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Vacuum-field-induced THz transport gap
in a carbon nanotube quantum dot
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The control of light-matter interaction at the most elementary level has become an important

resource for quantum technologies. Implementing such interfaces in the THz range remains

an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube

quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep

strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the

vacuum fluctuations of the THz resonator. This is directly confirmed by transport mea-

surements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous

emission in atomic physics opens the path to the readout of non-classical states of light using

electrical current. This would be a particularly useful resource and perspective for THz

quantum optics.
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There are now many examples of light-matter interfaces
coupling coherently single atoms (real or artificial) and
single photons throughout most of the electromagnetic

spectrum from the microwave to optical regions. A notable
exception is the terahertz range for which only collective modes
of matter have very recently been coupled ultra-strongly to
light1,2. Coupling strongly an individual charge dipole to light
requires the use of the electrical component of light3. Despite the
fact that the electrical coupling is very often described by a dipole-
electric field coupling, it is important to stress that the micro-
scopic origin of this phenomenon is a coupling of the electron
density to the electric field of the form4:

Hdot�cavity ¼ e
Z

d3rρ̂ðrÞvðrÞVrmsðaþ ayÞ ð1Þ

where ρ̂ðrÞ is the electronic density, v(r) the distribution func-
tion of the electric field and Vrms(a+ a†) is the quantized
electric field corresponding to a cavity mode of frequency fcav,
with Vrms the amplitude of the vacuum fluctuations. The above
expression bridges circuit QED and cavity QED setups. Since it
is derived from the minimal gauge invariant form of the light-
matter hamiltonian, it contains all possible electrical coupling
schemes. The density operator can be written using the general
expression ρ̂ðrÞ ¼ ΨyðrÞΨðrÞ, where Ψ(r) is the field operator of
the particles (electrons or holes) interacting with the electro-
magnetic mode.

The special case of one electron shared between two electronic
orbitals allows one to recast the two important forms, only
apparently different, of electric coupling schemes. Defining two
orbital wave functions ϕ1(2)(r) and annihilation operators c1(2),
we can write Ψ(r)= ϕ1(r)c1+ ϕ2(r)c2. The coupling hamiltonian
Hdot−cavity takes the simple form:

Hdot�cavity ¼ ð2πgln̂þ 2πgt σ̂xÞðaþ ayÞ ð2Þ
where n̂ ¼ cy1c1 þ cy2c2 and σ̂x ¼ cy1c2 þ cy2c1 (we have assumed,
for simplicity, that the two orbitals couple to the field with the
same strength). The first term is the longitudinal coupling of the
Franck-Condon5–7 problem familiar to the field of quantum dots
and molecules coupled to quantized vibrations or, more generally,
optomechanics8,9. The second term is the transverse coupling, as
presented in the quantum optics field and in particular to those
studies exploring the ultra-strong coupling between light and
matter. However, both terms coexist in general and are expected
to lead to strong modifications of both light and matter when the
g factors are comparable to the cavity frequency. One can char-
acterize the strength of the coupling by dividing gl/t by the bare
frequency of the electromagnetic mode fcav. We define the
dimensionless parameters ~g ¼ gl=f cav and �g ¼ gt=f cav .

In the case of strong hybridization between light and matter,
one expects changes in the electronic transport properties. This
has recently attracted considerable interest in the limit of many
particles or collective modes10–15. In these works, the large par-
ticle density helps to reach strong light-matter hybridization. This
contrasts with a single electron occupying a single orbital that we
study here. It can be recast with the above paradigm. The orbital
of the dot plays the role of orbital 1 and the orbitals of the
reservoir electrons play the role of orbital 2 (for simplicity, the �g
term can be disregarded due to the weak overlap between the dot
orbital and the reservoir orbitals). The dipoles sketched in Fig. 1a,
b are thus tunneling dipoles. In such a setup, it has been predicted
that a band gap equal to the energy of the mode can emerge6

when ~g � 1, a regime called deep-strong coupling regime. This
situation can be understood with a simple tunneling argument.
As sketched in Fig. 1a, for strong hybridization of light and
matter, the matter part of the wave function hybridizes with that
of free electrons as long as the energy of the electrons is smaller

