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Abstract— This paper studies the multiphasis slugging flow
phenomenon occurring in oil wells and flow lines. The main con-
tribution is a low-dimensional distributed parameters model,
comprising the gas mass fraction, the pressure, and gas velocity
as states. Along with appropriate boundary conditions, on the
one-dimensional space domain, it constitutes a well-posed mixed
initial-boundary value problem for a quasilinear hyperbolic
system. Numerical simulation results obtained with a presented
characteristics method solver stress the validity of the approach
and the fair representativeness of the model. In particular,
the period of simulated oscillations and their overall shape
is in accordance with reference results from the literature.
Controllability and observability open problems are formulated
for future works.

I. Introduction

In this article, we propose a model of the slugging phe-

nomenon taking the form of a low-dimensional hyperbolic

system of conservation laws. Slugging is a two-phase flow

regime occurring during the process of oil production. In cer-

tain circumstances, the inhomogeneous repartition of gas and

liquid into the long transport pipes leads to this oscillating

flow pattern, which is detrimental to the overall production

and is at the source of severe issues concerning safety of

operations. The physical description of this phenomenon is

as follows. Elongated bubbles of gas, separated by “slugs”

travel from one end of a pipe to the other. This results in

large pressure oscillations and an intermittent flow. A main

negative effect is that the average (over time) production of

oil is decreased compared to steady flow regimes.

Modeling this phenomenon is a difficult task, because its

origins are not completely understood yet. Early models have

focused on the transitions between flow patterns [31] or the

prediction of the flow characteristics (e.g. average liquid

hold-up, pressure drop...) [1]. More recently, distributed

parameters models have been developed in commercial sim-

ulation softwares, such as OLGA
TM

or TACITE
TM

. They are

based on nonlinear Partial Differential Equations (PDEs),

and reproduce with a good accuracy the dynamical behavior

of slugging wells. However, even if they rely on well-

documented physics and modeling assumptions, their “black-

box” nature (for the end-user) and the high dimensionality
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of the state equations make these softwares hardly usable for

mathematical analysis, let alone control design.

Conversely, reduced models have been developed [8], [24],

[30]. They are based on nonlinear Ordinary Differential

Equations (ODEs) and capture the main features of the

slugging oscillations. Their relative simplicity makes them

suitable for control (and observer) design, at the expense of

sometimes tedious tuning procedures aimed at reproducing

field data (see, e.g., [10]). These models rely on restrictive

modeling assumptions which, in turn, might seem inappropri-

ate from a physical modeling view-point. The Jansen model

[24] is designed specifically for gas-lifted wells, whereas

the Storkaas model [30] corresponds to risers with a low-

point. The model proposed in [8] assumes the existence of

an irregularity in the pipe geometry at the birth of instability.

In this article, we propose a low-dimensional model which

is minimal, in the sense that no assumptions are made on

the geometry or setup of the system, and that it reproduces

with a fair accuracy observed behaviors. Following many

other modeling works (e.g. [1], [3], [12], [16]), the drift-flux

approach is used. This implies that the momentum equations

for the gas and the liquid are combined into a single one, and

that an affine slip relation with constant parameters relates

the velocities of the two phases. Importantly, this is the only

empirical relation used in the model. The approach is very

similar to the density wave model of Sinègre [28], which

was first described and illustrated by OLGA simulations in

[22]. In [28], a distributed parameters model was provided,

along with a thorough stability analysis, describing the

phenomenon. Yet, the analysis relies on simplifications which

preserve the stability properties, but may hurt the physical

interpretation1.

The main contribution of this article is a low-dimensional

model of slugging phenomenon taking the form of a hy-

perbolic system of conservation laws, with a one-sided

boundary actuation. The advantages of such a formulation

are two-fold. First, it is consistent with recent mathematical

tools of analysis of PDE control systems, e.g. results that

guarantee well-posedness of the problem. Similarly, theoret-

ical controllability and observability results might be used.

Such problems of well-posedness and boundary control of

hyperbolic systems have been widely studied [6], [25], [26].

Second, the method of characteristics (see [2], [5], [27] for

application to hyperbolic control systems) can be used to

numerically solve the equations, which reduces the compu-

1In particular, the gas velocity is assumed constant in time and space,
which is not realistic in practice. No such assumption is made here.
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Fig. 1. Inclined pipe transporting oil and gas

tational burden. As illustrated by simulations, the proposed

model has the ability to reproduce oscillations corresponding

to the slugging phenomenon.

