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When a two-level system—a qubit—is used as a probe of a larger system, it naturally leads to answering
a single yes-no question about the system state. Here we propose a method where a single qubit is able to
extract, not a single, but many bits of information about the photon number of a microwave resonator using
continuous measurement. We realize a proof-of-principle experiment by recording the fluorescence emitted
by a superconducting qubit reflecting a frequency comb, thus implementing multiplexed photon counting
where the information about each Fock state—from 0 to 8—is simultaneously encoded in independent
measurement channels. Direct Wigner tomography of the quantum state of the resonator evidences the
backaction of the measurement as well as the optimal information extraction parameters. Our experiment
unleashes the full potential of quantum meters by replacing sequential quantum measurements with
simultaneous and continuous measurements separated in the frequency domain.
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I. INTRODUCTION

The most general measurement of a quantum system
consists of using a quantum apparatus as a probe. The
system interacts with the probe before the probe gets
measured projectively. In the simplest case, the probe is
a qubit whose readout answers a yes-no question about the
system state. Identifying what is the state of a system thus
comes down to playing a game of “guess who?” A series of
binary questions are asked iteratively to refine our knowl-
edge about the state. Unlike the classical game, each
answer disturbs the state of the system. To give a concrete
example, in order to determine how many photons are
stored in a cavity, one may ask “is there an even number of
photons?” or a series of binary questions such as “are there
n photons?” for each integer n [Fig. 1(a)].
Such experiments have been implemented with Rydberg

atoms or superconducting circuits probing a microwave
cavity [1,2] with the possible refinement of choosing what
binary question should be optimally asked conditioned on

the previous answers [3]—using a feedback loop [4,5] or
advanced pulse shaping [6,7]. Determining an arbitrary
number of photons in the cavity between 0 and 2m − 1 thus
takes at leastm consecutive probe measurements since each
answer provides at most 1 bit of information about the
system state. This limitation originates from the encoding
of the extracted information into the quantum state of the
qubit. But is it the best use of a qubit to determine an
observable with many possible outcomes such as a photon
number?
We propose to use a qubit as an encoder of information

about the cavity state in the many propagating modes of a
transmission line. Assuming an ideal detector, we show that
photon counting can then be implemented in a time
independent of the number of photons. We demonstrate
the practicality of this approach in an experiment where
information about nine possible photon numbers (more
than 3 bits) in a microwave resonator is simultaneously
extracted by a single superconducting qubit into nine
propagating modes of a transmission line. Owing to
dispersive interaction [8,9], each photon number corre-
sponds to a unique qubit frequency. When driving the qubit
at nine test frequencies by multiplexing, the qubit simulta-
neously emits nine microwave signals that each reveals
information about the photon number ranging from 0 to 8.
Daring an analogy with communication protocols [10],
previous measurement schemes with time series of binary
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questions used time division multiplexing, while our
experiment demonstrates the analog of frequency division
multiplexing, where the qubit alone acts as the frequency
multiplexing transducer [Fig. 1(a)]. This experiment
directly benefits from the recent bandwidth improvements
of near-quantum-limited amplifiers [11], which enable us to
bring the measurement process in the frequency domain.
Current limitations in the cavity lifetime and detector
efficiency prevent us from reaching single-shot readout
of the photon number in this proof-of-principle experiment,
and hence from decoding 3 bits of information per experi-
ment. However, unlike in sequential measurement schemes,
a single run of our experiment does provide, in parallel,
partial information about each bit of the photon number. In
addition, we manage to observe the multiplexed measure-
ment backaction on the resonator using direct Wigner
tomography, which allows us to measure the decoherence
rate of the resonator induced by the measurement. We
evidence an optimal qubit drive amplitude for information
extraction, which matches the expected dynamics of a qubit
under a multifrequency drive.

The article is organized as follows: Sec. II demonstrates
standard photon counting using a qubit dispersively
coupled to a microwave resonator and reviews the practical
limitations of this technique. It provides a calibration of the
photon number for the rest of the article. Section III
describes photon counting using the fluorescence of a
second qubit. Section IV presents a gedanken experiment
that shows how multiplexed photon number measurement
can reach an outcome in a time that does not depend on the
number of photons. Section V presents an actual experi-
ment that implements a version of the gedanken experiment
where the photodetectors are replaced by heterodyne
detectors in each frequency band. In practice, it comes
down to experimentally probing the qubit in fluorescence
with a frequency comb, thus revealing how information
about cavity photon numbers is routed by the qubit onto the
transmission line modes. Section VI evidences the meas-
urement backaction of the multiplexed photon counting
using direct Wigner tomography of the quantum state and
shows how to maximize information extraction. A detailed
comparison between the efficiency of our approach

(a) (b)

(d)(c)

FIG. 1. Multiplexed photon counting setup and protocol. (a) Time-domain division multiplexing proceeds one binary question at a
time. Frequency division multiplexing simultaneously retrieves multiple binary answers. (b) Scheme of the device in coplanar
waveguide architecture. The storage mode (green) is coupled to a transmon multiplexing qubit (orange), which is directly coupled to a
transmission line (rainbow). A directional coupler and broadband traveling-wave parametric amplifier (TWPA) allow us to probe the
qubit in reflection. An additional transmon yes-no qubit (blue) and its readout resonator (purple) are used as a reference photon counter
and for Wigner tomography (see Appendix B 2). (c) The frequency (color) of the multiplexing qubit encodes the storage photon number.
The reduction in the reflection amplitude of the qubit at one of the frequencies reveals the number of photons in the storage mode, e.g.,
here two photons. (d) The qubit is probed by a frequency comb of amplitude Ω. The reflected pulse is amplified and digitized before
numerical demodulation at every frequency fMP − kχs;MP. This multiplexing-demultiplexing process leads to reflection coefficients rk
that each encodes the probability that k photons are stored.
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compared to other measurement schemes is given in
Appendix E.

II. STANDARD PHOTOCOUNTING

The experiment implements both the standard approach
and the multiplexed one in order to count the number of
photons in a resonator dubbed the storage mode, which
resonates at fs ¼ 4.558 GHz. Two off-resonant transmon
qubits are coupled to the storage mode [see Fig. 1(b)]. The
yes-no qubit with a frequency fYN ¼ 3.848 GHz is used to
ask standard binary questions about the photon number or
to perform storage-mode tomography, while the multi-
plexing qubit with a frequency fMP ¼ 4.238 GHz is used
for fluorescence photon counting (Sec. III) and frequency
multiplexed photon counting (Secs. V and VI). Both qubits
are dispersively coupled to the resonator so that their
frequency redshifts, respectively, by χs;YN ¼ 1.4 MHz
and χs;MP ¼ 4.9 MHz per additional photon in the storage
mode.
In the standard approach [2,8], which probes whether

there are k photons, the probability to have k photons is
encoded as the probability Pe to excite the yes-no qubit by
driving it with a π pulse at fdrive ¼ fYN − kχs;YN. The state
of the yes-no qubit is read out using a dedicated resonator
[Fig. 1(b)]. To demonstrate this photon counting ability, we
use a microwave tone at fs to prepare the storage mode in a
coherent state jβi ¼ e−jβj2=2

Pþ∞
n¼0ðβn=

ffiffiffiffiffi
n!

p Þjni, which is a
superposition of all Fock states with mean photon number
n̄ ¼ jβj2. The probability Pe is then measured and shows
resolved peaks as a function of fdrive for every photon
number up to about 7 [Figs. 2(a) and 2(b)]. For the rest of
the paper, we use this measurement as a calibration of the
photon number in the storage mode. The linear relation
between β and the amplitude Vs of the tone at fs is
extracted using a master-equation-based model (see
Appendix Sec. B 1) reproducing the measured Pe [solid
lines in Fig. 2(b)].
With this approach, the choice of binary question asked

to the resonator is set by the frequency of the drive used to
perform the conditional π pulse on the qubit. Finding the
photon number N by asking successively whether the
resonator is in state jki for k ¼ 0;…; N takes N þ 1
consecutive measurements and is highly sensitive to
measurement errors (see Appendix F 2). Each step reveals
at most 1 bit of information about the photon number in the
resonator since the qubit state encodes the information. The
duration of this procedure can be reduced by adaptive
measurement [3]. It reaches a minimal number of meas-
urement steps using binary decimation at the expense of
using a feedback loop to adjust the pulse sequence in real
time [4,5] or numerical optimal control techniques such as
gradient ascent pulse engineering [6,7]. Therefore, the best
strategy using a qubit state as the probe of the photon
number requires advanced control techniques and at least of

the order of log2ðNÞ measurement steps that each
requires a time of the order of 1=χs;YN at best (see
Appendix F 2).

III. FLUORESCENCE PHOTON COUNTING

The intrinsic limitation of the standard approach is that
measuring the qubit state can at most reveal 1 bit of
information per step. It is possible to avoid this constraint
by observing the qubit frequency directly instead of
measuring its state. The multiplexing qubit is coupled to
the transmission line so that when there are k photons in the
storage mode, the qubit emits a fluorescence signal into the
mode of the transmission line that is centered at the qubit
frequency fMP − kχs;MP. This encoding ability can be
observed by driving the multiplexing qubit with a single
microwave drive in reflection through the transmission line
[Fig. 1(b)] [12–15]. The measured real part ReðrÞ of the
reflection coefficient of a microwave pulse at frequency
fprobe is reduced when the probe resonates with the qubit,
hence revealing the photon number k [Fig. 1(c)] [9]. This
reduction arises from the coherent emission by the qubit in
phase opposition with the reflected drive [16]. Therefore,
on average, the distribution of photon numbers in the

FIG. 2. Standard photon counting. The storage mode is
prepared in a coherent state with an average photon number n̄
using a microwave pulse at storage frequency and amplitude Vs.
(a),(b) Measured probability Pe that the yes-no qubit gets excited
by a π pulse at a frequency fdrive. Peaks appear at fYN − kχs;YN
and indicate the probability to store k photons. The dots in (b) are
cuts along the dashed lines in (a) and match the master equation
model (solid lines), hence providing a calibration of n̄ as a
function of the drive amplitude Vs.
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storage mode can be deduced from the relative ampli-
tudes of the reduction of ReðrÞ at each frequency
fMP − lχs;MP.
In Figs. 3(a) and 3(b), we show the measured qubit

emission coefficient 1 − ReðrÞ as a function of a single
probe frequency fprobe and of the initial amplitude of the
storage-mode coherent state

ffiffiffī
n

p
. The measurement is

performed using a drive strength Ω ¼ χs;MP=4 (expressed
as the corresponding Rabi frequency) and pulse duration of
2 μs, which is smaller than the storage lifetime of 3.8 μs.
Resolved peaks develop for every photon number up to at
least 9. Using the former calibration of n̄, a master-
equation-based model enables us to reproduce the meas-
urement results (see Appendix G 1).
The observation of resolved peaks is due to our choice of

parameters. We design the relaxation rate of the multi-
plexing qubit Γ1;MP ¼ ð42 nsÞ−1 so that the decoherence
rate Γ2;MP ¼ Γ1;MP=2 is smaller than the dispersive shift
2πχs;MP. When peaks are separated, probing the qubit at
one of its resonance frequencies fMP − kχs;MP opens a
communication channel with a maximal bandwidth Γ2;MP

carrying information only about Fock state jki. We maxi-
mize the bandwidth of each channel by designing Γ1;MP as
large as possible by adjusting the direct coupling to the
transmission line, under the constraint of keeping the peaks
resolved (see Appendix A 4).

Therefore, we show that both the fluorescence photon
counting and the standard photon counting (Figs. 2 and 3)
allow us to ask questions of the kind, “are there k photons?”
The important difference between both techniques is that
only the fluorescence photon counting can be multiplexed.
Indeed, for the standard technique, one needs to read out
and reset the qubit at the end of each step. The readout step
cannot be multiplexed as it always occurs at the readout
mode frequency. In contrast, with the fluorescence readout,
information about a given photon number k is constantly
extracted through the frequency mode fMP − kχs;MP of the
transmission line. It thus enables the key ingredient of our
approach: the multiplexing measurement of reflection at
every frequency fMP − kχs;MP. The qubit thus acts as an
encoder of the state of the storage mode into the many
modes of the transmission line at frequencies
ffMP − lχs;MPgl, which can collectively host much more
than a single bit of information.

IV. GEDANKEN MULTIPLEXED EXPERIMENT

In this section, we show how, despite using a single qubit
as well, multiplexed measurements are able to determine
the photon number in a constant time in contrast with the
standard approach. We consider an ideal detector for the
propagating modes in order to better illustrate the power of
multiplexing. The ideal detector is made of a frequency
multiplexer followed by a perfect photodetector on each of
its outputs (Fig. 4). The multiplexer is made of a parallel
ensemble of bandpass filters that are each centered on the
frequency fMP − kχs;MP with a bandwidth χs;MP. The
protocol proceeds in three steps to count the number of
photons in the storage mode starting in state jψis, as
detailed in Fig. 4. First, the multiplexing qubit is excited
with a π pulse that is short enough so that it prepares the
qubit in the excited state irrespective on the number of
photons. Second, the qubit decays in the transmission line
converting its excitation into a single photon contained in a
propagating wave packet whose envelope decays at a rate
Γ1;MP. In the limit where Γ1;MP ≪ χs;MP, and without pure
dephasing of the qubit, the photon emission produces an
entangled state between the storage mode and the propa-
gating modes of the lineX

k

hkjψis⊗
j
jδk;jij ⊗ jkis;

where j·ij represents the quantum state of the propa-
gating mode going through the multiplexer on branch j
corresponding to frequencies in the band ½fMP − ðjþ
1=2Þχs;MP; fMP − ðj − 1=2Þχs;MP½ [see Fig. 4(c)].
Matching the temporal envelope of the modes to the
exponential decay at a rate Γ1 [17], the mode is occupied
by either j0ij or j1ij depending on the storage photon
number, hence the notation jδk;jij. Finally, a single

(a)

(b)

FIG. 3. Fluorescence photon counting. (a),(b) Measured emis-
sion coefficient 1 − ReðrÞ as a function of the probe frequency
fprobe, and the mean photon number n̄ in the storage mode. The
emission coefficient exhibits a resolved peak for each photon
number. The dots in (b) are cuts along the dashed lines in (a) and
are captured by a master equation model (solid lines).
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photodetector clicks and reveals the number of photons k
with probability jhkjψij2 [Fig. 4(d)]. In case of ideal
detectors with zero false positives, the click detects the
associated propagating mode in j1ik, and therefore, as the
line is entangled with the storage mode, the measurement
backaction projects the storage mode in Fock state jki. The
total measurement time, a few 1=Γ1;MP, corresponds to the
time it takes for one photodetector to click. The time is thus
independent of the number of photons stored in the storage
mode. Note that in order to avoid spectral leakage into other
ports, Γ1;MP is limited by χs;MP so that the shortest
measurement time is limited to a few 1=χs;MP.
In contrast to sequential measurements for which

increasing the maximal number of photons that can be
detected requires additional temporal resources [of the
order of log2ðNÞ=χs;MP), this gedanken experiment shows
that the multiplexed measurement is able to operate in a
constant time at the expense of additional spectral
resources.