than the energy of the mode5–7. For ~g � 1, a strong suppression
of the conductance below the photon energy is predicted. Inter-
estingly, this phenomenon should occur even when the cavity is
completely in the vacuum state of the electromagnetic field. This
is a result of quantum fluctuations of the cavity field which con-
tinuously “push” the electronic wave function away from the
resonant conditions that permit electronic transport. Such a
phenomenon is optimum until tunneling events start to emit 1,
2,... n photons into the cavity. Each multi-photon process con-
tributes to ~gn to the current and peaks at eVsd= nhfcav (see
Methods). The n= 1 process is sketched in Fig. 1b. Below this
threshold, the conductance is predicted to be strongly
suppressed6,7. This explains qualitatively the prediction of a gap
in the matter spectrum and can be seen as the counterpart of
inhibition of spontaneous emission in atomic physics. Note,
however, that in a longitudinal coupling scheme described above,
we do not expect a normal mode splitting like in the conventional
case as the corresponding coupling term (with prefactor gl)
commutes with the unperturbed quantum dot hamiltonian.
Finally, it is worth mentioning that the internal dot-dot dipoles
corresponding to the transverse coupling gt correspond a priori to
higher energies than those of the resonator (in the several THz
ranges). Therefore, we do not expect to be sensitive to the
transverse coupling in our experiment, as specified above,
although the two coupling schemes should be of the same order
of magnitude.

Here, we directly observe such a phenomenon by embedding
a quantum dot in a THz resonator. By engineering a deep-strong
coupling between a single electron trapped in the carbon
nanotube quantum dot and the THz cavity, we induce an energy
gap of 2.6 meV ≈ 0.6 THz that is directly visible in the con-
ductance of the electronic system. Such a gap is observed in 3
different devices all realised with a similar nanolithography
layout. The suppression of the conductance within ±2.6 mV
allows us to extract ~g ≳ 1, placing our single electron system in
the deep-strong coupling regime.

Opening a vacuum field-induced THz gap requires building an
experimental system with stringent requirements. First, one has
to isolate a single electron with confinement energy in the THz
range. Second, one has to engineer an optical mode highly
focused on the electronic wave function. Carbon nanotubes are a
particularly well suited material as they can form clean quantum
dots with energy level spacing ΔE naturally lying in the THz
range for system dimensions of a few hundreds of nanometres16.
They are also particularly well suited to be coupled to the elec-
tromagnetic field as recently demonstrated in microwave
measurements17,18.

Results
Our experimental setup is depicted in Fig. 2. The QDs are realised
by transferring the CNTs into the lateral square of our cavity and
realising the source/drain contacts and the top gates. One of the
latter is connected to the “finger” coming from a Split Ring
Resonator(SRR) (see Fig. 1c, d for an example of such device,
more details in the methods) and can act both as DC- and AC-
gate (see Fig. 1d), since the THz does not propagate through the
finger. The THz cavity, shown in the inset of Fig. 2a), is an
optimised version of a well-established THz SRR, widely inves-
tigated in the metamaterial community19–23 and already used for
various experiments24–26. This LC-mode was characterised via
transmission measurements with terahertz time-domain spec-
troscopy (TDS) at low-temperatures ( ≈10K) on a separate sample
containing an array of the designed cavities: the LC-mode has a
frequency of 0.62 THz and a quality factor of about 5, as shown in
Fig. 2a. This is consistent with finite-elements simulations
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(COMSOL Multiphysics) which allow us to plot the mode profile
(see Fig. 2b).

Our main findings are presented in Fig. 3 and correspond to
three different devices, each coupling a THz cavity to CNT-QDs,
all essentially identical. The clearest conductance map is pre-
sented in Fig. 3a. The conductance at large bias is large for a
quantum dot, of the order of 0.4 × e2/h, whereas there is a stripe
of strong suppression at low bias where the conductance stays
roughly below 0.05 × e2/h. This signals a clear gap in the spectrum
of the quantum dot from about −2.6 mV (0.63 THz) to +2.6 mV
throughout the plotted region. Faintly visible in light blue (below
0.05 × e2/h) is the remainder of the conductance of the uncoupled
electronic states which would constitute the unperturbed cou-
lomb diamonds (highlighted by black dashed lines). The nor-
malised conductance Gnorm vs source-drain bias at fixed gate
voltage is shown in Fig. 3b, c (vertical cut of the map in Fig. 3a),
along with representative traces of the gaps in the other samples.
It is striking that all gap edges approximately collapse onto each
other and correspond to the energy of the cavity mode, as cali-
brated from the direct THz transmission measurements. For
samples A and B, the gap is symmetric and both positive and
negative gap edges are visible as shown in figure Fig. 3b. Sample B
can also display negative differential resistance after the gap edge
(see Supplementary Note 1) which we attribute to interaction
effects and multiple levels participating to transport at large bias.
However, the suppressions of conductance for Sample B and
Sample A below ±2.6 mV are qualitatively the same as one can see
from Fig. 3b comparing the dark blue and orange curves (samples
A and B respectively). For sample C, only the positive gap edge is
visible as shown in figure Fig. 3c (see Supplementary Note 1 for
the full conductance maps of samples A, B, and C). We attribute

