad \delta \in \{0, 1\}^{r_l}
\]

Well-Posedness Assumption:

\[
\begin{align*}
\delta(t) &= F(x(t), u(t)) \\
z(t) &= G(x(t), u(t))
\end{align*}
\]

\[
\{x(t), u(t)\} \rightarrow \{x(t + 1)\} \quad \{x(t), u(t)\} \rightarrow \{y(t)\}
\]

are single valued

Well posedness allows defining trajectories in \(x\)- and \(y\)-space

ETH Eidgenössische Technische Hochschule Zürich

ifa
Major Advantage of PWA/MLD Framework

All problems of analysis:
• Stability
• Verification
• Controllability / Reachability
• Observability

All problems of synthesis:
• Controller Design
• Filter Design / Fault Detection & Estimation

can be expressed as (mixed integer) mathematical programming problems for which many algorithms and software tools exist.

However, all these problems are NP-hard.
Research Topics
(Bemporad, Borrelli, Ferrari-Trecate, Mignone, Torrisi, Morari)

Synthesis
- Control (MPC)
- Explicit PWA MPC controllers
- State estimation (MHE)/fault detection

Analysis
- Reachability / Verification
- Stability
- Observability

MLD/PWA Hybrid Systems

Modeling
- HYSDEL
- Identification

Applications
- Car suspension system
- Gas supply system
- Hydroelectric power plant
...
HYbrid System Description LAnguage (HYSDEL)

- Planned integration with CHECKMATE (CMU)
Identification of Hybrid systems

Model and datapoints

$\begin{align*}
y_{k+1} &= \begin{cases}
[0.9, 0.2, 0] [y_k, u_k, 1]' & [y_k, u_k] \in C_1 \\
[0.5, 0.4, 2] [y_k, u_k, 1]' & [y_k, u_k] \in C_2 \\
[0.3, -0.3, -5] [y_k, u_k, 1]' & [y_k, u_k] \in C_3
\end{cases}
\end{align*}$

Problem:
Identify a piecewise ARX model from a finite set of noisy measurements.

Useful when the switches between different submodels cannot be measured

The estimation of the submodels cannot be separated from the problem of estimating the regions
Identification Algorithm

Exploit the combined use of

- **clustering** ⇒ “K-means” like procedure
- **linear identification** ⇒ weighted least squares
- **classification** ⇒ linear support vector machines

G. Ferrari-Trecate, M. Muselli, D. Liberati, M. Morari,
A Clustering Technique for the Identification of Piecewise Affine Systems, HS2001, Section FA
Dialysis Therapy

- Blood urea concentration is measured

- Bi-exponential dynamic
 (Liberati et. al., 1993)
 - First part (30-40 minutes)
 Fast decrease
 - Second part (3-4 hours)
 Slow decrease

An early estimation of both the time constants and the switching time allows the assessment of the total duration of the therapy
Dialysis Therapy

Take the log of the data

\[\downarrow \]

Piecewise Affine approximation

\[\downarrow \]

Estimation of the time constants

The switching time cannot be measured directly

Depends on both the patient physiology and the clearance rate of the dialyzer
EEG Analysis

Problem: discriminate the presence of different mental tasks from EEG

Proposition: EEG in a single mental "state" \approx AR model of low order

(C. Anderson et al., 1995)

The switch between mental states cannot be measured

Hybrid identification
Application of EEG Analysis:

Brain computer interfacing

- High inter-subjects and intra-subjects variability of EEG

 Need to update models easily

- Biofeedback: the subject can be forewarned that he is changing mental state

Epileptic patients: Early seizure detection

- Prompt intervention against epilepsy crisis
The MIT's Technology Review magazine recently listed brain-machine interfaces as one of the 10 emerging technologies that will "soon have a profound impact on the economy and on how we live and work."
Research Topics
(Bemporad, Borrelli, Ferrari-Trecate, Mignone, Torrisi, Morari)

- **Synthesis**
 - Control (MPC)
 - Explicit PWA MPC controllers
 - State estimation (MHE)/fault detection

- **Analysis**
 - Reachability / Verification
 - Stability
 - Observability

- **MLD/PWA Hybrid Systems**

- **Modeling**
 - HYSDEL
 - Identification

- **Applications**
 - Car suspension system
 - Gas supply system
 - Hydroelectric power plant
 ...

(Bemporad, Borrelli, Ferrari-Trecate, Mignone, Torrisi, Morari)
Analysis vs. Synthesis

Control of stable system with input constraints

- Analysis of closed loop stability
 conservative / difficult

- Synthesis of feedback controllers with stability guarantee
 industrial routine

Laptop Computer

- Analysis: $10^{10^{20}}$ states
- 10^{100} atoms in universe (Wm. A. Wulf, President NAE)
Hybrid Systems Control Review

• Piecewise Quadratic/Linear Lyapunov functions
 Linear Matrix Inequalities to characterize stability and performance

• Pontryagin Maximum Principle

• Hamilton Jacobi Bellman equation

• Parametric Programming

• …….