V. MULTIPLEXED PHOTON COUNTING

In practice, building such an array of frequency-sensitive
photodetectors remains an open challenge in the microwave
domain, despite encouraging recent progress toward this
goal [5,17–22]. In this section, we demonstrate an actual
experiment that implements a continuous version of the
multiplexing measurement using heterodyne detectors
instead of photodetectors. We multiplex the fluorescence
photon counting of Sec. III by sending a pulse containing a
comb with nine frequencies corresponding to photon
numbers from 0 to 8. We then demultiplex the reflected
pulse at the same nine frequencies ffMP − kχs;MPg0≤k≤8

and extract a reflection coefficient rk for each of them
[Fig. 1(d)]. The measurement consists of simultaneously
measuring the emission coefficients 1 − ReðrkÞ for each
peak in Figs. 3(a) and 3(b), which is much faster than
measuring them one at a time. Figure 5 shows these
emission coefficients as a function of the average initial
photon number for a drive strength Ω ¼ χs;MP=2 and a
measurement duration of 2 μs. For a given n̄, every
measurement channel k gives an average signal that is
proportional to the probability of having k photons in the
storage mode. As n̄ is varied, the shape of the average
signal of channel k reproduces a Poisson distribution
distorted by relaxation processes and channel cross talk
that increases with driving strength (see Appendix G 3).
This multiplexed photon counting signal can be reproduced
using a master equation approach (solid lines in Fig. 5)
using the photon number calibration of the standard photon
counting approach. This result thus demonstrates the
applicability of our approach to photon counting by
simultaneously probing information about the presence
of nine possible photon numbers in the resonator.
So how does this proof-of-principle experiment compare

with standard photocounting? Each method has its own
advantages and drawbacks. The multiplexed photon count-
ing scheme trades off the temporal constraint and complex-
ity of optimal control of the standard approach for the need
of an efficient quantum measurement on a large frequency
bandwidth. Indeed, the efficient measurement of the
reflected pulse requires the use of a near-quantum-limited
amplifier with a dynamical bandwidth of at least a dozen of
χs;MP, which is now possible using a traveling-wave para-
metric amplifier (TWPA) [11]. It is a comparable technical
requirement to the recently demonstrated high-efficiency

(d)(c)(b)(a)

FIG. 4. Gedanken multiplexing experiment. (a) An unconditional π pulse is applied to the multiplexing qubit while the cavity is
prepared in state jψis. (b) The qubit is prepared in the excited state. (c) The qubit spontaneously emits a photon into the transmission
line, where a multiplexer sorts the emitted radiation according to its frequency. Each port k of the multiplexer is bandpass filtered around
frequency fMP − kχs;MP by a rectangular component displaying the frequency band. (d) Eventually, a single photodetector (detector
k ¼ 1 in the figure) clicks with probability jhkjψij2, allowing us to deduce the photon number. The storage mode is projected on the
corresponding Fock state (here, j1is) in a typical time T1;MP that does not depend on the average number of photons in the storage mode.
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multiplexed readout of as many as six qubits coupled to a
single feedline [23–26]. The number-independent meas-
urement time in the case of ideal photodetectors (Sec. IV)
relies on the absence of noise when measuring a mode in
the vacuum state. Instead, heterodyne detectors produce at
least vacuum fluctuations in each frequency band, as
Heisenberg uncertainty relations command. For this reason,
the measurement time is expected to scale as the logarithm
of the photon number similar to state-of-the-art sequential
measurement schemes. The two main advantages of our
multiplexing technique over the standard approaches is that
the prefactor is not limited by feedback latency or optimal
control duration (see Appendix F 1) and that it is a

continuous measurement that does not require any subtle
temporal control.

VI. MEASUREMENT BACKACTION

The measurement strength of the multiplexing measure-
ment can be characterized using the yes-no qubit to observe
the dynamics of the cavity state under the action of the
continuous multiplexed measurement. The advantage of
this method is that it does not require a single-shot
measurement of the photon number, which we cannot
reach owing to the limited efficiency of our amplifier and
the too short lifetime of the storage mode. In the reciprocal
case of measuring a qubit using a cavity as a probe, the
measurement rate is bounded by the dephasing rate of the
qubit, which grows as the square of the cavity-driving
strength [27,28]. Thus, characterizing the measurement rate
of our multiplexed photon counting can be done by
observing how the storage mode dephases for a given
driving strength Ω. Indeed, owing to the inherent quantum
backaction of the photon number measurement, the meas-
urement rate is bounded by how fast the conjugated
operator, here the mode phase, diffuses. As the probe is
based on a qubit driven by a frequency comb, one expects a
different dependence of the measurement rate onΩ than for
standard dispersive qubit readout using a single tone
driving a probe cavity.
In order to measure this dephasing rate, we use the yes-

no qubit to perform a direct Wigner tomography [29–31] of
the storage mode at various times t. It provides a repre-
sentation of the state ρ in the phase space of the mode and
can be expressed as

FIG. 5. Multiplexed photon counting. Dots: simultaneously
measured average emission coefficients corresponding to every
photon number k from 0 to 8 as a function of the initial mean
photon number n̄ in the storage mode. Here, rk is the reflection
coefficient at fMP − kχs;MP. Solid lines: prediction based on a
master equation without free parameters (see Appendix G 3).

FIG. 6. Measurement backaction. Direct Wigner tomography of the storage mode at time t ¼ 0.5 μs after initialization in a coherent
state with amplitude β ¼ −1.55. Left: free evolution without driving. Middle: evolution with a single tone at fMP − χs;MP that probes
whether there is one photon in the storage mode. Right: evolution in the presence of the frequency comb ffMP − kχs;MPg0≤k≤8. Each
bottom panel represents the density matrix fρnmgn;m that is calculated from the Wigner function of its top panel. The cylinder heights
represent jρnmj and the color encodes argðρnmÞ.
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WðαÞ ¼ 2

π
Tr½D†ðαÞρDðαÞP�: ð1Þ

Here, DðαÞ ¼ eαa
†
s−α�as is the storage displacement oper-

ator, P ¼ eiπa
†
sas is the photon number parity operator, and

as is the canonical annihilation operator of the storage
mode. Preparing the storage mode in a coherent state
jβ ¼ −1.55i, the Wigner function starts as a Gaussian
distribution centered at α ¼ β. On the left of Fig. 6, one can
see how the bare dephasing rate and the self-Kerr effect of
the storage mode (frequency shift of 0.02 MHz per photon)
distort the Gaussian distribution toward a torus with no
phase when time increases even without any photon
counting drives. Using a single drive with Ω ¼ χs;MP=2
to measure whether there is one photon, the phase diffuses
faster and the Wigner function exhibits negativities in the
middle of Fig. 6. As seen in the corresponding density
matrix, a tone at fprobe ¼ fMP − χs;MP notably induces
dephasing between states j1i and all other states jm ≠ 1i
(see density matrix as a function of the drive frequency in
Appendix H 4). The phase diffusion is more intense when
all the tones of the multiplexed readout are turned on than
for a single tone with the same drive strength Ω (right of
Fig. 6). Likewise, all off-diagonal elements of the density
matrix are then reduced.
To be more quantitative, the dephasing rate Γd;s of the

cavity is accessed through the decay of the mean quadrature
of the storage mode [32] (see Appendix B 3)

has þ a†si ¼
Z

2xWðxþ iyÞdxdy: ð2Þ

In Fig. 7(a), we show has þ a†si as a function of time under
the multiplexed drive with a strength Ω ¼ 0.23χs;MP.
Repeating this experiment for various values of the multi-
plexed driving strength Ω allows us to determine how it
affects the dephasing rate Γd;s, and thus the measurement
rate. The dephasing rate is nonmonotonic in the drive
strength [Fig. 7(b)]. Noticeably, it reaches a maximum
when Ω ¼ χs;MP=2 for which information is extracted at a
rate approximately 5 times larger than the natural dephas-
ing rate. It is possible to understand this behavior by
considering a model system where the comb has an infinite
number of Dirac peaks ffMP þ kχs;MPgk∈Z (see
Appendix C). The Fourier transform of a comb being a
comb, the drive performs sudden rotations by an angle
2πΩ=χs;MP of the Bloch vector of the qubit every time step
1=χs;MP. When Ω=χs;MP is an integer, the comb does not
affect the qubit and thus Γd;s vanishes. Conversely, the
maximum measurement rate corresponds to half-integer
Ω=χs;MP for which the effect of the comb on the qubit
dynamics is maximum and leads to the strongest qubit
emission. With the finite comb used in the experiment, this
maximum persists and is reproduced by a model based on a

master equation without any free parameter [line in
Fig. 7(b)].

VII. CONCLUSION

We experimentally demonstrate that a single qubit can be
used to continuously probe a multidimensional system by
encoding information about its quantum state in the
frequency domain. Improving further the detection effi-
ciency η, the dispersive shift χs;MP and the coupling
rate Γ1;MP between the qubit and the transmission line
(while protecting the storage lifetime with a notch filter at
its frequency) should enable single-shot photon counting
by multiplexing. To be more accurate, if the parameter
ηΓ1;MP=Γ1;s ¼ 17 increases by an order of magni-
tude, single-shot measurements would be possible.
Interestingly, assuming perfect detectors, our gedanken
experiment shows how the multiplexed measurement can
determine a photon numberN in a time that is logðNÞ faster
than the best standard sequential approach. Our continuous
measurement opens new possibilities in terms of feedback
control of the quantum state of a cavity. It can readily be
applied to stabilize quantum states by feedback control
[33], probe quantum trajectories of microwave modes [34],

(a)

(b)

FIG. 7. Measurement-induced dephasing of the multiplexing
measurement. (a) Measured exponential decay of the average
storage-mode quadrature has þ a†si in the case of a driving comb
of strength Ω ¼ 0.23χs;MP, and in a frame rotating at the storage-
mode resonant frequency. Insets show Wigner tomography of the
storage mode for two values of t. (b) Measured dephasing rate
induced on the storage mode as a function of the drive strength Ω
of the frequency comb. Insets show Wigner tomographies of the
storage mode at t ¼ 1 μs for four values of Ω.
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observe quantum Zeno dynamics [35], or engineer desired
decoherence channels by varying in time the amplitude of
the probe tones. This measurement scheme enables the
future implementation of a large class of measurement
operators that would be useful to stabilize bosonic codes
[36], stabilize a Fock state parity by autonomous feedback
[37], or extend the reach of simultaneous probing of a
single quantum system by multiple observers [38,39] to
larger systems and arbitrarily many observers. Our photo-
counter for stationary modes can also be converted into a
photocounter for propagating modes using a catch-and-
count protocol [5]. Moving further, one could extend this
frequency domain measurement to more complex probes
than a single qubit and many possible physical systems
beyond superconducting circuits.
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APPENDIX A: DEVICE AND
MEASUREMENT SETUP

1. Design

The circuit is composed of four electromagnetic modes
whose parameters can be found in Table I. A high-Q
harmonic oscillator called the storage mode is composed of
a λ=2 coplanar waveguide resonator (green in Fig. 8). The
storage resonator is capacitively coupled to two transmon
qubits. The multiplexing qubit (orange) has a high sponta-
neous photon emission rate Γ1;MP ¼ ð44 nsÞ−1 into a
transmission line compared to other modes. In contrast,
the yes-no qubit is capacitively coupled to a low-Q readout
resonator and has a long coherence time T2;YN ¼ 27 μs. As
required by Wigner tomography, the yes-no qubit coher-
ence time and the lifetime of storage mode are larger than
the time needed to measure the parity of storage photon
number 1=2χs;YN ≪ T1;s; T2;YN. As we use the multiplex-
ing qubit to count the photon number in the storage mode,
we need it to be photon number resolved [8], otherwise
each record of the multiplexing measurement cannot be
associated with a single specific photon number. This
photon-number-resolved constraint imposes that the multi-
plexing qubit decoherence rate must be smaller than the
cross-Kerr rate between the multiplexing qubit and the
storage mode Γ2;MP < 2πχs;MP. This resolution constraint is
not critical, as in fact, a finite amount of photon number
information can be extracted as soon as χs;MP is nonzero,

but the decoding is much simpler if we can reason in terms
of well-separated resonance peaks.

2. Device fabrication

The length of the readout resonator and storage mode is
designed to obtain the resonant frequencies fRO ∼ 7 GHz
and fs ∼ 4.5 GHz. The circuit consists of a sputtered 120-
nm-thick niobium film deposited on a 280-μm-thick
undoped silicon wafer. The resonators and feedlines are
dry etched after optical lithography. After an ion milling
step, the Josephson junctions are made out of e-beam-
evaporated Al=AlOx=Al through a PMMA andMAA resist
mask patterned in a distinct e-beam lithography step. For
each transmon qubit, a single Dolan bridge is used to make
the junctions.

3. Measurement setup

The readout resonator, the yes-no qubit, and the multi-
plexing qubit are driven by pulses that are generated
using a Tektronix® arbitrary waveform generator (AWG)
AWG5014C with a sample rate of 1 GS=s. Storage-mode
pulses are generated using a Zurich Instruments® ultra-high
frequency lock-in amplifier (UHFLI) with a sample rate of
1.8 GS=s. The UHFLI allows us to change the pulse
amplitude and phase without recompiling the sequence.
This feature decreases the time needed for Wigner tomog-
raphy compared to a standard AWG and makes the pulse
sequence simple with the drawback of having to synchron-
ize the two AWGs. AWG pulses are modulated at a
frequency 25 MHz for readout, 100 MHz for yes-no qubit,
and 75 MHz for storage and multiplexing qubit. They are

FIG. 8. Optical image of the circuit. The readout resonator is
colored in purple, storage mode in green, yes-no qubit in blue,
and multiplexing qubit in orange. All dark gray areas are silicon,
gray areas are niobium on silicon, and Josephson junctions are
made of Al=AlOx=Al.
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up-converted using single sideband mixers for the readout
resonator and multiplexing qubit and regular mixers for the
storage resonator and yes-no qubit, with continuous micro-
wave tones produced, respectively, by AnaPico®

APSIN12G, Agilent® E8257D, WindFreak® SynthHD,
and AnaPico® APSIN20G sources that are set at the
frequencies fRO þ 25 MHz, fMP þ 75 MHz, fsþ
75 MHz, and fYN þ 100 MHz.
The two reflected signals from the readout and multi-

plexing qubit are combined with a diplexer and then
amplified with a TWPA provided by Lincoln Labs. We
tune the pump frequency (fTWPA ¼ 5.998 GHz) and power
in order to reach a gain of 20.7 dB at 7.138 GHz and
18.2 dB at 4.238 GHz. The quantum efficiency of the yes-
no readout signal is measured to be 18.7%� 0.4% and
should be close to the efficiency η of the multiplexing
detection. We estimate that this efficiency is the product of
the efficiency of the microwave components before the
TWPA (25% to 60%), the efficiency of the TWPA itself
(33% to 83%), and the (90% to 95%) efficiency coming
from what is above the high-electron-mobility-transistor
(HEMT) amplifier. The follow-up amplification is per-
formed by a HEMT amplifier from Low Noise Factory® at
4 K and by two room-temperature amplifiers. The two
signals are down-converted using image reject mixers
before digitization by an Alazar® acquisition board and
numerical demodulation. Actually, for the multiplexed

signal, nine demodulation operations are performed at each
of the down-converted frequencies 75 MHzþ kχs;MP for
0 ≤ k ≤ 8. The full setup is shown in Fig. 9. The
Tektronix® AWG is used as the master that triggers the
UHFLI and the Alazar® board.
The frequency comb that is used for the multiplexing

measurement is generated and demodulated using the
following method. Nine cosine functions at frequencies
f75 MHzþ kχs;MPg0≤k≤8 are summed and multiplied by a
Gaussian envelope numerically with a sampling rate of
1 GS=s over the duration of the pulse. A waveform is then
generated by the AWG following this list of values. This
method ensures a good phase coherence between all the
comb frequencies. The AWG output is up-converted using
a single sideband mixer whose local-oscillator (LO) port is
driven at frequency fMP þ 75 MHz.