this effect to the asymmetry of tunneling between the left and the
right contact, which can be quantified by ΓL and ΓR in the tun-
neling model shown in the methods. Importantly, devices B and
C have also large maximum conductances (respectively 0.3 × e2/h
and 1.7 × e2/h). This means that below the energy corresponding
to the cavity frequency, the quantum dots, initially well coupled
to the leads, become essentially decoupled from the leads on a
wide gate voltage range. In order to get further insights on our
findings, we use a theory based on non equilibrium Green’s
functions7. We use that theoretical approach rather than a master
equation6 since our experiments are carried out in the regime
ΓL,R≫ kBT, where T is the temperature. It is interesting to note
that the theory, presented in Fig. 3e is able to reproduce quali-
tatively the observed gap as well as the two-photon peak present
for sample A at twice the cavity frequency. As shown in Fig. 3e,
the theory also predicts asymmetries in the gap edges but they are
not as strong as in the data of sample C, which we attribute to our
mean-field treatment for the electron-electron interactions.
Nevertheless, the theory is also able to reproduce qualitatively the
2D color scale plot as illustrated for sample A. In particular, the
gap edge is highlighted by the transition from blue to red color of
the conductance map, as shown in Fig. 3d. It seems that the
overall curve better matches for ~g � 2 than for higher ~g (we show
that ~g ¼ 5 is markedly different from our findings for the overall
shape, although the gap is more pronounced than for lower
coupling values). This confirms our estimate of deep strong
coupling with ~g ≳ 1.

The presence of such a gap in the transport characteristics of
the dot is a qualitative signature that the normalised coupling
strength between the electronic level and the THz mode ~g is
greater or equal to unity. It was first predicted by Koch, Von
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Oppen, and Andreev6 in the context of the Franck-Condon
blockade where a single quantum dot is deep-strongly coupled to
a vibrational mode. The form of the electron-boson coupling used
in this reference is in fact very general and has been the subject of
many theoretical works. This configuration directly maps to our
problem by simply replacing the vibrational mode by an elec-
tromagnetic mode. The theory predicts that the conductance
should be exponentially suppressed as e�~g2 with respect to the
high bias conductance (see equation (27) in Methods). Interest-
ingly, the theory presented in the methods section also predicts
the step height for the first step as a function of ~g, fcav and ΓL/R.
From the traces in Fig. 3b, the ratio between the gap edge height
and that of the subgap conductance peaks can be estimated
conservatively to be about 5 for samples A and B. From the
theory, this gives ~g ≳ 1 which is close to the value stated above.
The investigated systems are therefore in the deep strong cou-
pling regime with an estimated coupling strength comparable to
the best ones reported up to date in the many-particle regime25.
In addition, our system involves a single electronic transition and
not an ensemble as presented until now in the literature. Using
ΓL/R ≈ 1.2 meV and 0.9 meV extracted from the full width at half
maximum of the Coulomb peaks for sample A and B, we can then
derive cooperativity of C � 2~g2 ´ f 2cav=κΓ ≳ 50 for the single
electron, where κ is the half-width at half maximum of the cavity
measured by TDS to be 2π × 0.06 THz and Γ= ΓL= ΓR is the
width of the conductance peaks in the symmetric case. In this

respect, one should note that the optical mode energy of 2.6 meV
corresponds to a mode temperature of 30 K. The measurements
were performed at temperatures between 50 and 300 mK, in the
dark. The optical mode is therefore in its ground state (thermal
occupation ntherm < <1) and only photons available are provided
by the vacuum fluctuations.