The paper is organized as follows. In Section II, we

introduce the distributed parameters model and the boundary

conditions, from a physical view-point. Then, in Section

III, we proceed to a state transformation and show well-

posedness of the mixed-initial boundary value problem. Con-

trollability and observability problems are discussed. Further,

a numerical solver is presented in Section IV, along with

simulations which illustrate the relevance of our approach.

Conclusions are given in Section V.

II. Modeling - the physics

We consider the multiphasis flow of gas and oil through an

inclined circular cross-section pipe as depicted in Figure 1.

The gas and liquid flow from the reservoir into the pipe, and

eventually reach a remotely controlled valve (“production

choke”) before being separated in the downstream facilities.

A. Conservation laws

Following the classical drift-flux approach ([4], [12], [15]),

the model equations consist of two mass conservation laws,

for the gas and the liquid, respectively, and a combined

momentum equation. The flow is assumed to be one-

dimensional. Thus, the radial and angular variations of all

physical quantities are neglected. This yields the following

system of PDEs

∂αGρG

∂t
+
∂αGρGvG

∂z
= 0 (1)

∂αLρL

∂t
+
∂αLρLvL

∂z
= 0 (2)

∂αGρGvG + αLρLvL

∂t
+
∂P + αGρGv2

G
+ αLρLv2

L

∂z
=

FW
G + FW

L − ρmg sin θ(z) (3)

where, for k = G or L, αk denotes the volume fraction

of phase k, ρk denotes its density, and vk its velocity. P

denotes the pressure, ρm is the density of the mixture and FW
k

accounts for the friction of phase k against the pipe walls.

The two following physical definitions hold

αG + αL = 1 and ρm = αGρG + αLρL (4)

In (3), θ(z) is the inclination of the pipe. The time variable

is t > 0 and z ∈ [0, L] is the space variable, where L is

the total length of the pipe. In order to put the system in

a conservative form, several additional relations are needed.

Then, two empirical relations, given below, allow to “close”

the system.

a) Ideal gas: The gas is supposed to satisfy the ideal

gas law, which (locally) reads P = ρGRT , where R is the

specific gas constant, and T is the temperature. The pressure

at one location in the pipe is assumed to be equal to the

pressure in the gas phase.

b) Slip relation: Following [28], the velocities of gas

and liquid are assumed to satisfy the following slip relation

vG − vL =
v∞

αL

(5)

where v∞ is a constant parameter. In most drift-flux models

(e.g. [12], [19]), the parameter v∞ depends on the state of the

system, according to empirical laws depending on the flow

regime under consideration (annular, dispersed, stratified,

respectively). Yet, in [28], it was shown that the slugging

oscillations could be fairly reproduced in a multiphasis

simulator, even with a constant v∞. We follow this approach.

Eventually, the following simplifying assumptions are

made

c) Incompressible oil: The oil is assumed to be incom-

pressible, which implies that ρL(t, z) = ρL = cst. This is a

classical assumption, as the oil is a liquid phase.

d) Neglectible friction: The friction against the walls is

assumed to be neglectible compared to gravity (FW
G
= FW

L
=

0). This is a reasonable assumption as severe slugging is

known to be a gravity-dominated phenomenon [30].

B. Boundary conditions

The boundary conditions are given at both ends of the

pipe. At the bottom, the flow of liquid is assumed to linearly

depend on the pressure drop between the pipe and the

oil reservoir (alternatively, other sources of oil could be

considered as well). Then,

ΦL(t, z = 0) = αL(t, z = 0)ρLvL(t, z = 0)

= PI [Pr − P(t, z = 0)] (6)

In (6), the constant coefficient PI is called the Productivity

Index. The pressure in the reservoir Pr is assumed to be

constant. Also, at the bottom end of the pipe, the flow of

gas is assumed to be constant too

ΦG(t, 0) = αG(t, 0) ρG(t, 0) vG(t, 0) = ΦG (7)
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Eventually, at the top, the total outflow is assumed to be

governed by a multiphasic valve equation of the (general)

form

ΦL(L) + ΦG(L) = αL(L) ρL vL(L) + αG(L) ρG(L) vG(L)

= CpcZ
√

ρm(L) (P(L) − Ps) (8)

where Ps is the constant pressure in the separator. The valve

(or “choke”) opening Z is the control input. The choke is

remotely actuated. Its opening can be continuously adjusted

to control the flow, e.g. to stabilize it using feedback loops.

Note that, in (8), the time variable is omitted for readability.

III. A well-posed mixed initial-boundary value problem

As is, the system (1)-(2)-(3) is in implicit form, which

is hardly suitable for any mathematical analysis. In order

to prove well-posedness of the problem, we re-formulate

the conservation equations as a hyperbolic system of PDE.