4. Circuit parameters and master equation

All parameters of the four modes can be measured using
standard-circuit-QED measurement (see Table I). The
frequencies of the readout mode and multiplexing qubit
are measured by spectroscopy. The frequencies of the
storage mode and yes-no qubit are measured using two-
tone spectroscopy with the readout mode. The yes-no qubit
decay and decoherence rate are measured with the time
evolution of the probability to find the qubit excited after a
π pulse and using Ramsey oscillations. The readout-mode
decay rate and cross-Kerr rate between the readout mode
and yes-no qubit are measured using the measurement-
induced dephasing rate by the readout mode on the yes-no
qubit. The cross-Kerr rate between the storage mode and
the two qubits is measured using qubit spectroscopy with
the storage state initialized in various coherent states.
Anharmonicities are measured using spectroscopy of the
qubit excited state. The decay and decoherence rates of
the storage mode are measured with the time evolution of
the probability to have zero photons in the storage mode
after a displacement and storage Ramsey interferometry
experiment. The multiplexing qubit decay and decoherence
rates are measured by fitting the qubit spectroscopy for
various drive amplitudes. All those parameters enable us to
write a master equation model based on the Lindblad
equation with the Hamiltonian

Ĥ ¼ hfROn̂RO þ hfsn̂s þ hfYNn̂YN þ hfMPn̂MP

− hχRO;YNn̂ROn̂YN − hχs;YNn̂sn̂YN − hχs;MPn̂sn̂MP

− hχYN;YNn̂YNðn̂YN − 1Þ − hχMP;MPn̂MPðn̂MP − 1Þ;
ðA1Þ

where n̂RO, n̂s, n̂YN, and n̂MP are the photon number
operators, respectively, for the readout, storage, yes-no
qubit, and multiplexing qubit. χa;b is the cross-Kerr rate
between modes a and b. χa;a is the anharmonicity of the

FIG. 9. Schematic of the setup. Each electromagnetic mode of
the experiment is driven by a rf generator detuned by the
modulation frequency and whose color matches the color of
the corresponding mode in Fig. 8. Room-temperature isolators
are not represented for the sake of clarity.
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mode a. The master equation on the system density matrix
ρ reads

_ρ¼ −
i
ℏ
½Ĥ;ρ� þΓROLðâROÞρþ 2Γϕ;sLðn̂sÞρþΓ1;sLðâsÞρ

þ 2Γϕ;YNLðn̂YNÞρþ Γ1;YNLðâYNÞρþ 2Γϕ;MPLðn̂MPÞρ
þ Γ1;MPLðâMPÞρ; ðA2Þ

where L is the Lindblad superoperator defined as LðL̂Þρ ¼
L̂ρL̂† − fL̂†L̂; ρg=2 and âb is the annihilation operator of
mode b. For a qubit mode b, the dephasing rate Γϕ;b is
linked to the decoherence rate by Γ2;b ¼ Γ1;b=2þ Γϕ;b.

APPENDIX B: CALIBRATIONS

1. Calibration of the storage-mode-displacement
amplitude

The storage mode can be displaced by driving it on
resonance with a voltage VsðtÞ cosð2πfstþ ϕsÞ, where
VsðtÞ is the pulse envelope. The driving Hamiltonian of
the storage mode reads ℏ½ϵsðtÞâ†s þ ϵ�sðtÞâs�, where ϵsðtÞ ¼
μVsðtÞeiϕs . The scaling factor μ ¼ 1.45 ðmV μsÞ−1 is
calibrated by fitting the photocounting measurement results
obtained using the yesno qubit with the master equation
simulation (see Appendix G 1). Figure 10(a) shows the
evolution of ϵs with Vs. For every experiment, the storage-
mode displacements are realized using a Gaussian pulse
shape ϵsðtÞ ¼ λðtÞϵmax with a maximum amplitude ϵmax, a
width 25 ns, and a duration 100 ns. We simulate the
dynamics of the storage mode under this Gaussian dis-
placement taking into account the couplings, relaxation,

and decoherence rates (see Appendix G 2) for various
amplitudes ϵmax. We then compute the expectation
value of the number of photon operator hn̂si at the end
of the pulse. Figure 10(b) shows the square root of hn̂si as a
function of ϵmax. Fitting with a linear function, we find thatffiffiffiffiffiffiffiffihn̂si
p ¼ 59.1ϵmax. As ϵs increases linearly with Vs, ϵmax

increases linearly with the maximum voltage amplitude
Vmax;s of the Gaussian pulse VsðtÞ ¼ λðtÞVmax;s. Using the
two linear regressions, we can express the photon number
of the storage mode as

ffiffiffiffiffiffiffiffihnsi
p ¼ ð85.9 V−1ÞVmax;s.

2. Wigner tomography calibration

The Wigner function of a harmonic oscillator with den-
sity matrix ρ is defined as WðαÞ ¼ 2Tr½D†ðαÞρDðαÞP�=π
where DðαÞ ¼ eαâ

†
s−α�âs is the displacement operator of the

storage mode by a coherent field α and P ¼ eiπâ
†
s âs is the

photon number parity operator. A Wigner function is the
expectation value of the parity after a displacement by an
amplitude α. The Wigner tomography sequence is repre-
sented on Fig. 11(a). It starts by realizing a displacement on
the storage mode with a 100-ns-long Gaussian pulse at
frequency fs (or detuned for Ramsey interferometry of the
storage mode; see Appendix B 3) with a width of 25 ns.
Then, two successive π=2 Gaussian pulses of 18 ns with a
width of 4.5 ns are sent to the yes-no qubit at fYN and are
separated by a waiting time Δτ ¼ 337 ns ≈ 1=2χs;YN. It
implements a parity measurement and maps the parity of
the storage mode onto the z axis on the yes-no qubit
[29–31]. The sequence terminates by a 2-μs-long square
pulse on the readout resonator to read out the state of the
yes-no qubit. For high amplitude α, higher-order Kerr terms

TABLE I. Table of circuit parameters.

Circuit parameters Symbol Hamiltonian term Value

Readout resonator frequency fRO hfROn̂RO 7.138 GHz
Storage-mode frequency fs hfsn̂s 4.558 GHz
Yes-no qubit frequency fYN hfYNn̂YN 3.848 GHz
Multiplexing qubit frequency fMP hfMPn̂MP 4.238 GHz
Readout or yes-no qubit cross-Kerr rate χRO;YN −hχRO;YNn̂ROn̂YN 0.4 MHz
Storage or yes-no qubit cross-Kerr rate χs;YN −hχs;YNn̂sn̂YN 1.4 MHz
Storage or multiplexing qubit cross-Kerr rate χs;MP −hχs;MPn̂sn̂MP 4.9 MHz
Yes-no qubit anharmonicity χYN;YN −hχYN;YNn̂YNðn̂YN − 1Þ 160 MHz
Multiplexing qubit anharmonicity χMP;MP −hχMP;MPn̂MPðn̂MP − 1Þ 116 MHz

Circuit parameters Symbol Jump operator Value

Readout decay rate ΓRO ΓROLðâROÞρ ð40 nsÞ−1
Storage decay rate Γ1;s Γ1;sLðâsÞρ ð3.8 nsÞ−1
Storage decoherence rate Γ2;s 2Γϕ;sLðn̂ROÞρ ð2 μsÞ−1
Yes-no decay rate Γ1;YN Γ1;YNLðâYNÞρ ð20 μsÞ−1
Yes-no decoherence rate Γ2;YN 2Γϕ;YNLðn̂YNÞρ ð27 μsÞ−1
Multiplexing decay rate Γ1;MP Γ1;MPLðâMPÞρ ð42 nsÞ−1
Multiplexing decoherence rate Γ2;MP 2Γϕ;MPLðn̂MPÞρ ð84 nsÞ−1
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distort the Wigner function. To mitigate this effect, we
interleave two sequences with a final pulse of phase either
þπ=2 or −π=2 [see Fig. 11(a)]. The difference between the
two signals gives us the Wigner function without the
distortion due to the storage-mode anharmonicity and
enables us to remove low-frequency noise. The z axis of
Fig. 11(b) is calibrated using the yes-no qubit Rabi
oscillation amplitude to express the signal using Pauli
operators. Multiplying the result by 2=π yields the Wigner
function WðαÞ in Fig. 11(c).
The axes of the phase space x, p are calibrated using the

same pulse sequence. The photon number calibration
realized before (see Appendix B 1) cannot be used here
for two reasons. First, Ramsey oscillations of the storage
mode impose to play the Wigner sequence with displace-
ment pulses detuned from the storage-mode frequency,
while the photon number calibration is only valid for
resonant pulses. Second, high-order Kerr interaction affects

the calibration when the storage mode hosts a large number
of photons. We decide to use the width of the Wigner
function when the storage mode is in the thermal equilib-
rium state to calibrate the phase-space axes. For a thermal
state with a thermal photon number nth, the Wigner

(a)

(b)

FIG. 10. Calibration of the average number of photons hnsi in
the storage mode as a function of the displacement amplitude.
(a) Evolution of the displacement amplitude ϵs with the pulse
envelope Vs. The calibration is obtained by comparing the results
of a photon counting experiment using the yes-no qubit with a
master equation simulation (see Appendix G 1). (b) Square root
of the average photon number hnsi in the storage mode as a
function of the drive amplitude. The storage is displaced by a
100-ns-long Gaussian pulse with a width of 25 ns. The same
pulse shape is used in the simulation. From the two linear fits, we
extract the evolution of the mean number of photons with the
amplitude of the pulse

ffiffiffiffiffiffiffiffiffihnsi
p ¼ ð85.9 V−1ÞVmax;s.

(a)

(b)

(c)

Yes-no qubit

YNYN

FIG. 11. Direct Wigner tomography of the storage mode.
(a) Circuit diagram of a Wigner tomography using a parity
measurement based on dispersive interaction. After a 100-ns
displacement pulse on the storage mode, an unconditional π=2
pulse is applied to the yes-no qubit. The qubit evolves freely
during a time Δτ ¼ 337 ns ≈ 1=2χs;YN before a new �π=2 pulse
is sent and the state of the yes-no qubit is measured using the
readout resonator. (b) Calibration of the quadrature axes for
Wigner tomography. Blue dots represent the standard deviation of
the quadratures of the displaced thermal equilibrium state of the
storage mode as a function of the drive amplitude for various
detuning using only the photon number calibration (see Appen-
dix B 1). In contrast, yellow dots show the same standard
deviation with the noise-based quadrature calibration. (c) Wigner
tomography of the storage mode. Here, the mode is prepared in
two steps. First, the storage mode is displaced by a pulse with an
amplitude 1.7 and then the multiplexing qubit is driven at a single
tone at fMP − 1.4χs;MP during 750 ns with an amplitude
Ω ¼ χs;MP=2. The appearance of negative values in the Wigner
function demonstrates that one can prepare nonclassical
states in the storage mode using the multiplexing qubit back-
action alone.
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function is a 2D Gaussian function with a widthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nth þ 1=2

p
[34],

WρðnthÞðα ¼ xþ ipÞ ¼ 2

π

1

2nth þ 1
e−2jαj2=ð2nthþ1Þ: ðB1Þ

For a thermal state displaced by an amplitude β, the Wigner
function is still a 2D Gaussian function with a widthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nth þ 1=2

p
but centered on β. In thermal equilibrium, the

storage mode has an average photon number nth ¼ 0.03,
which is measured using the photon counting experiment.
We calibrate the quadrature axes in order to get the
expected geometrical mean ffiffiffiffiffiffiffiffiffiffi

σxσp
p ¼ 0.53 of the spread

along the quadratures x and p when the storage mode is at
thermal equilibrium. To take into account high-order Kerr
effects, we displace the storage-mode equilibrium state and
measure its Wigner function. We adjust the calibration to
still find a spread of ffiffiffiffiffiffiffiffiffiffi

σxσp
p ¼ 0.53. The function used for

the calibration is a third-order polynomial function which
gives jαj as a function of the pulse amplitude Vmax;s. We
repeat this protocol for three detuning values δfs between
the displacement pulse and storage-mode frequencies.
Figure 11(b) shows the mean quadrature spread of the
displaced storage-mode thermal-state Wigner function as a
function of the drive amplitude Vmax;s for the photon
number calibration and the Wigner phase-space calibra-
tion. For example, the polynomial function for a detu-
ning of 4 MHz reads α ¼ xþ ip ¼ eiϕsð77.3Vmax;s þ
86.7V2

max;s − 1343V3
max;sÞ where Vmax;s is expressed in

volts and ϕs is the phase of the pulse. For a typical value
Vmax;s ¼ 20 mV, the second-order term is a correction of
about 2% and the third one is a correction of about 0.07%.
The duration Δτ is calibrated using qubit-state revival

during Ramsey interferometry (see the Supplemental
Material of Ref. [35]). We use a Ramsey interferometry
sequence [Fig. 12(a)] for the yes-no qubit at its resonance
frequency for various coherent states in the storage mode.

Revivals happen every 1=χs;YN, which allows us to
set Δτ as half the revival time in Fig. 12(b). The signal
difference between the final −π=2 and þπ=2 pulses can be
expressed as

SðtÞ ¼ σz;YN
þ − σz;YN

−

2

¼ ejαj2½cosð2πχs;YNtÞ−1�

× cos½jαj2 sinð2πχs;YNtÞ�e−tΓ2;YN−γjαj2t: ðB2Þ

This expression is derived in the Supplemental Material
of Ref. [35]. The last exponential decay factor is added to
take into account the intrinsic decoherence of the yes-no
qubit and the measurement-induced dephasing rate of the
storage mode on the yes-no qubit during the waiting time.
We also take into account a second-order Kerr correction
that shifts the revival time with the amplitude of the
coherent state [35]. At first order, this shift is given by

trevival ¼ 2Δτð1þ 2jαj2χs;s;YNΔτÞ: ðB3Þ

By adjusting the above parameters to allow the model to
match the measured signal shown in Fig. 12(b), we
find Δτ ¼ 337 ns, γ ¼ 0.23 μs−1, and χs;s;YN ¼ 14 kHz.
However, this simple expression does not take into account
the finite lifetime of the storage mode, and we prefer not to
consider these values as accurate enough compared to what
we obtain with the other methods presented in this work.