Discussion
Why can our system be placed in the deep-strong coupling
regime? As shown in equation (1), the main features which set
the magnitude of the coupling strength are the zero-point
fluctuation voltage of the field Vrms and the overlap between the
wave function of the electron and the photonic pseudo-
potential distribution v(r) characterized by the integral ~v ¼R
d3rρðrÞvðrÞ (see equation (1)). In our case, the AC-electric

potential is strongly focused onto the dot owing to the AC top
gate as shown in the electromagnetic simulations of Fig. 2b, c,
similar to GHz experiments17,18. This leads to ~v � 1, in contrast
to the other THz investigations where ~v � 1, as the full vacuum
fluctuation voltage of the cavity field can be coupled to the
electronic orbitals of the dot. Interestingly, the electromagnetic
simulation shows that without the nanotube, the zero-point
fluctuations of the cavity electric potential can be very large, of
about 200−400 μeV. In such conditions, the nanotube and the
cavity cannot be considered separately and the matter system is
expected to strongly modify the geometry of the mode.
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Electron-electron correlations play a crucial role in screening
processes and our findings suggest that they could boost ~g
further into the deep strong coupling regime. Finally, it is
interesting to note that ~v is a priori gate voltage-dependent
which can tune the wave function position as sketched in
Fig. 2c. In the “ON” state, we have ~v � 1 whereas in the “OFF”
state, we have ~v � 1.

Our system is a promising platform to implement quantum
optical protocols and experiments in the THz range using solid-
state devices. First, it could generally enable the direct investi-
gation of the light-matter interaction in the non-perturbative
limit27,28 and of recently predicted effects such as ground state
luminescence29. It could also be used to study the interplay
between Coulomb blockade and quantum properties of the light
in the cavity, e.g. its squeezing30,31. Additionally, it can be
interesting to use the longitudinal coupling for charge read-out in
the THz range by mixing the cavity field with free-space coherent
THz light as recently proposed in the GHz range for qubit
readout. Finally, it is interesting to note that the theory, for
example in formula (22), predicts that each Fock state present in
the vacuum field should have a specific contribution to the cur-
rent. This suggests that our setup can be used as a photon number
resolved detector (The value of the Γ’s would need to be reduced
in order to better resolve each Fock state peak). One can also
anticipate from this analogy that the full Wigner function of the
field could be reflected in higher-order moments of the current.
In this case, this approach would be useful for detecting any non-
classical states of THz light.

Methods
Experimental. The THz-SRRs were realised via electron-beam lithography (EBL)
and reactive-ion etching onto a 100–150 nm layer of Nb evaporated onto
500 nmSiOx/500 μm high-resistivity Si substrate. The dimensions of the ground
plane opening for the SRR are 20 μm× 34 μm. The size of the gap is 4 μm (see
Fig. 1a). Our CNTs are grown by chemical vapor deposition from H2 and CH4 onto
a separate quartz chip and then stamped to the sample area mentioned in the main
text. They are localized with respect to alignment markers with a scanning electron
microscope. The nanotubes used in this study where metallic or small bandgap
semiconducting single-wall carbon nanotubes as characterized from transport
measurements. Our growth recipe predominantly produces single-wall carbon
nanotubes with a low density of bundles. The contacts and gates are designed by
EBL followed by e-beam evaporation and lift-off of a 70 nm-thick Pd layer and of a
5 nm oxidised Al layer capped by a 40/20 nm thick Al/Pd layers, respectively.
Current and conductance are measured simultaneously in the samples with a trans-
impedance amplifier, with gain 107 V/A, a DC-source, and a lock-in amplifier.
Samples B and C were measured in a 3He cryostat (base temperature 230 mK),
sample A in a dilution refrigerator (at 50 mK).

We modify the layout of the SRRs by opening a square on the side (size
20 μm× 20 μm), where we transfer the CNT to realise the QDs. From the middle of
the capacitor of the SRR, where the electric field of the main (LC) resonance is
concentrated, a finger protrudes to the QD area. Such modifications keep the
general properties of the SRR intact, in the same way as done for other SRR-based
optoelectronic devices. Electrically, the conductive plane in which the SRR is etched
acts as a ground plane and keeps the QD protected from stray currents and fields.
As discussed in the literature20,21, such cavity is linearly polarised and the LC-mode
is the lowest in energy and the one with the best quality factor (hence we disregard
the higher-order more delocalised modes in our analysis).