Bemporad, Berardi, Boyd, Borrelli, Branicky, Buss, Burlirsch, De Santis, Di Benedetto, Hassibi, Hedlund, Johansson, Kratz, Lygeros, Mitter, Piccoli, Rantzer, Riedinger, Sastry, Styrk, Sussmann, Tomlin, Zann
Receding Horizon Control

- Optimize at time \(t \) (new measurements)
- Only apply the first optimal move \(u(t) \)
- Repeat the whole optimization at time \(t + 1 \)
- Advantage of on-line optimization \(\Rightarrow \) FEEDBACK
Model Predictive Control

\[J_{opt} = \min_{U} J(U, x(t)) \triangleq \sum_{k=0}^{N} \| Q(x(t + k|t) - \bar{x}) \| + \| Ru(t + k) \| \]

subject to \(u_{\min} \leq u(t + k) \leq u_{\max} \)
\(x_{\min} \leq x(t + k|t) \leq x_{\max} \)

system dynamics
\(U \triangleq \{ u(t), u(t + 1), \ldots, u(t + N_u) \} \)

- **Objective**: determine the optimal input sequence \(u(t), \ldots, u(t + k) \) driving the system from \(x(t) \) to \(\bar{x} \), compatibly with the limits on \(u(t + k), x(t + k|t) \)
- **Apply** the first input move \(u(t) \) according to RHC
- **Repeat** the optimization at time \(t + 1 \)
Model Predictive Control

\[J_{opt} = \min_U J(U, x(t)) \triangleq \sum_{k=0}^{N} \|Q(x(t + k|t) - \bar{x})\| + \|Ru(t + k)\| \]

subject to \(u_{\min} \leq u(t + k) \leq u_{\max} \)
\(x_{\min} \leq x(t + k|t) \leq x_{\max} \)
system dynamics
\(U \triangleq \{u(t), u(t + 1), \ldots, u(t + N_u)\} \)

- **Linear** Model and 2-norm performance index
 \(\Rightarrow \) Quadratic Program
- **Linear** Model and \(\infty \)-norm performance index
 \(\Rightarrow \) Linear Program
- **Hybrid** Model and \(\infty \)-norm performance index
 \(\Rightarrow \) Mixed Integer Linear Program
Theorem: The solution of the MPC problem yields a piecewise affine state feedback law

\[J_{opt} = \min_U J(U, x(t)) \triangleq \sum_{k=0}^{N} \| Q(x(t+k|t) - \bar{x}) \| + \| R u(t+k) \| \]
subject to \[u_{\min} \leq u(t+k) \leq u_{\max} \]
\[x_{\min} \leq x(t+k|t) \leq x_{\max} \]
\[\text{system dynamics} \]
\[U \triangleq \{ u(t), u(t+1), \ldots, u(t+N_u) \} \]

(Bemporad et. Al., 2000; Bemporad, Borrelli, Morari, CDC 2000 TuM05-1, WeM01-1)
The solution of the MPC can be computed explicitly

\[J_{opt} = \min_U J(U, x(t)) \triangleq \sum_{k=0}^{N} \| Q(x(t + k|t) - \bar{x}) \| + \| Ru(t + k) \| \]

subject to \(u_{\text{min}} \leq u(t + k) \leq u_{\text{max}} \)
\(x_{\text{min}} \leq x(t + k|t) \leq x_{\text{max}} \)

system dynamics
\(U \triangleq \{u(t), u(t + 1), \ldots, u(t + N_u)\} \)

- The solution of the MPC can be computed explicitly
- Off-line optimization: optimize for all \(x(t) \)

\[\Rightarrow \text{Multi-parametric Program} \]

Explicit solvers for QP, LP and MILP are available

(Bemporad et. Al., 2000; Bemporad, Borrelli, Morari, CDC 2000 TuM05-1, WeM01-1)
MPC for MLD Systems

Example: Alternate Heating of Two Furnaces

(Heidlund, Rantzer CDC1999)

- Objective:
 - Control the Temperature of Two Furnaces

- Constraints:
 - Switching Control between three operation modes:
 1- Heat only the first furnace
 2- Heat only the second furnace
 3- Do not heat any furnaces

Amount of energy u_0 fixed

Can be parametrized!

\[
\begin{align*}
x &= \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x(t) + B_i u_0 \\
B_i &= \begin{cases}
\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} & \text{if first furnace heated} \\
\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} & \text{if second furnace heated} \\
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} & \text{if no heating}
\end{cases}
\end{align*}
\]
Alternate Heating of Two Furnaces