3. Measuring the mean quadratures of the
resonator field

The two mean quadratures of the storage mode are
computed from the Wigner tomography as follows. For any
operator Ô, one can apply the Wigner transform to obtain
the operator Wigner map WÔ [34] as

(a) (b)

FIG. 12. Revival of the Ramsey interferometry on the yes-no qubit. (a) Circuit diagram for Ramsey interferometry in the presence of
storage photons. After a 100-ns displacement pulse at the storage frequency, an unconditional π=2 pulse is applied to the yes-no qubit.
We then let the qubit evolve freely during a time t before doing a new �π=2 pulse and measure the state of the yes-no qubit. The signal
SðtÞ is half the difference between the average outcomes of the two sequences. (b) Measured (dots) and predicted (lines) signal S as a
function of waiting time t. Predicted signal is computed from Eq. (B2). Yes-no qubit revivals occur every 1=χs;YN ≈ 0.7 μs.
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WÔðα ¼ xþ ipÞ ¼ WÔðx; pÞ

¼ 1

π

Z
dye−2ipyhxþ y=2jÔjx − y=2i

¼ 2

π
Tr½D†ðαÞÔDðαÞP�; ðB4Þ

where fjxig is the eigenbasis of the quadrature operator X̂.
With this tool, the Wigner function of a state jΨi (respec-
tively, a density matrix ρ) is simply given by WjΨihΨjðαÞ
[respectively,WρðαÞ]. The mean value of an operator Ô can
be derived from the integral over the phase space of the
product of the two Wigner distributions multiplied by π,

π

Z
dx

Z
dpWρðx; pÞWÔðx; pÞ ¼

1

π

Z
dx

Z
dp

Z
dy

Z
dy0e−2ipðyþy0Þhxþ y=2jρjx − y=2ihxþ y0=2jÔjx − y0=2i

¼
Z

dx
Z

dy
Z

dy0δðyþ y0Þhxþ y=2jρjx − y=2ihxþ y0=2jÔjx − y0=2i

¼
Z

dx
Z

dyhxþ y=2jρjx − y=2ihx − y=2jÔjxþ y=2i

¼
Z

du
Z

dvhujρjvihvjÔjui

¼ TrðρÔÞ ¼ hÔiρ: ðB5Þ

In the case of X̂ and P̂ operators, Wigner maps take a
simple expression

WX̂ðα ¼ xþ ipÞ ¼ x=π;

WP̂ðα ¼ xþ ipÞ ¼ p=π: ðB6Þ

For any density matrix ρ, one can extract
hX̂i ¼ TrðX̂ρÞ and hP̂i ¼ TrðP̂ρÞ from theWigner function
W ≡Wρ as

hX̂i ¼
Z

dx
Z

dpWðx; pÞx;

hP̂i ¼
Z

dx
Z

dpWðx; pÞp: ðB7Þ

4. Measuring the decoherence of the storage mode

For a qubit, Ramsey oscillations correspond to the
evolution of the real part of the coherence between the
jgi and jei states. A typical sequence starts by a π=2 pulse
detuned from resonance by δf to create a coherent super-
position of jgi and jei states. Then, the qubit evolves freely
before its state tomography. Both σx and σy oscillate at δf
while decaying at the decoherence rate Γ2.
We decide to realize an analogous sequence based on the

same idea for a harmonic oscillator (a similar sequence was
recently performed in Ref. [32]). The first π=2 pulse is
replaced by a detuned displacement pulse DðβÞ on the
storage mode. The field then evolves during a time t (during
which the multiplexing measurement can be applied)
before a Wigner tomography is realized [see Fig. 13(a)].

The expectation value of X̂ ¼ ðâs þ â†sÞ=2 and P̂ ¼ ðâs −
â†sÞ=2i quadratures are computed from the Wigner tomog-
raphy (see Appendix B 3). The time trace of hX̂i and hP̂i is
what we call the Ramsey oscillations for the storage mode.
As in the qubit case, the frequency of the oscillations is set
by the detuning δfs between the drive and the resonant
frequency of the mode, which allows us to extract the
frequency of the storage mode. At this point, a distinction
has to be made between the detuning δf0s ¼ fdrive − fs
between the drive and the bare storage-mode frequency (the
resonant frequency when the multiplexed qubit and the
storage are undriven) and the detuning δfs between the
drive and the resonant frequency of the storage mode,
which depends on the multiplexed measurement strength in
perfect analogy with the ac-Stark effect for a qubit readout.
Note that the Wigner tomography sequence uses the same
detuned frequency δfs for its displacement pulse D†ðαÞ in
order to keep the same phase reference. The measurement
of Ramsey oscillations of a harmonic oscillator takes longer
than the ones of a qubit because we fully determine the
quantum state of an oscillator at each time instead of a
simple Bloch vector. From Eq. (A2), one finds that hX̂i and
hP̂i evolve as

hX̂i ¼ jβj cosð2πδfstþ ϕÞe−tΓd;s ;

hP̂i ¼ jβj sinð2πδfstþ ϕÞe−tΓd;s ; ðB8Þ

where β ¼ jβjeiϕ ¼ hâsiðt ¼ 0Þ. For each time t, we
compute hX̂i and hP̂i and define the storage-mode dephas-
ing rate as Γd;s which contains the intrinsic decoherence
rate Γ2;s. Data-extended Fig. 13(b) shows an example of
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measured Ramsey oscillations. In the main text, Fig. 3(b)
does not exhibit oscillations because it is the mean value
hâs þ â†si in the frame rotating at the resonant frequency of
the storage mode. In practice, we measure them with a
detuning and numerically compute the nonoscillating
quantity 2Re½ðhX̂i þ ihP̂iÞ expð−2iπδfstÞ�.

5. Storage-mode frequency shift and induced dephasing
rate by driving the multiplexing qubit with a comb

In analogy with the ac-Stark shift of the frequency of a
qubit coupled to a driven resonator, we also call ac-Stark
shift the frequency shift of the storage mode induced by
driving the multiplexing qubit. In order to measure this
frequency shift and the dephasing rate that is induced by the
multiplexing qubit on the storage mode, we realize the
reciprocal protocol for a qubit measured by a cavity. We use
a Ramsey interferometry sequence on the storage mode
during which the multiplexing qubit is driven with a
frequency comb [see Fig. 14(a)]. The drive amplitude is
given by the sum of nine sine functions at the frequencies
½fMP; fMP − χs;MP;…; fMP − 8χs;MP� multiplied by a
Gaussian envelope of duration t and width t=4.
For small measurement strength Ω=χs;MP < 0.9, we

generate the Ramsey sequence with a displacement pulse
of amplitude β ¼ −1.55 detuned from the base storage
mode by δf0s ¼ 3.96 MHz. We fit the time evolution of hX̂i
and hP̂i using the damped sine function

hX̂i ¼ A cosð2πδfstþ ϕÞe−tΓd;s ;

hP̂i ¼ A sinð2πδfstþ ϕÞe−tΓd;s : ðB9Þ

The parameters A, δfs, ϕ, and Γd;s are determined all
together by fitting the model to the measured oscillations.
Γd;s is the sum of the intrinsic storage dephasing rate Γ2;s

and of the measurement-induced dephasing rate. δfs is the
sum of the detuning from the bare-storage-mode frequency
δf0s and of the ac-Stark shift of the storage mode. Both
parameters are shown in Figs. 14(c) and 14(d) (blue dots) as
a function of Ω=χs;MP.
For larger measurement strength Ω=χs;MP > 0.9, we

generate the Ramsey sequence with a displacement pulse
detuning of δf0s ¼ 5.96 MHz, an amplitude of β ¼ −1.27,
and we model the time evolution of hX̂i and hP̂i by the sum
of two sine functions with an exponential decay

hX̂i ¼ A( cosð2πδfstþ ϕÞ þ ζ cosð2πνtþ ψXÞ)e−tΓd;s ;

hP̂i ¼ A( sinð2πδfstþ ϕÞ þ ζ sinð2πνtþ ψPÞ)e−tΓd;s :

ðB10Þ

This empirical model originates from three ideas. The first
term is identical to the simple model in Eq. (B9). Second,
the measured Ramsey oscillations seem to show a small
modulation in amplitude, which we try to capture with a
second sine function. Third, we try to keep the model as
simple as possible.
Figure 14(b) shows an example of Ramsey oscillations

of the storage modewith a large amplitude of measurement.
The two signals are fitted simultaneously to extract the
parameters A, δfs, ν, ϕ, ψX, ψP, and Γd;s. The frequency ν
varies from 2.15 to 2.5 MHz. The parameter ζ is roughly
constant; it varies between 0.2 to 0.27. Figure 14(c) shows
measurement-induced detuning as a function of the meas-
urement drive amplitude.

6. Rabi frequency calibration

We observe Rabi oscillations of the multiplexing qubit
by applying a 1-μs-long square pulse at fMP with a varying
amplitude VMP. The reflected signal demodulated by
time steps of 10 ns displays damped oscillations given
by [40]

Re(rðtÞ) − ReðrSSÞ

¼ A cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πξVMPÞ2 −

�
Γ1;MP − 2Γϕ;MP

16

�
2

s
ðt − t0Þ þ ϕ

�

× e−ðt−t0Þ=T; ðB11Þ

(a)

(b)

FIG. 13. Ramsey oscillations of the storage mode. (a) Circuit
diagram for Ramsey oscillations of a harmonic oscillator. All
storage displacement pulses are performed in 100 ns with a
Gaussian envelope of 25 ns width. In this experiment, the
amplitude of the prepared coherent state β is set to −1.55. The
detuning between displacement pulse and bare storage frequencies
is δf0s ¼ 3.96 MHz. (b) Measured (dots) and expected (lines)
signals for hX̂i (blue) and hP̂i (orange). The expected signals are
matched to the experiment using Eq. (B8) with a frequency
detuning of δfs ¼ 3.96 MHz and a decay rate Γ2;s ¼ ð2 μsÞ−1.
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where rSS is the value of the reflection coefficient
in the steady state. We obtain ξ ¼ 0.543 GHzV−1 so that
the Rabi frequency is calibrated as Ω ¼ ξVMP ¼
ð0.543 GHzV−1ÞVMP (see Fig. 15).

APPENDIX C: MAXIMAL
MEASUREMENT STRENGTH

The dephasing rate Γd;s depends on the driving ampli-
tude Ω, the dispersive shift χs;MP, and the relaxation rate
Γ1;MP. To gain insight into its dependence and learn how to
maximize the measurement strength, we start by consid-
ering the case of an isolated single qubit before extending
the model to a bipartite qubit-resonator system.

1. Dynamics of a qubit driven by a comb

a. Hamiltonian evolution

We consider a single qubit driven by a frequency comb
with 2pþ 1 frequency peaks at every fMP þ kχ for
−p ≤ k ≤ p. In the frame rotating at the qubit frequency,
the Hamiltonian reads

(a) (b)

(c) (d)

MP qubit

Yes-no qubit

FIG. 14. Frequency shift and dephasing rate of the storage mode induced by the multiplexed photocounting measurement. (a) Circuit
diagram of the protocol used to determine the dephasing rate and frequency shift of the storage mode induced by the multiplexed
photocounting measurement. The amplitude β of the initial displacement is set at −1.55 for small measurement amplitude Ω=χs;MP <
0.9 and at −1.27 for large measurement amplitude Ω=χs;MP > 0.9. The blocks linking the multiplexing qubit and the storage mode
represent the multiplexed measurement during a time t made by the qubit on the storage mode. This measurement is realized by driving
the qubit with a frequency comb ½fMP; fMP − χs;MP;…; fMP − 8χs;MP� within a Gaussian envelope. (b) Ramsey oscillations of the
storage mode for “large” measurement amplitude Ω=χs;MP ¼ 1. One can observe that the dynamics hX̂i and hP̂i are not governed by a
simple decaying sine function. The theory does not reproduce quantitatively the measurement when using the naive version of the model
Eq. (B9). We use the simple model Eq. (B10) to capture this modulation. (c),(d) ac-Stark shift and measurement-induced dephasing rate
measured (dots) and simulated (line) as a function of the multiplexing qubit drive amplitude Ω in units of χs;MP. The evolution of the
detuning and dephasing rate is strongly nonlinear with the drive amplitude.

FIG. 15. Multiplexing qubit Rabi oscillations for various
driving amplitudes. The measured Rabi oscillations observed
in the reflection coefficient (dots) are reproduced by theory [solid
line from Eq. (B11)]. The vertical axis represents the deviation of
the real part of the reflection coefficient to its steady-state value.
This calibration allows us to extract the scaling parameter ξ such
that Ω ¼ ξVMP ¼ ð0.543 GHzV−1ÞVMP.
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HðtÞ ¼ πΩ
�Xp

k¼−p
cosð2πkχtÞ

�
σx: ðC1Þ

After a time t, the qubit state will thus be rotated
around the x axis of the Bloch sphere by an angle fðtÞ
with

fðtÞ ¼ 2πΩt
Xp
k¼−p

sincð2πkχtÞ; ðC2Þ

where sincðxÞ ¼ sinðxÞ=ðxÞ. For large integers p, we can
approximate the sum as

Pþ∞
k¼−∞ sincðπkTÞ ¼ ð1=TÞ, which

is valid for 0 < T < 2. Note that for a small number of
peaks 2pþ 1, this approximation is invalid close to T ¼ 0
or 2. The expression allows us to approximate fðtÞ for
0 < χt < 1. It is then simple to derive fðtÞ at any time t
since it is periodic up to the term in k ¼ 0. We obtain

fðtÞ ≈ π
Ω
χ
þ 2π

Ω
χ
btχc≕ f̄ðtÞ; ðC3Þ

where bxc is the integer part of x. Therefore, the rotation
angle fðtÞ evolves by steps. A comparison of the actual
fðtÞ and of the staircase approximation for a comb with 21
frequencies (p ¼ 10) is shown in Fig. 16. To put it simply,
the action of the comb consists of performing a Rabi
rotation on the qubit by discrete steps instead of a
continuous evolution as is the case for a single driving
frequency. At each period 1=χ, the qubit rotates almost
instantaneously by an angle 2πðΩ=χÞ.
Without decoherence, if the qubit starts in state jgi at

time t0, the qubit state after a time t reads

jψðtÞi¼ cos

�
fðtÞ−fðt0Þ

2

�
jgiþ isin

�
fðtÞ−fðt0Þ

2

�
jei

≈cos

�
Ωπ
χ
bðt− t0Þχc

�
jgiþ isin

�
Ωπ
χ
bðt− t0Þχc

�
jei:

ðC4Þ

Let us focus on some particular values of Ω=χ.
(i) IfΩ=χ is an integer, the staircase approximation with

f̄ðtÞ keeps the qubit in jgi at all times, just perform-
ing a full rotation on the Bloch sphere at each Rabi
pulse. In the presence of relaxation, a photon loss
can happen only during the short duration of the
Rabi pulse, which decreases as 1=ðpþ 1Þ. The qubit

remaining in the ground state cannot encode in-
formation on the resonator. This explains why there
are minima of the measurement-induced dephasing
rate when Ω=χ is an integer [see Fig. 14(d)].

(ii) If Ω=χ is a half-integer, the staircase approximation
with f ¼ f̄ makes the qubit state jump periodically
between jgi and jei. This maximal extent of the
evolution on the Bloch sphere intuitively explains
the maximal measurement strength at the driving
amplitude. In the following, we explain why this
situation corresponds to a larger extraction of
information than any steps with a different rotation
angle.

b. Integrated qubit dynamics in the
presence of relaxation

In the following, we use the infinite-comb approximation
fðtÞ ≈ f̄ðtÞ. This allows us to integrate the qubit dynamics
exactly. The continuous photon decay at rate Γ1 is
interrupted by discrete Rabi rotations at discrete times.
The qubit state is confined in the y-z plane of the Bloch
sphere. Under this approximation, after the Rabi pulse
number kþ 1, the qubit state is given by

�
yðkT þ TÞ
zðkT þ TÞ

�
¼

�
cos θ − sin θ

sin θ cos θ

��
e−Γ1T=2yðkTÞ

e−Γ1TzðkTÞ þ ðe−Γ1T − 1Þ

�
; ðC5Þ

FIG. 16. Exact rotation angle fðtÞ in blue and its staircase
approximation f̄ðtÞ in red. The duration of each step is equal to
1=χ and its height to 2πΩ=χ. The quality of the approximation
improves as the number of peaks 2pþ 1 in the comb gets larger.
The fact that the trajectory starts with a half-jump is a particularity
of having assumed that all comb components have the same
phase at t ¼ 0. Random initial phases of the signals (e.g., due to
initializing the qubit after its photon emission into the measuring
transmission line at a random time) would most often position
t ¼ 0 on a flat portion of the stairs.
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where T ¼ 1=χ is the period, and θ ¼ ð2πΩ=χÞ is the angle
spanned in the Bloch sphere during a discrete jump. The
origin of time t ¼ 0 is chosen to start just after a Rabi jump.
The permanent solution of this discrete-time map

(Poincaré map) right after k steps is

ȳðkTÞ ¼ eΓ1T=4 sinhðΓ1T=2Þ sin θ
coshð3Γ1T=4Þ − cos θ coshðΓ1T=4Þ

;

z̄ðkTÞ ¼ sinhðΓ1T=2Þðe−Γ1T=4 − eΓ1T=4 cos θÞ
coshð3Γ1T=4Þ − cos θ coshðΓ1T=4Þ

: ðC6Þ

The average qubit excited-state population over one period
in the permanent regime reads

PðΩ=χÞ≔ 1

T

Z
T

0

hejρðtÞjei¼1−e−Γ1T

Γ1T
½1þ z̄ðkTÞ�

2
: ðC7Þ

When using the parametrization c≡ cosðθÞ, one easily
checks that P is a strictly decreasing function on
c ∈ ½−1; 1�. As a function of θ, it has maxima for θ ¼
ð2kþ 1Þπ and minima for θ ¼ 2kπ. The positions of the
minima are no surprise and give P ¼ 0 as the Rabi pulse
takes the state from jgi back to jgi; for a finite number of
peaks in the comb 2pþ 1, the Rabi pulse is not instanta-
neous
and P > 0 at these minima. The value of the maxima would
be P ¼ ½tanhðΓ1T=2Þ=Γ1T� with the infinite-comb
approximation.
According to this approximation, the average rate of

photon emission, which is linked to the measurement
strength (each photon reveals information about the qubit
frequency and hence the photon number), is thus PΓ1 ¼
tanhðΓ1T=2Þ=T with the optimal choice of Ω ¼ χ=2þ kχ,
where k is an integer.