Non equilibrium Green’s function theory for the vacuum field gap. In this
section, we present the theoretical description of photon-assisted transport through
a multi-orbital quantum dot, which we have used to interpret our data. Many
references have used a sequential tunneling description of electronic transport,
which is valid for a temperature much larger than the tunneling rates between the
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dot and its normal metal reservoirs. However, our experiment seems to be in the
opposite regime since the width of the conductance peaks in our data is much
larger than the temperature. This is why we have chosen to use a description of
electronic transport that uses the non equilibrium Keldysh Green’s functions of a
multi-orbital quantum dot. Related approaches for the single orbital case were
presented in refs. 32,33.

We present here a first approach intended to capture the essence of our
observations. For simplicity, we disregard the effect of Coulomb repulsion in the
dot. In the deep Coulomb blockade regime which is observed in our samples, this
should essentially lead to qualitative differences in the I− V curves, like for
instance a shift in the position of the resonant lines in the conductance maps versus
bias and gate voltages. A division by 2 of the amplitude of the conductance peaks
also occurs due to Coulomb blockade, but this can be mimicked in the non-
interacting case by using a spinless model. Hence, we have chosen to use the
spinless Hamiltonian of a quantum dot connected to two spinless fermionic
reservoirs L and R and coupled to a microwave cavity with frequency fcav, which we
write:

Ĥ ¼ Ĥel þ Ĥcav þ∑
d
2πglðây þ âÞbcydbcd ð3Þ

with

Ĥel ¼ ∑
d
εdbcydbcd þ∑

k
εkĉ

y
k ĉk þ ∑

k;d
ðV�

kdbcyd ĉk þ Vkdĉ
y
kbcydÞ

and

Ĥcav ¼ 2πf cav â
yâþ∑

β
ωβb

y
βbβ þ Uβðây þ âÞðbyβ þ bβÞ ð4Þ

Above, εd is the orbital energy of the dot level d with creation operator bcyd , and εk is

the orbital energy of the level k with creation operator bcyk in the fermionic reservoir
L or R. We denote by Vkd the tunnel hoping constant between orbitals d and k, ây

the creation operator for a cavity photon. Uβ is the coupling constant between the
cavity and the modes β of the cavity damping bath with creation operators byβ .
Finally, gl is the longitudinal coupling between the dot and the cavity electric field.
We disregard the other types of light-matter couplings which we expect to be much
weaker. To understand the effect of the light-matter coupling gl, it is convenient to
perform a polaron transformation6, such that for any operator Â, one has:

Â ¼ eSÂe�S ð5Þ
with

S ¼ ∑
d
~gðay � aÞbcydbcd ð6Þ

and

~g ¼ gl
f cav

ð7Þ

In this framework, the operators bcd and â are transformed into

bcd ¼ bcdX̂ ð8Þ
and

â ¼ â� gl
f cav

∑
d
bcydbcd ð9Þ

with X̂ ¼ expði~gP̂Þ and P̂ ¼ �iðâ� âyÞ. The system Hamiltonian Ĥ is transformed
into:

Ĥ ¼ ∑
d
�εydbcydbcd þ∑

k
εkĉ

y
k ĉk þ ∑

k;d
ðV�

kdbcyd ĉk þ Vkdĉ
y
kbcdÞ þ Ĥcav ð10Þ

with �εd ¼ εd � 2πg2l
f cav

and Ĥcav defined by Eq. (4). Above, the effect of S on the terms

in Uβ is disregarded, which is justified for small enough values of Uβ (see ref. 33).

We also disregard interaction terms in � 2πg2l
f cav

bcydbcdbcyd0bcd0 for the same reason as we

disregard Coulomb interactions: these terms will essentially shift the position of the
resonant conductance lines in the gate-voltage/bias-voltage two-dimensional maps.
Since the operators ĉk related to the states in the electronic reservoirs are
unchanged when the transformation S is applied (ĉk ¼ ĉk), one can calculate the

current through the dot as IC ¼ �e d
dt∑

k
ĉyk ĉk

D E
Ĥ
where hiĤ denotes the statistical

average for a system whose dynamics is described by Ĥ. For simplicity, we assume
that the hoping constant Vkd is independent from d and just depends on whether
the level k belongs to the left or right reservoir (Vkd= VL(R) for k∈ L(R)). In this
case, one can define tunnel rates ΓLðRÞ ¼ 2πjVLðRÞj2ρLðRÞ, with ρL(R) the densities of

states in the L(R) reservoirs. Since fbcyd;bcdg ¼ 1, we will use the general
expression32,33