- MLD system
 \[u(k) = \begin{cases}
 [1 \ 0 \ 0] & \text{if first furnace heated} \\
 [0 \ 1 \ 0] & \text{if second furnace heated} \\
 [0 \ 0 \ 1] & \text{if no heating}
 \end{cases} \]

- mp-MILP optimization problem
 \[\min \left\{ v_0^2 \right\} \quad J(v_0^2, x(t)) \triangleq \sum_{k=0}^{2} \| R(v(k+1) - v(k)) \|_{\infty} + \| Q(x(k|t) - x_e) \|_{\infty} \]

\[\begin{align*}
1 & \leq x_1 \leq 1 \\
1 & \leq x_2 \leq 1 \\
0 & \leq u_0 \leq 1
\end{align*} \]

- Computational complexity of mp-MILP

<table>
<thead>
<tr>
<th>State (x(t))</th>
<th>3 variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (u(t))</td>
<td>3 variables</td>
</tr>
<tr>
<td>Aux. binary vector (\delta(t))</td>
<td>0 variables</td>
</tr>
<tr>
<td>Aux. continuous vector (z(t))</td>
<td>9 variables</td>
</tr>
</tbody>
</table>

linear constraints	168
continuous variables	33
binary variables	9
parameter variables	3
time to solve the mp-MILP	5 min
Number of regions	105
mp-MILP Solution

\[u_0 = 0.4 \]

\[u_0 = 0.8 \]
Characteristics of the Solution

\[u(k) = F_k x(k) + G_k \iff x(k) \in \mathcal{X}_k, \; \mathcal{X}_k = \{ x \mid L_k x \leq M_k \} \; \; k = 0, \ldots, N. \]

- Piecewise affine control law, polyhedral regions
- Simultaneous and automatic partitioning and control law synthesis
- Stability guarantee (PWL Lyapunov function)
- On-line implementation does not require storage of all \(\mathcal{X}_k \)
Research Topics
(Bemporad, Borrelli, Ferrari-Trecate, Mignone, Torrisi, Morari)

Synthesis
- Control (MPC)
- Explicit PWA MPC controllers
- State estimation (MHE)/fault detection

Analysis
- Reachability / Verification
- Stability
- Observability

MLD/PWA Hybrid Systems

Modeling
- HYSDEL
- Identification

Applications
- Car suspension system
- Gas supply system
- Hydroelectric power plant
 ...
Applications

• Traction control (Ford Research Center)
• Gas supply system (Kawasaki Steel)
• Batch evaporator system (Esprit Project 26270)
• Anesthesia (Hospital Bern)
• Hydroelectric power plant
• Power generation scheduling (ABB)
Analgesia Control during Anesthesia
Clinical Goals

- P must have priority
- P in range rather than tracked
- aggressive action upon constraint violation
- constraints prioritization:
 1. hypotension $P > P_{low}$
 2. overdosing $C < C_{high}$
 3. hypertension $P < P_{high}$
 4. underdosing $C > C_{low}$

$C = \text{Drug concentration}$
$P = \text{Blood Pressure}$
Controller Implementation

- Explicit MPC
 - Control horizon: 3
 - Dimension: 8
 - Prediction horizon: 10
 - Weight P: 150
 - Number of regions: 127
 - Weight C: 1
Case Study I

[Graph showing time series data with annotations: No overdosing, Dynamic trade-off, Strong stimulus, Artifacts, and flow rate.]
In the Operating Room

1. Induction
2. Artifact detection
3. Intense stimulation
Applications

• **Traction control** (Ford Research Center)

• **Gas supply system** (Kawasaki Steel)

• **Batch evaporator system** (Esprit Project 26270)

• **Anesthesia** (Hospital Bern)

• **Hydroelectric power plant**

• **Power generation scheduling** (ABB)
Optimization of Combined Cycle Power Plants

(ETH-ABB joint project)

Deregulated energy market
- electricity/gas demands and prices change rapidly

Optimize the plant hourly

Optimization

Maximize the profit while fulfilling the operating constraints
Topologies of Combined Cycle Power Plants

Simple plant:

- Two turbines and two binary inputs (on/off commands)

Other plants:

- Several gas/steam turbines, firings ...

The complexity of the example is scalable!
Optimization of Combined Cycle Power Plants

Logic
- Gas/Steam turbines can be switched on/off
- Different types of startup procedures
- Minimum up/down times

Continuous
- Normal operation: Dynamics of the energy/steam production
- Constraints on the production capabilities

Hybrid model

Economic optimization ⇒ Predictive control for hybrid systems
Conclusions

• Hybrid system models are important

• Control Theory ⇔ Computer Science

• Computations must be an inherent part of any new theory