(i) At fixed T ¼ 1=χ, the emission rate increases with
Γ1 and converges toward χ. For Γ1 ≫ χ, the qubit
has the time to fully relax during one period.
Therefore, in simple terms, at each period in the
stepwise evolution, the qubit is excited and then
releases deterministically a single photon into the
output transmission line.

(ii) Likewise, for a fixed Γ1=χ (thus, fixed probability P
to emit a photon during a period), the average
emission rate increases when T decreases. There-
fore, the average emission rate increases as χ.

(iii) For a fixed Γ1, the largest average emission rate is
obtained for χ ¼ 1=T as large as possible, but it
saturates at PΓ1 ¼ Γ1=2. This behavior is consistent
with the fact that Γ1 is a hard limit on the photon
emission rate.

2. Dynamics of the qubit-resonator bipartite system
driven by a comb

For the sake of simplicity, we consider a lossless storage
mode in this section. In this case, each 2 × 2 submatrix
ρn1;n2 ¼ hn1jρjn2i, with jnii the ni Fock state, evolves
independently of the others ρm1;m2

similar to a collection of
qubitlike systems. The submatrix ρn1;n2 is non-normalized
because it is an off-diagonal submatrix of the storage-qubit
system. We have

d
dt

ρn1;n2 ¼ −i2πχ
n1 þ n2

2

�
σz
2
; ρn1;n2

�

− i2πχ
n1 − n2

2

�
σz
2
; ρn1;n2

�

−
i
ℏ
½HðtÞ; ρn1;n2 � þ Γ1Lðσ−Þρn1;n2 ; ðC8Þ

where HðtÞ is the frequency comb drive from the previous
section.

a. Computing the decoherence rate of the
n1, n2 component

The infinite-comb approximation again helps. We view
HðtÞ as applying a Rabi pulse of angle θ ¼ ð2πΩ=χÞ at
each period T ¼ 1=χ, without any effect for the rest of the
time. Over one period, we thus have

ρn1;n2ðkT þ TÞ ¼ K0∘K1ρn1;n2ðkTÞ; ðC9Þ

where K0 applies the Rabi pulse, while K1 contains
dynamics associated with the dispersive coupling and with
qubit decay. During each period between Rabi jumps,
denoting ρn1;n2 ¼ ðxσx þ yσy þ zσz þ ηI=2Þ, the dynamics
K1 corresponds to the integration of the set of equations

d
dt

x ¼ −
Γ1

2
x −

2πχðn1 þ n2Þ
2

y;

d
dt

y ¼ −
Γ1

2
yþ 2πχðn1 þ n2Þ

2
x;

d
dt

z ¼ −Γ1ðzþ ηÞ − i
2πχðn1 − n2Þ

2
η;

d
dt

η ¼ −i
2πχðn1 − n2Þ

2
z:

After one period T, since the peaks in the comb are exactly
separated by the dispersive shift χ, the effect of the
precession at a frequency 2πχðn1 þ n2Þ=2 is canceled
out (modulo a possible phase flip every period when n1 þ
n2 is odd). Note that the infinite-comb approximation
differs from the usual rotating-wave approximation that
would lead to a similar disabling of the precession for
2πχ ≫ Γ1. We then obtain, in the above coordinates, the
matrix expression

MULTIPLEXED PHOTON NUMBER MEASUREMENT PHYS. REV. X 11, 031045 (2021)

031045-17



K1 ¼ ð−1Þn1þn2 ×

0
BBBBB@

e−Γ1T=2 0 0 0

0 e−Γ1T=2 0 0

0 0 ðe−Γ1T −GÞ ðe−Γ1T − 1 −GÞ
0 0 G ðGþ 1Þ

1
CCCCCA ðC10Þ

with G¼½−iπχðn1−n2Þð1−e−Γ1TÞ�=½Γ1þi2πχðn1−n2Þ�. In
addition, the Rabi rotation corresponds to

K0 ¼

0
BBB@

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

1
CCCA: ðC11Þ

This expression further simplifies for the two drive
strengths Ω ¼ χ=2þ kχ or Ω ¼ kχ, which, respectively,
lead to θ ¼ 0 (no qubit emission) and θ ¼ π (maximal
qubit emission), since the ðz; ηÞ variables of interest
decouple from ðx; yÞ.

(i) For θ ¼ 0, we tend to a stationary regime
ðz; ηÞkTþT ¼ ðz; ηÞkT . Note that these are the values
associated with a coherence between Fock states n1
and n2 of the storage mode. This steady value thus
confirms the intuition developed in the single-qubit
case: There is no change in the coherences between
Fock states in the resonator, which means that no
measurement is performed [minima in Γd;s in
Fig. 14(d)].

(ii) For θ ¼ π, we can compute an analytical expression
for the factor R by which the trace η decreases every
period T in the permanent regime [41]. Thus, the
average decay rate is given by − logðjRjÞ=T with

R ¼ 1

2½Γ1 þ i2πχðn1 − n2Þ�
�
Γ1ð1 − e−Γ1TÞ þ 2

ffiffiffiffi
B

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
þ A

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
− A

q ��
;

where A ¼ Γ2
1ð1þ e−Γ1TÞ2 − 4ð2πχÞ2ðn1 − n2Þ2e−Γ1T

8B
;

B ¼ 2πχðn1 − n2ÞΓ1e−Γ1T;

and we recall T ¼ 1=χ: ðC12Þ

We now analyze this last expression.

b. Optimal decoherence rate of the n1, n2 component

The decoherence rate − logðjRjÞχ can be calculated for
any value of the dispersive shift χ and of the photon
numbers n1 and n2. In Fig. 17 are shown the rates
corresponding to several values of n1 − n2 for a driving
amplitude Ω ¼ χ=2 (maximal measurement strength). As
expected, the decoherence is stronger when the photon
numbers are farther apart. In addition, for 2πχjn1 − n2j ≫
Γ1 the rate saturates to Γ1=2 similar to the emission rate of
the single qubit.

3. Upper bound on the total measurement rate as a
function of the photon number

Beyond the determination of the decoherence rate
between two Fock states, we are interested in the maximal
information extraction rate of the storage state in the

multiplexed measurement scheme. In particular, we discuss
how this maximal total measurement rate depends on the
maximum number of photons Nmax that are probed by the

FIG. 17. Decoherence rate between Fock states jn1i and jn2i in
units of Γ1 for a driving amplitude Ω ¼ χ=2 as a function of
2πχ=Γ1 and for various values of n1 − n2.
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multiplexed scheme. In the following, we assume a perfect
measurement apparatus giving us access to all the infor-
mation extracted by the measurement process, which is not
necessarily the case of the heterodyne measurement on
each peak of the comb. In Sec. IV, we propose such a
measurement apparatus.
We assume the number-resolved regime 2πχ ≫ Γ2;Γ1.

Thus, the decoherence rate between two Fock states is
independent of the Fock state numbers and is equal to Γ1=2
(see Fig. 17). In the following, we show that under these
assumptions, the total measurement rate does not depend
on Nmax.
Since the multiplexed measurement operates by entan-

gling the storage mode with Nmax þ 1 frequency modes of
the transmission line, we can describe the system and the
extraction of information without the multiplexing qubit
and consider only its effect, which is the entanglement
operation. Each Fock state jni of the storage mode
(0 ≤ n ≤ Nmax) is associated to one of the Nmax þ 1 modes
of the transmission line at fmp − nχ. Every mode is driven
so that at the input it is in a coherent state (it can even be the
vacuum as in the gedanken experiment). At the output, if
we change the reference frame by displacing the outgoing
modes âout;n by the opposite of the input coherent state, a
single mode will be excited, and all the nonresonant modes
will be in the vacuum state. Therefore, any quantum state of
the outgoing modes can be expressed as a superposition of
Nmax þ 2 states only. States jnim correspond to all modes in
the vacuum except the one at frequency fMP − nχ and j⊥im
is the vacuum state.
Thus, we can describe the system using two modes only:

the storage mode and a simplified measurement mode. The
storage mode is described using the Fock state basis
fjnisg0≤n≤Nmax

. The measurement mode has the Nmax þ 2

states discussed above. The bipartite system starts in the
state

jΨð0Þi ¼ jΨstorageis ⊗ jΨmeasim ¼
�XNmax

n¼0

ψnjnis
�

⊗ j⊥im:

ðC13Þ

After a measurement time t, the storage mode and the
measurement mode become entangled, and the readout of
the measurement mode extracts information about the
storage photon number. As the decoherence rate between
every storage Fock state pair is Γ1=2, one can write the state
of the bipartite system as

jΨðtÞi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−Γ1t=2

p
jΨð0Þiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−Γ1t=2

p XNmax

n¼0

ψnjnis⊗ jnim:

ðC14Þ

As expected, if we trace over the measurement mode, the
diagonal of the density matrix of the storage mode remains
unchanged, while the off-diagonal terms decrease at a
rate Γ1=2.
One can calculate the mutual information [42] of the

bipartite system in order to obtain the information extrac-
tion rate and study how it scales with Nmax. The mutual
information is defined as

Iðs;mÞ ¼ SðρsÞ þ SðρmÞ − Sðρs;mÞ; ðC15Þ

where SðρÞ ¼ −Tr½ρ log2ðρÞ� is the von Neumann entropy,
ρs;m is the bipartite density matrix, and ρs (respectively, ρm)
is the density matrix of the storage mode (respectively,
measurement mode) obtained by tracing out on the other
mode. If the state of the bipartite system is pure, then its
entropy is zero, and the entropy of the storage mode is
equal to the entropy of the measurement mode. Thus, the
mutual information can be written as

Iðs;mÞ ¼ 2SðρsÞ: ðC16Þ

The mutual information is twice the amount of information
that we can acquire about the storage mode using the
measurement mode. Thus, it is twice the amount of
information extracted by the measurement process. The
density matrix ρs of the storage mode depends on the initial
photon number distribution. As our goal is to measure the
probability to have n photons for all n simultaneously, we
consider an initially uniform photon number distribution,
such as when ψn ¼ ðNmax þ 1Þ−1=2 for all n. For this
photon number distribution, the storage density matrix
becomes

ρs ¼
e−Γ1t=2

Nmax þ 1

XNmax

n;l¼0

jnishljs þ
1 − e−Γ1t=2

Nmax þ 1

XNmax

n¼0

jnishnjs:

ðC17Þ

The eigenvalues of ρs are e−Γ1t=2 þ ð1 − e−Γ1t=2Þ=ðNmax þ
1Þ with degeneracy 1 and ð1 − e−Γ1t=2Þ=ðNmax þ 1Þ with
degeneracy Nmax. Thus, one can derive the mutual infor-
mation of the bipartite system

Iðs;mÞ ¼ −2
�
rþ 1 − r

Nmax þ 1

�
log2

�
rþ 1 − r

Nmax þ 1

�

− 2
Nmaxð1 − rÞ
Nmax þ 1

log2

�
1 − r

Nmax þ 1

�
; ðC18Þ

with r ¼ e−Γ1t=2. The time evolution of the mutual infor-
mation Iðs;mÞ is shown in Fig. 18. At short times, the
mutual information increases with time t at a speed which
depends on Nmax þ 1. As the mutual information is the
information we extract out of the system, the time
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derivative of the mutual information at short times gives the
rate at which information is extracted (e.g., the total
measurement rate). In order to determine how the total
measurement rate depends on the maximum photon num-
ber Nmax, we look at the mutual information per bit of
information nb ¼ log2ðNmax þ 1Þ. The mutual information
per bit decreases with nb for small photon numbers but
converges to a lower bound when nb goes to infinity

lim
nb→þ∞

Iðs;mÞ
nb

¼ 2ð1 − e−Γ1t=2Þ: ðC19Þ

The total measurement time is of the order of the number of
bits nb we have to measure divided by the total measure-
ment rate in bits per second. As the mutual information per
bit is always bigger than 2ð1 − rÞ, the total measurement
time will be at least about 1=Γ1. Because the mutual
information per bit is always bigger than the lower bound
2ð1 − rÞ, which does not depend on nb, the total meas-
urement time for the multiplexing protocol is independent
of the maximum photon number Nmax. Figure 18(b) shows
the mutual information per bit as a function of the time and
its lower bound.

APPENDIX D: MEASUREMENT BANDWIDTH

The asymptotic former results are possible as long as the
total measurement bandwidth increases with the photon

number. We consider two main limitations to the maximal
number of photons that can be measured. First, above a
certain number of photons, the qubit frequency overlaps the
transition between the first and second excited states of the
transmon. Indeed, the jei-to-jfi transition at zero photon in
the resonator becomes resonant with the qubit jgi-to-jei
transition for χMP;MP=χs;MP photons, which complicates the
analysis. In our experiment, it would set a limit of about 20
photons. However, this limit can be bypassed using a qubit
with a much larger anharmonicity, such as a fluxonium
qubit.
Second, the higher-order terms in the Hamiltonian tend

to reduce the cross-Kerr rate χs;MP when the photon number
increases. Beyond some critical photon number ncrit, the
dispersive shift χs;MP will be smaller than the decoherence
rate of the qubit, which will escape from the number-
resolved regime. This limit occurs around 1000 photons in
our device, which is therefore not the dominant limitation.
Indeed, one can show that

χs;MP ¼ pMPps
hfMPfs
4EJ

; ðD1Þ

χs;s;MP ¼ pMPp2
s
h2fMPf2s
32E2

J
; ðD2Þ

where χs;s;MP is the decrease of the cross-Kerr rate χs;MP

when a photon is added to the storage mode, EJ is the
junction energy of the multiplexing qubit, and pMP=s is the
fraction of the energy of the multiplexing qubit mode
(resp., the storage mode) stored in the junction of the
multiplexing qubit [43]. Thus, the critical photon number
ncrit in the storage mode is given by

χs;MP − ncritχs;s;MP ¼ Γ2;MP; ðD3Þ

which leads to

ncrit ¼
�
1 −

Γ2;MP

χs;MP

�
8EJ

pshfs
; ðD4Þ

and a upper bound of 8EJ=ðpshfsÞ ≈ 103 photons for
EJ=h ≈ 15 GHz, ps ≈ 10−2, and fs ≈ 5 GHz.
Therefore, we do not believe that these limitations are

hard enough to prevent the multiplexing scheme from
counting very large photon numbers.