I ¼ e
_
i
Z

dω
2π

ΓLΓR
ΓL þ ΓR

ðf LðωÞ � f RðωÞÞ∑
d

G>
d ðωÞ � G<

d ðωÞ� �
ð11Þ

to express the current I through the dot, with

G<
d ðtÞ ¼ i bcydð0ÞbcdðtÞD E

Ĥ
ð12Þ

and

G>
d ðtÞ ¼ �i bcdðtÞbcydð0ÞD E

Ĥ
ð13Þ

Note that, strictly speaking, Eq. (11) is exact only in the absence of coupling to the
cavity34,35 (~g ¼ 0). In principle, due to the dressing of the bcd term by X̂ and due to
the term Ĥcav in (10), some extra contributions should be added to Eq. (11).
However, the cavity has a dissipation rate that is much smaller than the one of the
electronic system, and thus a much slower evolution. In this limit, one can perform
a Born-Oppenheimer approximation which consists in calculating the electronic
circuit dynamics independently from the one of the cavity, with X̂ treated as a
“parameter”. This approximation, which is equivalent to disregarding the
component Ĥcav in Eq. (10) to calculate I, leads to Eq. (11) for a finite electron/
photon coupling (~g ≠ 0).

Using the definition (8), equations (12) and (13) give

G<
d ðtÞ ¼ i bcydð0ÞbcdðtÞXyð0ÞXðtÞ

D E
Ĥ

ð14Þ

and

G>
d ðtÞ ¼ �i bcdðtÞbcydð0ÞXðtÞXyð0Þ

D E
Ĥ

ð15Þ

In equation (11), the Fermi occupation functions of the states in the reservoirs L
and R can be expressed as

f LðωÞ ¼
1

1þ exp½ð_ω� eVxÞ=kBT�
and

f RðωÞ ¼
1

1þ exp½ð_ωþ eVð1� xÞÞ=kBT�
where x∈ [0, 1] is a number that takes into account how the voltage drop V is
distributed along the dot circuit, depending on the capacitances of the tunnel
junctions between the dot and the reservoirs. We now use an approximation of
GdðtÞ in the Born-Oppenheimer spirit, i.e.

G<
d ðtÞ ¼ i bcydð0ÞbcdðtÞD E

Ĥ
Xyð0ÞXðtÞ� �

Ĥ ð16Þ

and

G>
d ðtÞ ¼ �i bcdðtÞbcydð0ÞD E

Ĥ
XðtÞXyð0Þ� �

Ĥ ð17Þ

We furthermore treat the averages hiĤ in the above expressions “at lowest order in
~g” i.e. by treating the electronic and photonic dynamics independently due to the
limited value of ~g. In this framework, ~g is involved only in the definition of the X
and X† operators. We thus obtain

G<
d ðtÞ ’ G< ðtÞ Xyð0ÞXðtÞ� �

Ĥcav
ð18Þ

and

G>
d ðtÞ ’ G> ðtÞ XðtÞXyð0Þ� �

Ĥcav
ð19Þ

with G< ðtÞ ¼ i bcydð0ÞbcdðtÞD E
Ĥel

and G> ðtÞ ¼ �i bcdðtÞbcydð0ÞD E
Ĥel

.

It is important at this point to comment on the approximations made so far. Up
to equation (17) we use the polaronic transformation which is exact and therefore
is still valid in the deep strong coupling regime. The polaron transformation
modifies the tunnel terms in hamiltonian (10) by dressing the coupling term with
the displacement operator e~gða�ayÞ , from which stems the exponential quenching of
the Γ’s and therefore the conductance in the vacuum state of the electromagnetic
mode as we describe below. In order to calculate the full conductance map, one
needs to treat the multiphoton processes present in the expansion of the
displacement operator. This can be done essentially in a non-perturbative manner
using a master equation formalism like in ref. 6. This limit is restricted to Γ≪ kBT
and therefore does not apply to the regime of our experiment, unfortunately.
Furthermore, we would like to emphasize that we do not neglect interactions
between electrons but rather treat them in a mean-field theory. As shown by Meir
and Wingreen in ref. 34 and35, the equation of motion technique for non
equilibrium Green’s functions which we use here is able to describe the Coulomb
blockade and the renormalization of the energy levels by interactions. It can be
even modified to treat strong correlation and Kondo physics. The equation of
motion produces a hierarchy of correlators which must be truncated in order to get
a closed set of equations. Coupling to bosons induces further complexity but ref. 7

and33 show how to do this. This implies further truncation between the fermion
and boson correlators. The validity of the approximations has been studied in ref. 7

and33 to some extent and shows that the EOM can work for large Gamma, U, and
g. Although our theory could include further correlation effects such as energy
renormalization and Kondo physics, it is a good starting point for the analysis. We
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are therefore confident that the theory used in our work allows us to reliably
estimate ~g even in the non-perturbative regime.