APPENDIX E: MODELING OF THE
MEASUREMENT OPERATORS

We introduce here a simple model to characterize the
measurement and its backaction on the resonator. The
measurement uses a phase-preserving amplifier in order to
amplify the signal at each frequency fMP − kχs;MP in the

comb and record a complex amplitude IðkÞm þ iQðkÞ
m . We

(a)

(b)

FIG. 18. Mutual information between the storage and meas-
urement modes for various maximum photon number Nmax ¼
2nb − 1 as a function of the measurement time. (a) Mutual
information in bits. (b) Mutual information divided by the
number of bits nb as a function of time. The dashed black curve
is the lower bound.
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assume that each of these measurement records extracts
only the information on the occupation of the Fock
state jki, which is experimentally valid in the limit
2πχs;MP ≫ Γ2;MP. Without decoherence and in the limit
of long measurement time, its backaction on the storage
mode would project the storage state on Fock state jki or on
the complementary subspace ΠðkÞ

⊥ Hs, where ΠðkÞ
⊥ ¼ 1 −

jkihkj and Hs is the Hilbert space of the storage resonator.
In practice, the measurement proceeds by first entangling

the resonator, which is in a state jψi, and the signal mode
of the phase-preserving amplifier. For the measurement
channel k, the entangled state reads jα; 0i ⊗ ΠðkÞjψiþ
jα⊥; 0i ⊗ ΠðkÞ

⊥ jψi, where ΠðkÞ ¼ jkihkj, and states denoted
as jα; βi are the coherent states of the signal and the idler
modes at the input of the amplifier. We distinguish two
cases: the case where the probe is resonant with the
multiplexing qubit, leading to a reflected amplitude α,
and the case where it is off resonant leading to a reflected
amplitude α⊥. The resonance frequency of the qubit
depends on the number of photons in the resonator so
that the reflected amplitude α indicates k photons, while α⊥
indicates that there are not k photons. For an incoming
amplitude αin onto the multiplexing qubit, we get

α⊥ ¼ αin;

α ¼ αin

�
1 −

Γ1;MP

πΩ
hσ−;MPiSS

i

�
; ðE1Þ

where hσ−;MPiSS is the steady-state mean value of the
multiplexing qubit-lowering operator.
If the qubit is driven by a single tone, the maximum of

jhσ−;MPiSSj is reached for 2πΩ ¼ Γ1;MP=
ffiffiffi
2

p
. However, in

the case of a qubit driven by an infinite-frequency comb,
the time average of the lowering operator is

hσ−;MPicomb ¼ iȳ
1 − e−Γ1;MP=2χs;MP

Γ1;MP=χs;MP
ðE2Þ

with ȳ the steady-state solution defined in Eq. (C6). The
fraction on the right corresponds to the average emission
between two jumps in the time-domain version of
the comb.
The measurement operator (Kraus operator) correspond-

ing to the heterodyne detection of a propagating field
encoding the information on the jki state thus reads

MðkÞðIðkÞm ;QðkÞ
m Þ ¼ hΨ

IðkÞm ;QðkÞ
m
jα; 0i ⊗ ΠðkÞ

þ hΨ
IðkÞm ;QðkÞ

m
jα⊥; 0i ⊗ ΠðkÞ

⊥ ; ðE3Þ

where jΨ
IðkÞm ;QðkÞ

m
i is the state on which the propagating field

is projected after the heterodyne measurement performed

by the phase-preserving amplifier followed by a heterodyne
detection setup.
Following the Supplemental Material of Ref. [44], in the

case of a phase-preserving amplifier, the inner product
ξðβ; Im;QmÞ ¼ hΨIm;Qm

jβ; 0i is given up to a global phase
factor (independent of β, Im, and Qm) by

ξðβ; Im;QmÞ ¼
1ffiffiffi
π

p
2σ0

e
− jβj2
2ð2σ0Þ2 × e

−ðIm−βÞ2
2ð2σ0Þ2 e

−ðQmþiβÞ2
2ð2σ0Þ2 ; ðE4Þ

where σ0 is the amplitude of the zero-point fluctuations (the
variance of the measured Im is 2σ20 in the quantum limit of
phase-preserving amplification). Therefore, we finally get
the following analytical expression of the measure-
ment operators for each channel k, in the case of
Γ2;MP ≪ 2πχs;MP:

MðkÞðIðkÞm ;QðkÞ
m Þ ¼ 1ffiffiffi

π
p

2σ0
e
− jα⊥ j2
2ð2σ0Þ2e

−ðIðkÞm −α⊥Þ2
2ð2σ0Þ2 e

−ðQðkÞ
m þiα⊥Þ2
2ð2σ0Þ2 ΠðkÞ

⊥

þ 1ffiffiffi
π

p
2σ0

e
− jαj2
2ð2σ0Þ2e

−ðIðkÞm −αÞ2
2ð2σ0Þ2 e

−ðQðkÞ
m þiαÞ2
2ð2σ0Þ2 ΠðkÞ:

ðE5Þ

APPENDIX F: HOW FAST CAN THE
MULTIPLEXED MEASUREMENT BE?

In principle, multiplexing the measurement enables us to
determine the photon number in a constant time, no matter
the maximal number of photons one wants to resolve. Note
that this measurement rate is not in contradiction to the
amount of information that would be contained in a qubit.
Indeed, in the present scheme, we are using the two-level
system not as a memory, but rather as a device whose
frequency is changed by the Fock state to be measured. We
are thus somehow replacing a communication channel
faithfully sending a qubit state by a communication channel
faithfully sending a two-level system in one out of many
propagating microwave modes. In Sec. IV, we show how to
obtain the photon number in a time set by the lifetime of the
qubit. Here, we investigate the measurement time in the
case of our experiment.

1. Multiplexing with quadrature measurements

The gedanken experiment requires components that are
out of reach with current technologies. Yet, the experiment
we perform and present in the main text implements a
similar experiment that replaces the multiplexer and photo-
detector array by signal processing of propagating micro-
wave modes.
It is out of the scope of this work to derive an exact

expression of the photon number measurement time in our
experiment. However, we can determine whether the
measurement time depends on the maximum photon
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number Nmax one wants to measure. In contrast with the
photodetectors, quadrature measurements are inherently
noisy. Identifying the photon number in the storage mode
consists of determining which channel contains an ampli-
tude α while all the others contain an amplitude α⊥ (see

Appendix E). The measurement records fIðkÞm ;QðkÞ
m gk are

stochastic processes centered on α⊥ (except for one value of
k, where it is centered on α). Determining the photon
number k comes down to discriminating which record is
centered on α using only the ensemble of noisy

records fIðkÞm ;QðkÞ
m gk.

After a measurement time t, the measurement records

fIðkÞm ;QðkÞ
m gk are averaged along a duration t. Thus, the

time-averaged intrinsic noise contained in the measurement
records scales as 1=

ffiffi
t

p
and the time average value is

independent of t. The problem can be mapped onto the
following game. Nmax stochastic variables fuig1≤i≤Nmax

are
each randomly chosen using a Gaussian distribution
centered on 0 with a width 1=

ffiffi
t

p
. Another stochastic

variable u0 is randomly chosen using a Gaussian distribu-
tion centered on 1 with a width 1=

ffiffi
t

p
. The list fuig0≤i≤Nmax

is scrambled randomly into a list l, and the goal consists of
identifying the variable u0 using only the list l. The optimal
strategy is to pick the highest element of the list l. The
probability to make an error and lose the game is then given
by the probability that the maximum of the fuig1≤i≤Nmax

is
higher than u0,

Perror ¼ Pð max
Nmax≥i≥1

ðuiÞ > u0Þ: ðF1Þ

We can rescale all the distribution by
ffiffi
t

p
; thus, u0 are

chosen randomly using a Gaussian distribution centered onffiffi
t

p
with a width of 1 and each of the fuig1≤i≤Nmax

using a
Gaussian distribution centered on 0 with a width of 1. One
can show that the mean of the maximum of fuig1≤i≤Nmax

tends toward
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðNmaxÞ

p
[45],

mean½ max
Nmax≥i≥1

ðuiÞ� ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðNmaxÞ

p
: ðF2Þ

In addition, the median of the max of fuig1≤i≤Nmax
is equal

to the mean value within an error scaling as 1=
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
:

median½ max
Nmax≥i≥1

ðuiÞ� ¼ mean½ max
Nmax≥i≥1

ðuiÞ� þOð1=
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
Þ:

ðF3Þ

Since the error probability is between 1=4 and 3=4 if the
median of u0 is equal to the median of the maximum of
fuig1≤i≤Nmax

, it leads to

1=4 < Perror < 3=4 ⇒
ffiffi
t

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNmax

p
⇒ t ∼ logðNmaxÞ: ðF4Þ

From this expression, we understand that the measure-
ment time for a fixed error probability scales as logðNmaxÞ.

2. Comparison among measurement schemes

In this section, we compare the following various photon
number measurement schemes using a qubit of frequency
fq that is dispersively coupled to a storage mode of
frequency fs. We assume the cross-Kerr rate χ between
the storage mode and the qubit to be greater than the
decoherence rate of the qubit Γ2. The goal is to measure the
photon number N assuming it is smaller than Nmax.

(i) Sequential brute force
The brute-force approach consists of measuring

whether or not there are k photons in the storage
mode for all possible values of k from 0 to Nmax [2].
For each k ¼ 0; 1; 2; 3;…, we apply a photon
number conditional π pulse to the qubit at frequency
fq − kχ so that the qubit is excited only if there are k
photons in the storage mode. Reading out the qubit
state gives the answer to the question, “Are there k
photons?” The full measurement stops as soon as
this binary answer is positive so that it takes a time
given by ðTπ þ TROÞðN þ 1Þ. The time Tπ is the
time of an conditional π pulse; hence, it is at least
1=χ, while the qubit readout time TRO is limited by
other parameters in order to get a single-shot
readout.

(ii) Passive photon number decimation using weak
measurement

This approach, which was implemented with
Rydberg atoms in a cavity [1], consists of encoding
the photon number in the phase of the qubit by
waiting a time 1=ðNmaxχÞ after the qubit has been
prepared in state ðjgi þ jeiÞ= ffiffiffi

2
p

. The protocol is
composed of a series of p sequences, where each
sequence encodes the photon number into the phase
of the qubit and realizes a π=2 pulse on the qubit
with a phase 2πp=Nmax followed by a qubit readout.
Using generalized measurement theory, one infers
the probability that the cavity is in a given Fock
state.

After p qubit readouts, the variance on the photon
number is σ ¼ Nmax=ð ffiffiffiffi

p
p

πÞ (see Appendix A in
Ref. [46]). Therefore, the required number of rep-
etitions to get a fixed error probability of the photon
number scales as p ∝ N2

max. Since each measure-
ment takes at least 1=ðNmaxχÞ, the total measurement
time scales at least as Nmax=χ.

(iii) Active photon number decimation
The previous protocol can be improved by opti-

mizing the phase of the final π=2 pulse to maximize
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the amount of information extracted on the cavity
photon number. It was realized in Ref. [3] using
Rydberg atoms in a cavity. Because of the use of
feedback on a weak measurement, we cannot find a
closed form for the measurement time in this case
[46]. However, it is shown that the total time is larger
than the total time taken by a binary decimation with
feedback (see below).

(iv) Binary decimation with feedback
This method was shown to provide the least

number of steps for sequential photocounting [4].
Each step consists of applying an unconditional π=2
pulse to the qubit, wait a time 1=2kþ1χ, and apply a
new unconditional π=2 pulse with a phase ϕk that
encodes the least significant [47] kth bit bk of the
photon number N ¼ P

k bk2
k into the qubit state.

Importantly, the phase ϕk depends on the results of
the k − 1 former measurements. The sequence needs
to be repeated p ¼ log2ðNmax þ 1Þ times with k
going from 0 to p − 1. This procedure was recently
implemented in Ref. [5].
The measurement time is at least given by the sum

of the total interaction time between the qubit and
cavity and of the total feedback latency. The total
interaction time is bounded by

P
p 1=ð2pþ1χÞ ¼

1=χ. However, the feedback latency scales as p and
can be written as TFB log2ðNmax þ 1Þ.

(v) Binary decimation with optimal pulse control
An optimal binary decimation can also be imple-

mented without using a feedback loop by measuring
a series of generalized parity operators which yields
the bit values of the binary decomposition of the
photon number in the storage mode. The kth
generalized parity measurement consists of an opti-
mal pulse that excites the qubit conditioned on the
value of the kth bit. The p ¼ log2ðNmax þ 1Þ parity
measurements are performed in a time sequence. A

subsequent measurement and dynamic reset of the
qubit state completes the sequence [6,7]. Such
an optimal pulse can be performed only in a time
of the order of the dispersive interaction time 1=χ.
It leads to a total measurement time scaling as
log2ðNmax þ 1Þð1=χ þ TresetÞ where Treset is the
duration of the active reset protocol.

In Table II, we provide a summary of the various
advantages and drawbacks of the photocounting methods.
No time-sequence measurement is able to provide a
measurement time that does not depend on the photon
number. Using a multiplexed quantum measurement thus
enables a qualitative improvement on the measurement
time. In practice, this drastic improvement in the scaling
with Nmax requires a detection setup that is out of reach
currently. Our experiment demonstrates that multiplexing is
possible using a heterodyne detection setup instead. The
scaling of the measurement time is then in lnðNmaxÞ as in
state-of-the-art sequential measurements. In addition, we
deport the complexity of optimal control or feedback into
the challenge to reach large measurement efficiencies on a
large frequency band (many χ’s).

APPENDIX G: MASTER EQUATION
SIMULATIONS

In this section, we briefly describe the master equation
simulations used to understand our experimental results.
We simulate the main photon counting experiments with
both qubits as well as the photon number calibration of the
storage mode and the dephasing rate induced by the
multiplexed measurement of the storage mode.
All simulations are performed using the PYTHON package

QUTIP [48]. We simulate the complete system composed of
the storage mode, the yes-no qubit, and the multiplexing
qubit with all couplings, except in the simulation of the
measurement-induced dephasing rate for which we take
into account only the storage mode and the multiplexing
qubit. The storage mode is modeled as a harmonic

TABLE II. Protocols for photocounting using a qubit.

Protocol tmeas ∝ Complexity Check N > Nmax Qubit role Error propagation

Sequential brute force ðN þ 1Þ=χ N þ 1 gates Yes Pointer Yes
Passive decimation Nmax =χ N2

max gates and
complex analysis

No Pointer No

Binary code feedback TFB log2ðNmax þ 1Þ Feedback No Pointer Yes
Binary code
optimal control

ðTreset þ 1=χÞ log2ðNmax þ 1Þ Optimal control No Pointer No

Multiplexed
quadrature
measurement

lnðNmaxÞ=χ Relies on near-
quantum-limited
broadband amplifier

Yes Encoder No

Gedanken
multiplexed
measurement

1=χ Hardware to develop Yes Encoder Gedanken
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oscillator while the transmons are replaced by two-level
systems. The Hilbert space of the storage mode is truncated
at a photon number ranging from ten to 25 photons
depending on the simulation. In this section, we use
Pauli matrices to describe operators acting on qubits.

1. Photocounting simulations

a. Photocounting with the yes-no qubit

Both photon counting approaches are simulated in a
very similar manner. The first simulation (yes-no simu-
lation) describes the use of conditional operations on the
yes-no qubit. This experiment serves as a calibration of
the number of photons in the storage mode and of all
relevant parameters. This experiment starts with a dis-
placement of the storage mode followed by a conditional
π pulse on the yes-no qubit at frequency fYN − δfYN
before detecting the expectation value of the Pauli
operator σz;YN.
We write the Hamiltonian of the system in a frame

rotating at fs − χs;MP=2 − χs;YN=2 for the storage mode,
fYN − δfYN for the yes-no qubit mode, and fMP for
multiplexing qubit mode as follows:

Ĥ1=h ¼ δfYN
σ̂z;YN
2

− χs;YNn̂s
σ̂z;YN
2

− χs;MPn̂s
σ̂z;MP

2

− χs;sn̂sðn̂s − 1Þ − χs;s;YNn̂sðn̂s − 1Þ σ̂z;YN
2

− χs;s;MPn̂sðn̂s − 1Þ σ̂z;MP

2
þ ϵYNðtÞ

h
σ̂x;YN

þ λðtÞ
2π

ðϵmaxeiπðχs;MPþχs;YNÞtâs

þ ϵ�maxe−iπðχs;MPþχs;YNÞtâ†sÞ; ðG1Þ

where λðtÞ is a Gaussian function with duration 100 ns,
width 25 ns, and a maximum of 1 so that the storage-mode
displacement pulse reads ϵsðtÞ ¼ λðtÞϵmax, and ϵYNðtÞ is the
time envelope of a Gaussian pulse with duration 1.9 μs and
width 475 ns. The amplitude of the pulse is chosen to
obtain a π rotation on the yes-no qubit. The term
−δfYNðσ̂z;YN=2Þ takes into account the detuning between
the π pulse and the yes-no qubit frequency. ϵYNðtÞ is
delayed with respect to λðtÞ to match the experimental
pulse sequence. In comparison with Hamiltonian [Eq. (1)],
this simulation adds cross-Kerr interactions between each
qubit and the storage mode, a self-Kerr term on the storage
mode, but it does not take into account the readout
resonator.
In addition to the Hamiltonian (G1), we supply the solver

with eight collapse operators to simulate the dynamics of
the following master equation:

_ρ ¼ −
i
ℏ
½Ĥ1; ρ� þ 2Γϕ;sLðn̂sÞρ

þ ð1þ nth;sÞΓ1;sLðâsÞρþ nth;sΓ1;sLðâ†sÞρ

þ 1

2
Γϕ;YNLðσ̂z;YNÞρþ Γ1;YNLðσ̂−YNÞρ

þ 1

2
Γϕ;MPLðσ̂z;MPÞρþ Γ1;MPLðσ̂−MPÞρ ðG2Þ

with nth;s the expectation values of n̂s when the system is at
rest due to thermal occupation. All decoherence and
relaxation rates are measured using previously explained
calibration.
The master equation is solved using the function

“mesolve” of QUTIP starting from a thermal state with
the nth;s photon in the storage mode, the yes-no qubit in
the ground state jgi, and the multiplexing qubit also in the
ground state jgi. The solver iteratively computes the
density matrix with a 10-ns time step during the displace-
ment pulse and the π pulse. We compute the expectation
value hσ̂z;YNi at the end of the sequence and convert it
into a probability Pe of finding the yes-no qubit in the
jei state.
This simulation can be used to reproduce the experiment

in Figs. 2(a) and 2(b) of the main text by adjusting the
following parameters: fμ ¼ ϵmax=Vmax;s; χs;YN; χs;s; χs;s;
YN; nth;sg. Note that we need to run the simulation for
every couple of parameters (Vmax;s,δfYN). Table III com-
piles the values of the fitted parameters.

b. Photocounting with the multiplexing qubit

A second simulation (fluorescence simulation) is carried
out to compare the photon counting experiment in Figs. 3(a)
and 3(b) using a single drive on the multiplexing qubit with
theory. This experiment also starts with a storage-mode
displacement, but it is followed by a 2-(μs) Gaussian pulse
on the multiplexing qubit at the frequency fMP − δfMP with
an amplitude expressed as a Rabi frequency Ω ¼ χs;MP=4.
The measured reflection coefficient of the multiplexing

TABLE III. Parameters extracted from the photocounting
simulations using the multiplexing or yes-no qubit. All param-
eters except those related to the multiplexing qubit are determined
using a fit of the yes-no qubit simulation to Figs. 2(a) and 2(c).
Parameters related to multiplexing qubit are obtained using a fit
of the simulation to Figs. 2(b) and 2(d).

Parameter Fitted values

μ 1.45 ðmV μsÞ−1
χs;YN 1.42 MHz
χs;MP 4.9 MHz
χs;s −0.02 MHz
χs;s;YN −0.003 MHz
χs;s;MP −0.08 MHz
nth;s 0.03
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qubit rðδfMPÞ can be expressed using input-output theory
as [49]

rðδfMPÞ ¼
haouti
haini

¼ haini −
ffiffiffiffiffiffiffiffiffiffiffi
Γ1;MP

p hσ−;MPi
haini

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffi
Γ1;MP

p
haini

hσ̂−;MPi: ðG3Þ

And since the Rabi frequency is given by Ω ¼ffiffiffiffiffiffiffiffiffiffiffi
Γ1;MP

p jhainij=π, we get an emission coefficient

1 − Re½rðδfMPÞ� ¼
Γ1;MP

πΩ
Reðe−i argðhainiÞhσ̂−;MPiÞ

in the frame rotating at fMP − δfMP for the multiplexing
qubit. If we set the phase of the drive so that ihaini ≥ 0,
meaning we drive the qubit along σx;MP, the emission
coefficient becomes

1 − Re½rðδfMPÞ� ¼
Γ1;MP

2πΩ
hσ̂y;MPi:

The Hamiltonian of the problem in the frame rotating at
fs − χs;MP=2 − χs;YN=2 for the storage mode, fYN for the
yes-no qubit, and fMP − δfMP for the multiplexing qubit
reads

Ĥ2=h ¼ δfMP
σ̂z;MP

2
− χs;YNn̂s

σ̂z;YN
2

− χs;MPn̂s
σ̂z;MP

2

− χs;sn̂sðn̂s − 1Þ − χs;s;YNn̂sðn̂s − 1Þ σ̂z;YN
2

− χs;s;MPn̂sðn̂s − 1Þ σ̂z;MP

2
þ Ω

2
ϵMPðtÞσ̂x;MP

þ λðtÞ
2π

ðϵmaxeiπðχs;MPþχs;YNÞtâs

þ ϵ�maxe−iπðχs;MPþχs;YNÞtâ†sÞ; ðG4Þ

where ϵMPðtÞ ≥ 0 is a Gaussian function of duration 2 μs,
width 250 ns, and amplitude 1. ϵMPðtÞ is delayed compared
to λðtÞ to reproduce the experimental pulse sequence. We
add to this Hamiltonian the same relaxation and
decoherence channels as for the yes-no simulation [see
Eq. (G2)] for which the decoherence and relaxation rates
are measured independently. The resulting master equation
differs only from the yes-no simulation by the Rabi drive
that addresses the multiplexing qubit instead of the yes-no
qubit. The master equation is solved using the mesolve
function of QUTIP with a time step of 5.25 ns starting from a
thermal state with nth;s photons for storage and the yes-no
qubit and the multiplexing qubit in the ground state jgi.
Finally, the expectation value hσ̂y;MPi is computed and
integrated during the 2 μs of the pulse.
We compare the measured emission coefficient in

Figs. 2(b) and 2(d) to the simulated signal Ahσ̂y;MPi, where

A is left as a free parameter due to a small parasitic
reflection in the measurement setup and thermal popula-
tion. The parameters fμ; χs;t; χs;s; χs;s;t; nth;sg are already set
by the calibration above using the simulation of the yes-no
qubit. From the fluorescence simulation, we thus extract the
parameters fχs;MP; χs;s;MP; Ag by comparing the experi-
mental observations in Figs. 2(b) and 2(d) with the
simulation for various Vmax;s and δfMP. Fitted values are
given in Table III. Finally, we run the yes-no simulation
again taking into account the updated multiplexing qubit
parameters. As expected, only small changes in the results
of the yes-no qubit simulation are observed.

2. Evolution of the average photon number in the
storage mode

We simulate the filling of the storage mode by a
displacement pulse on the resonator. We simulate the same
master equation used for the photocounting simulations
with parameters obtained from the photocounting simu-
lations (see Table III) but without applying any drive on the
qubits. Only the displacement pulse on the storage mode is
modeled, i.e., ϵMPðtÞ ¼ 0, δfMP ¼ 0, ϵYNðtÞ ¼ 0, and
δfYN ¼ 0.
The mesolve function of QUTIP computes the density

matrix with a time step of 10 ns and returns the mean
number of photons in the storage mode at the end of the
displacement pulse for various drive amplitudes. Figure 10
shows the square root of the expected mean photon number
as a function of the amplitude ϵmax. We obtain a scaling
factor

ffiffiffiffiffiffiffiffihnsi
p ¼ 85.9 V−1Vmax;s used in the photon number

calibration of the storage mode.

3. Simulation of multiplexed readout

In this subsection, we simulate how a frequency comb
reflects off the multiplexing qubit. We write the
Hamiltonian in the frame rotating at fs − χs;MP=2 −
χs;YN=2 for the storage mode and at the qubit frequencies
for the qubits as

Ĥ3=h ¼ −χs;YNn̂s
σ̂z;YN
2

− χs;MPn̂s
σ̂z;MP

2
− χs;sn̂sðn̂s − 1Þ

− χs;s;YNn̂sðn̂s − 1Þ σ̂z;YN
2

− χs;s;MPn̂sðn̂s − 1Þ σ̂z;MP

2

þ Ω
2
½ϵcombðtÞσ̂þMP þ ϵ�combðtÞσ̂−MP�

þ λðtÞ
2π

ðϵmaxeiπðχs;MPþχs;YNÞtâs

þ ϵ�maxe−iπðχs;MPþχs;YNÞtâ†sÞ; ðG5Þ

where Ω ¼ χs;MP=2, and ϵcombðtÞ is the product of a
Gaussian function with the sum of nine complex exponen-
tial

P
8
k¼0 expð2iπχs;MPktÞ. The Gaussian envelope of

ϵcombðtÞ has a duration of 2 μs, a width of 250 ns, and a

MULTIPLEXED PHOTON NUMBER MEASUREMENT PHYS. REV. X 11, 031045 (2021)

031045-25



maximum amplitude of 1, and the delay between ϵcombðtÞ
and λðtÞ reproduces the experimental sequence. The master
equation (G2) is used with a time step of 1 ns for various
amplitude ϵmax. We obtain the time evolution of hσy;MPi
enabling us to compare the experimental measurements of
Fig. 2(e) to the model. To do so, we integrate the simulated
function hσy;MPi × cosð2πχs;MPktÞ for each integer k, sim-
ilar to the demultiplexing processing we perform on the
multiplexed experimental signal. Note that, in the case
k ¼ 0, we need to divide the integral by 2 in order to
perform a proper demultiplexing. By combining this
simulation with the photon number calibration, we get
the expected values of the nine multiplexing readout signals
as a function of the mean number of photons in the storage
mode used in Fig. 2(e).

4. Simulation of measurement-induced dephasing on
the storage mode

In this part, we simulate only the multiplexing qubit and
the storage mode to decrease the computational cost of the
simulation. The Hamiltonian of the simulation in the frame
rotating at the multiplexing qubit-resonant frequency and at
fs þ δf0s for the storage mode is

Ĥ4=h ¼ −χs;MP
σ̂z;MP þ 1

2
n̂s − δf0s n̂s

− χs;s;MPn̂sðn̂s − 1Þ σ̂z;MP þ 1
2

þ Ω
2
½ϵcombðtÞσ̂þMP þ ϵ�combðtÞσ̂−MP�; ðG6Þ

where ϵcombðtÞ is the product of a Gaussian fun-
ction with the sum of nine complex exponentialP

8
k¼0 expð2iπχs;MPkτÞ. The width of the Gaussian function

is equal to one quarter of the duration t of the pulse. We add
four dephasing and relaxation channels to this Hamiltonian
to obtain the master equation

_ρ ¼ −
i
ℏ
½Ĥ4; ρ� þ 2Γϕ;sLðn̂sÞρþ Γ1;sLðâsÞρ

þ 1

2
Γϕ;MPLðσ̂z;MPÞρþ Γ1;MPLðσ̂−MPÞρ: ðG7Þ

The storage is initialized in a coherent state of amplitude
β ¼ 1.55 and the multiplexing qubit is initialized in state
jgi. We simulate the dynamics of the system for a pulse
duration t going from 100 ns to 5 μs and for Ω ranging
from 0 to 2χs;MP. We compute the expectation value of
X̂ ¼ ðâs þ â†sÞ=2 at the end of each simulation. For a given
Ω, we extract the time evolution of hX̂i under the influence
of the multiplexed measurement as shown on Fig. 19(a).
This decaying sinusoid is fitted using Eq. (B9) to obtain
the oscillation frequency δfs and the decay rate Γd;s.

Figures 14(c) and 14(d) show the measurement-induced
dephasing and ac-Stark shift as a function of the amplitude
of the comb Ω for two sets of coherent-state amplitudes β
and detuning δf0s .

(a) (b)

(c)

(d)

(e)

FIG. 19. Simulations of the measurement-induced dephasing
rate and of the ac-Stark shift induced by a frequency comb.
(a) Ramsey-like oscillations of the storage mode for Ω ¼ χs;MP=2
and an initial coherent field amplitude β ¼ −1.55. Blue dots are
the simulated expectation values of X̂ and the red line is the
theory given by Eq. (B9). (b) Simulated measurement-induced
dephasing rate Γd;s and ac-Stark shift as a function of Ω=χs;MP for
various values of χs;MP. Simulations show the same pattern with
maxima and minima for some specific values ofΩ=χs;MP as in the
experiment in Fig. 3(c). (c) Simulated measurement-induced
dephasing rate and ac-Stark shift as a function of Ω=χs;MP for
various initial coherent-state amplitudes β in the storage mode.
For Ω=χs;MP > 1, we see a difference of about 20% between β ¼
1.6 and β ¼ 1.2. (d) Simulations for χs;MP ≫ Γ1;MP. The evolu-
tion of the measurement-induced dephasing and ac-Stark shift
with Ω is different compared to the case of (b). The evolution of
the measurement-induced dephasing rate and the ac-Stark shift
seems to be given by the ratio 2πΩ=Γ1;MP. The red line is a guide
for the eyes representing a quadratic function. It shows that the
measurement-induced dephasing rate increases linearly with Ω2

for small drive amplitudes. For the ac-Stark shift, on the contrary
to (b), the detuning is constant at the small drive amplitudes, and
then two frequencies appear with comparable contributions to the
Ramsey oscillations. The two frequencies evolve linearly with Ω.
(e) Example of simulated Ramsey oscillations exhibiting two
frequencies.
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We identify three interesting features. The first one is the
evolution of the shape of the curves δfsðΩÞ and Γd;sðΩÞ
with χs;MP. We repeat the simulation using a square pulse
envelope instead of Gaussian pulse for ϵcomb to make the
simulation faster for several values of χs;MP from 1.5 to
13.2 MHz in steps of 1.4 MHz. We observe that δfsðΩÞ and
Γd;sðΩÞ increase as χs;MP becomes larger but that the
maxima and minima of the curve are always found for
the same Ω=χs;MP ratio [Fig. 19(b)] as predicted (see
Appendix C).
The second observation is that δfsðΩÞ and Γd;sðΩÞ vary

with the initial coherent-state amplitude β [Fig. 19(c)]. As
the frequency comb contains only a finite number of
frequencies fMP − nχs;MP with 0 ≤ k ≤ 8, the decoherence
rate between two Fock states jii and jji depends on i and j.
As the probability distribution of photon numbers depends
on the amplitude of the coherent state, the mean
decoherence rate also depends on the coherent-state
amplitude.
The third observation is that in the regime

χs;MP ≫ Γ1;MP=2π, the dephasing rate and ac-Stark shift
are a function of the ratio 2πΩ=Γ1;MP as shown in Fig. 19
(d). The dephasing rate increases as Ω2 until a plateau is
reached for 2πΩ=Γ1;MP ¼ 0.7; this plateau is predicted (see
Appendix C). In contrast, the Stark shift is constant for
2πΩ=Γ1;MP < 0.3 and splits into two frequencies (two
oscillations on top of each other in Ramsey interferometry)
with a splitting proportional to 2πΩ=Γ1;MP. Since there are
two frequencies, we use Eq. (B10) to fit the simulated
Ramsey oscillations for χs;MP ≫ Γ1;MP=2π. In practice,
Eq. (B10) is a good fit function because a Fourier analysis
shows that the signal is composed of two frequencies with
the same amplitude. Figure 19(e) shows an example of
simulated Ramsey oscillations for χs;MP ≫ Γ1;MP=2π.