For temperatures Tmuch smaller than the cavity mode frequency fcav, the cavity
correlators Xyð0ÞXðtÞ� �

~g¼0 can be calculated for a cavity in its fundamental state as

XðtÞXyð0Þ� �
Ĥcav

¼ e�~g2 e~g
2e�i2πf cav t ¼ e�~g2 ∑

k

~g2ke�ik2πf cav t

k!
ð20Þ

Xyð0ÞXðtÞ� �
Ĥcav

¼ e�~g2 e~g
2ei2πf cav t ¼ e�~g2 ∑

k

~g2kei2πf cav t

k!
ð21Þ

By substituting Eqs. (18)–(21) into Eq. (11) we obtain the expression

IC ¼ e
_
ie�~g2

Z þ1

�1

dω
2π

ΓLΓR
ΓL þ ΓR

ðf LðωÞ � f RðωÞÞ∑
k;d

~g2k

k!
G>
d

� ðω� kω0Þ � G<
d ðωþ kω0Þ

� �
ð22Þ

Above, the lesser and greater Green’s functions of the dot can be calculated by
using the Keldysh description of quantum dot circuits as:

G>
d ðωÞ ¼ �i ΓLð1� f LðωÞÞ þ ΓRð1� f RðωÞÞ

� �
ðω� �εdÞ2 þ ðΓ=2Þ2 ð23Þ

and

G<
d ðωÞ ¼ Σ_ðωÞ i ΓLf LðωÞ þ ΓRf RðωÞ

� �
ðω� �εdÞ2 þ ðΓ=2Þ2 ð24Þ

with Γ= ΓL+ ΓR. We assume that the levels �εd (or εd) are separated by a level
spacing Δ. We have used equations (22), (23) and (24) to plot Fig. 3d, e with ΓL(R)/
fcav= 0.1, ~g ¼ 2, x= 0.7, Δ/fcav= 0.6 and T/fcav= 0.05. For Fig. 3e we have used the
same parameters and εd/fcav= 0.4. Note that for ~g ¼ 0, one recovers the standard
expression of the current through an independent dot34,35, i.e.

IC ¼ e
_
i
Z þ1

�1

dω
2π

ΓLΓR
ΓL þ ΓR

ðf LðωÞ � f RðωÞÞ∑
d

G>
d

� ðωÞ � G<
d ðωÞ

� �
ð25Þ

Due to Eq. (22), for ~g sufficiently large, the dot conductance shows steps which are
due to photo-assisted tunneling for eV= ±hfcav, ±2hfcav, ±3hfcav,... and a current
suppressed quadratically in ð2πgl=f cavÞ2 for e Vj j<f cav with small “subgap”
resonances. When Δ≫V, kBT, ΓL(R), and when a single dot level d0 is close to the
reservoir Fermi energies for V= 0, the ratio between the subgap conductance
G(V= 0) and the conductance G1 for eV= hfcav+ 0+ can be expressed in the limit
ΓL= ΓR= Γ/2 as

GðV ¼ 0Þ
G1

’ ~g2
1þ f 2cav

Γ2

� 	
1þ 2 f 2cav

Γ2

� 	
1þ 4 f fcav2

Γ2

ð26Þ

with

GðV ¼ 0Þ ’ 2 expð�~g2ÞΓLΓR
π ðω� �εd0 Þ

2 þ ðΓ=2Þ2
� 	 ð27Þ

From equation (22), for T= 0, x= 1/2 and Δ≫ Γ, we can derive analytically the
subgap conductance peak height to be � e2

h e
�~g2 and a gap edge at V ≈ ± fcav with a

magnitude � e2
h ~g

2e�~g2=2. This allows us to get a ratio R between the latter and the
former of R � ~g2=2. From Fig. 3b, we estimate the experimental R to be 5 and
therefore ~g � 3 ± 0:5. The error bars on ~g correspond to the estimated systematic
errors in determining the parameters of the quantum dot.
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