APPENDIX H: DENSITY MATRIX ELEMENTS

In this part, we explain how one can calculate the density
matrix of the storage mode from the measured Wigner
function. It is the recipe we use to produce the bottom part
of Fig. 3(a) in the main text. We further present original
results on the decay of density matrix elements when the
multiplexing qubit is driven by a single tone or by the comb
of frequencies. We characterize the quantum nondemolition
nature of our photocounter. Finally, we present an experi-
ment in which we show revivals of density matrix elements
as a function of time and show simulations that reproduce
them qualitatively. We discuss a new quantity called the
mean coherence and show its measured evolution in various
measurement configurations.

1. Density matrix reconstruction

The Wigner tomography contains all the information
about the state of the storage mode. We explain below how
we reconstruct the density matrix from the measured

Wigner function. We compute the Wigner map for every
operator jnihmjwith jni and jmi two Fock states with n and
m photons. The mean value of those operators is equal to
the ðn;mÞ element ρnm of the density matrix. Using the
mathematical expression of hxjni,

hxjni ¼ ψnðxÞ ¼
�
2

π

�
1=4 1ffiffiffiffiffiffiffiffiffi

2nn!
p Hnð

ffiffiffi
2

p
xÞe−x2 ðH1Þ

with HnðxÞ ¼ ð−1Þnex2ðdn=dxnÞe−x2 the Hermite polyno-
mial function of order n, and jxi the eigenvector of the
quadrature ðâs þ â†sÞ=2 associated with the eigenvalue x.
The Wigner map of the operators jni and jmi becomes

Wjnihmjðx; pÞ ¼
1

π

Z
dye−2ipyψnðxþ y=2Þψmðx − y=2Þ;

ðH2Þ

and the matrix element ρnm of the storage mode is given by
Eq. (B5)

ρnm ¼ π

ZZ
dxdpWjnihmjðx; pÞWρðx; pÞ: ðH3Þ

2. Accessing the measurement-induced dephasing rate

In order to characterize the decoherence due to the
multiplexed measurement, we use a renormalization of
the density matrix elements in order to remove most of the
effects of the storage-mode relaxation. Let us now show
that in the absence of Hamiltonian evolution and meas-
urement backaction, the quantity jρnmj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρnnρmm
p

evolves
only because of dephasing and that its dynamics is not
affected by relaxation. We consider the storage mode alone
under the influence of its relaxation and dephasing channels
in a frame rotating at fs,

_ρ ¼ Γ1;sLðâsÞρþ 2Γϕ;sLðâ†s âsÞρ: ðH4Þ

From this equation, we can compute the time derivative of
the density matrix element

_ρnm ¼ Γ1;s

�
ρnþ1mþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðmþ 1Þ

p
−
nþm

2
ρnm

�
− Γϕ;sρnmðn −mÞ2: ðH5Þ

If the storage mode is initialized in a coherent state jαoi, the
solution of the equation is

ρnmðtÞ ¼ e−jαoj2e
−Γ1;st α

m
o e−mΓ1;st=2ðα�oÞne−nΓ1;st=2ffiffiffiffiffiffiffiffiffiffi

n!m!
p e−Γϕ;sðn−mÞ2t;

ðH6Þ
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and we get

jρnmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρnnρmm

p ðtÞ ¼ e−Γϕ;sðn−mÞ2t: ðH7Þ

Thus, indeed, the renormalization removes the effect of the
relaxation rate Γ1;s and characterizes only the dephasing
rate. Under the action of measurement, the dephasing rate
Γϕ;s is increased by the measurement-induced dephasing
rate. We use this property in the following sections and
study the evolution of ρmn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρnnρmm

p
.

3. Decoherence of the storage mode induced by a single
measurement drive

Measuring whether there are n photons spoils the
coherence of the superposition between Fock state jni
and Fock state jm ≠ ni. We evidence this dephasing by
observing the evolution of ρnm.

We prepare the storage-mode state in a coherent state
with an amplitude β ¼ −1.7 and probe the multiplexing
qubit during a time t with a drive at the frequency fMP −
ΔMP before doing Wigner tomography. For various times t
and detunings ΔMP, we compute the density matrix of the
storage mode using Eq. (H3). One can fit the time evolution
of jρnmj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρnnρmm
p

with a decreasing exponential function.
The extracted decoherence rate Γnm

d;sðΔMPÞ is then compared
to the theoretical value.
In Ref. [50], we show that an exact, infinite-order

adiabatic elimination of the multiplexing qubit probed
with a single frequency drive is possible under the
assumption that there is no photon loss in the storage
mode. It shows that the decoherence rate between the Fock
states jni and jmi due to the measurement is given by the
highest eigenvalue, which are all negatives, of the following
matrix:

0
BBB@

−Γ1;MP=2 −2πΔþ nþm
2

2πχs;MP 0 0

2πΔ − nþm
2

2πχs;MP −Γ1;MP=2 −2πΩ 0

0 2πΩ −Γ1;MP −Γ1;MP − i nþm
2

2πχs;MP

0 0 −i nþm
2

2πχs;MP 0

1
CCCA: ðH8Þ

Figure 20 shows the measured density matrix
decoherence rates Γnm

d;s and the above theory for n and
m going from 0 to 4 [with an offset corresponding
to the natural dephasing rate in Eq. (H7)]. As expe-
cted in a regime with resolved resonance peaks
ð2πχs;MPjm − nj > Γ2;MPÞ, the decoherence rate Γnm

d;s

between Fock states jni and jmi is larger when the
single drive probes whether there are n photons or m
photons with a moderate drive amplitude Ω (dependence
on Ω not shown here). For much larger drive amplitude
Ω, one can increase the decoherence rate Γnm

d;s by driving
with a detuning ΔMP ¼ ðnþmÞχs;MP=2, similar to dis-
persive qubit readout, which is optimal for information
extraction at large drive power and for a drive frequency
detuned by χs;MP=2. In fact, this regime would become
particularly attractive for poorly resolved resonances as a
function of the photon number ð2πχs;MPjm − nj < Γ2;MPÞ.
Premises of this effect are visible in Fig. 20, as the
maximal decoherence rate occurs at a detuning slightly
closer to ðnþmÞχs;MP=2, with a stronger effect for small
jm − nj, both in theory and in the experimental obser-
vations. The small discrepancy between theory and
experiment, in particular, the asymmetry as a function
of n and m, may be explained by the photon loss rate of
the storage mode, which is not captured in the simplified
theoretical model.

4. Multiplexed measurement vs single tone
measurement

In Fig. 3(a) of the main text, one sees that the dephasing
of the storage mode induced by the measurement is
stronger for multiplexed measurement than for single tone
measurement. This conclusion is based on the Wigner
tomography of the storage mode in three distinct cases. The
storage mode is initialized in a coherent state of amplitude
β ¼ −1.55. Then, before performing the tomography of the
storage mode, we either (i) wait for a time t, (ii) probe the
multiplexing qubit for a time t at a single frequency fMP −
χs;MP corresponding to one photon, or (iii) with a fre-
quency comb.
From the measured Wigner functions, we compute the

density matrix of the storage mode ρðtÞ for various times t
for the three cases and compare the evolution of the
normalized elements ρnmðtÞ (see Fig. 21). Without any
drive on the multiplexing qubit [circles and case (i)], the
density matrix elements decay due to natural dephasing
only. Clearly, the drive on the multiplexing qubit induces a
decay of the coherences, with a stronger effect when the
comb is turned on than when a singe drive is turned on. We
conclude that a multiplexing measurement extracts more
information than a single measurement.
The effect on ρ02 when probing with a resonant drive for

n ¼ 1 is consistent with the significant measurement-
induced detuning that can be read off the top right plot
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of Fig. 20 (blue, value 1 on the horizontal axis). Apparently,
when driving with a comb, such an effect combines with
the ones on the n ¼ 0 and n ¼ 2 resonances, and other
components to induce a stronger overall measurement rate.
We investigate this comb effect more precisely in
Appendix H 6.

5. Quantum nondemolition nature of the multiplexed
measurement

The goal of this subsection is to quantify the quantum
nondemolition (QND) nature of our multiplexed measure-
ment. A measurement is said to be QND if

(i) the measurement time is very short compared to the
timescale of evolution of the system under study,

MPMP

MPMP

MPMP

FIG. 20. Decoherence rate of superpositions between Fock
states induced by a single drive on the multiplexing qubit.
In each panel, dots are obtained using Eq. (H3) on the measured
Wigner function of the storage mode when driven by a single
drive at fMP − ΔMP with an amplitude Ω ¼ χs;MP=2. Lines
represent the highest eigenvalue of (H8) without any free
parameters. An offset equal to Γϕ;sðn −mÞ2, which is the intrinsic
dephasing of the storage mode, is added to obtain the total
dephasing rate.

FIG. 21. Dynamics of the storage-mode coherences under
various measurement schemes. Normalized off-diagonal ele-
ments of the density matrix extracted from the measured Wigner
function of the storage mode as a function of time. The figure
focuses on three elements ρ01 (blue), ρ12 (orange), and ρ02
(green). Circles: case (i) without driving the multiplexing qubit.
Squares: case (ii) where a single tone at fMP − χs;MP drives the
multiplexing qubit with a strength Ω ¼ χs;MP=2. Triangles: case
(iii) where the multiplexing qubit is driven by a comb of nine
peaks with the same strength Ω each.

(a) (b)

(c) (d)

FIG. 22. Impact of multiplexed measurement on the occupation
of the Fock states. (a) Measured probability to find the storage
mode in Fock state j0i as a function of time t for various comb
drive amplitudes Ω=χs;MP. (b) Measured diagonal elements of the
density matrix integrated during 5 μs as a function of the drive
amplitude Ω=χs;MP. (c) Decay of the average photon number in
time for various drive amplitudes. (d) Average photon number
evolution as a function of Ω=χs;MP.
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(ii) the interaction with the probe does not disturb the
quantum state of the system if it belongs to the
measurement basis.

If a photocounter is QND, the diagonal elements of the
density matrix, i.e., the average Fock-state populations, of
the resonator are unchanged (on average on all measure-
ments) by the measurement process. In our experiment, we
observe that the diagonal elements of the density matrix in
the energy basis evolve owing to the decay of the storage
mode but do not strongly depend on the measurement
strength. To be more accurate, we notice that for large
probe amplitude [red and purple points in Fig. 22(a)], the
probability of finding the storage mode with 0 photons is
slightly lower. This dependence on the amplitude of the
drive Ω is best characterized by extracting the populations
[Fig. 22(b)] and photon number [Fig. 22(d)] integrated
during T ¼ 5 μs as a function of Ω=χs;MP. For small drive
amplitude Ω=χs;MP < 0.1, the probability to find a given
number of photons does not change with Ω=χs;MP, but for
larger drive amplitude the resonator gets populated prob-
ably because of Zeno effect due to the non-Markovian
environment originating from the multiplexing qubit.
In practice, for small drive amplitude and a measurement

time of 5 μs, the relaxation dynamics of the system during
the measurement process increases the probability of
having 0 photons at the end of the measurement by
approximately 10%. We find that the mean photon number
is decreased by the same percentage.

6. Off-diagonal density matrix elements and revivals of
the coherences

In the main text, we use Wigner tomography in order to
observe Ramsey-like oscillations of the storage mode. In
fact, using Eq. (H3), the Wigner function allows us to
visualize the dynamics of every off-diagonal element of the
storage density matrix to gain insight into the physics of the
dephasing process.
Figures 23(a) and 23(b) show the decay of off-diagonal

elements ρ12 and ρ13 as a function of time. For small drive
amplitudes Ω < 0.5χs;MP, off-diagonal elements decay
faster when Ω is increased since more and more informa-
tion is extracted per unit time by the drive. As larger drive
amplitudes are reached, off-diagonal elements start oscil-
lating. The contrast of these coherence revivals becomes
more pronounced as the drive amplitude becomes larger
and they exhibit a quasiperiodicity (see Fig. 24). Note that
the 10% deviation to exact periodicity may originate from
the Gaussian pulse shaping of the comb. This behavior is
qualitatively reproduced by our simulations [Fig. 23(c)].

7. Mean coherence between Fock states

Since the driving frequency comb holds the promise to
probe how many photons are in the storage mode, it should
affect all coherences ρnm. In this section, we introduce two

ways of characterizing the impact of the multiplexed
photocounting on the global coherence of the stor-
age mode.
The first one shown in the main text in Fig. 3(b) is the

quadrature of the storage mode in the frame rotating at the

(a)

(b)

(c)

FIG. 23. Normalized off-diagonal elements of the storage
matrix density. (a) Measured normalized coherence
jρ12j= ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ11ρ22
p

between Fock states j1i and j2i of the storage
mode as a function of time and for various amplitudes Ω of the
driving frequency comb. (b) Similar plot for jρ13j= ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ11ρ33
p

.
(c) Results of the simulation of the master equation (G7).

FIG. 24. Normalized off-diagonal elements of the storage
matrix density for the largest measurement amplitudes. Measured
normalized coherence jρ12j= ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ11ρ22
p

between Fock states j1i and
j2i of the storage mode as a function of time and for various
amplitudes Ω > 0.9χs;MP of the driving frequency comb.
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frequency of this mode when the qubit is probed by a comb.
It can be expressed as Re½ðhX̂i þ ihP̂iÞe−2iπδfst� with hX̂i
and hP̂i the expectation values of the quadratures in the
frame rotating at the frequency of the storage drive. This
quantity is related to the first off-diagonal of the density
matrix.
We introduce a second quantity: the mean coherence Cρ

between Fock states 0 to 4. It is defined as

Cρ ¼ Mean
4≥i>j≥0

� jρijjffiffiffiffiffiffiffiffiffiffiffi
ρiiρjj

p
�
: ðH9Þ

CρðtÞ contains the information about the dephasing
between every different Fock state. The left part of
Fig. 25 shows oscillations of the storage-mode quadratures
in the frame of the drive on the storage mode (for state
preparation and Wigner tomography) for various multi-
plexing qubit drive amplitudes. On the right part of Fig. 25,
we display the mean quadrature hâs þ â†si ¼ Re½ðhX̂i þ
ihP̂iÞe−2iπδfst� in the frame rotating at the storage-mode
frequency and the mean coherence Cρ. Those two quan-
tities show the same dynamics leading to the same
dephasing rate and both quantities can be used to character-
ize it. The revivals that can be seen on each of the density
matrix off-diagonal elements (see Fig. 23) also appear in
the evolution of the quadrature and of the mean coherence
between Fock states.
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