After a suitable transformation of the boundary conditions,

this allows to consider the well-posedness of a mixed initial-

boundary value problem, applying results from [26]. Further,

even though no results on boundary controllability or observ-

ability are applicable as for now, the results obtained in finite

dimension [9], [13], suggest that boundary stabilizability

or observability could be obtained. We propose two such

problems for future works.

A. Well-posedness

a) Hyperbolic system: Consider the following state

vector

u =
(

u1 u2 u3

)T
=

(

αGρG

αGρG+αLρL

P
bar

vG

)T

where the pressure is divided by 1 bar = 1 × 105 Pa to

ensure, later, proper numerical conditioning of the solver2.

Combining equations (1)-(2)-(3), and the static relations (4)

and (5) allows to rewrite the system in conservative form

∂H(u)

∂t
+
∂F(u)

∂z
= G(z, u) (9)

Then, noticing that
∂H(u)

∂t
= H′(u) ∂u

∂t
, one obtains

∂u

∂t
+ A(u)

∂u

∂z
= S (z) (10)

where A(u) = H′(u)−1F′(u) and3 S (z) = H′(u)−1G(z, u).

The expressions of A(u) and S are given in Appendix. To

guarantee that A and all the other functions of u belong to

C1, we restrict our study to a compact set

u ∈ K ⊂ (0, 1) × (Ps, Pr) × (0,+∞) ⊂ R3

For each value of u ∈ K, A has 3 real eigenvalues λi(u),

i = 1, 2, 3, as well as a set of linearly independent left

eigenvectors l(u) =





















l1(u)

l2(u)

l3(u)





















(such that ∀u, i, li(u)A(u) =

λi(u)li(u)). This implies that system (10) is hyperbolic, e.g.

2this is certainly unnecessary for the theoretical study
3A cancellation of the state-dependent terms occurs in the derivation of

S which allows to write S (z) instead of S (z, u).

according to the definition given in [26, p. 195]. One should

notice that u1 is a Riemann invariant for the system, as it is

the case in the model of [28]. Moreover, all the numerical

applications that we have performed so far have shown that

the following inequalities hold

∀u, λ1(u) < 0 < λ2(u) < λ3(u) (11)

some of which are difficult to prove by mathematical analysis

given the complexity of the expressions of the λi. This

ensures that the system is strictly hyperbolic.

b) Boundary conditions: In order to establish the well-

posedness of the mixed initial-boundary value problem, the

boundary conditions (6)-(7)-(8) must be rewritten. More

precisely, given a C1 initial condition

ϕ : [0, L]→ K (12)

there must exist two functions gl : R→ R2 and gr : R2 → R
such that Equations (6)-(7)-(8) are equivalent4 to























z = 0 :
(

ṽ2(t, 0) ṽ3(t, 0)
)T
= gl(ṽ1(t, 0))

z = L : ṽ1(t, L) = gr(ṽ3(t, L), ṽ2(t, L),Z)

(13)

where

ṽ(t, z) = l(ϕ(z))u(t, z)

and Z is the control input. The existence of such functions

only depends on the choice of the initial condition ϕ. This

is due to the fact that the number of equations at each

boundary is consistent with the sign of the eigenvalues (11).

Indeed, there are two equations at the boundary z = 0,

which correspond to the two positive eigenvalues, and one

equation at z = L corresponding to λ1 < 0. Yet, this does

not guarantee that the boundary conditions can be inverted

with respect to the components of ṽ (i.e., that the Implicit

Functions Theorem applies). We now give necessary and

sufficient conditions for the existence of gl and gr. First,

let us rewrite Equations (6)-(7)-(8) in the u variables. We

omit the time and space arguments for readability. The left

boundary conditions (z = 0) read

hl(u1, u2, u3)

=

(

ρLu1u2u3bar − ΦG

[

ρLRTu1 + (1 − u1)u2bar
]

ΦG − u1

[

Φg + ρLv∞ + PI(pr − u2)
]

)

= 0 (14)

while the right boundary condition reads

hr(u1, u2, u3,Z) =
ρlu2u3bar

ρLRTu1 + (1 − u1)u2bar
− v∞ρL

−CcZ

√

ρlu2u3bar

ρLRTu1 + (1 − u1)u2bar
(u2 − ps)

=0 (15)

In the ṽ variables, these can be rewritten

z = 0 : h̃l(ṽ1, ṽ2, ṽ3) = hl(m1ṽ,m2ṽ,m3ṽ) = 0

4following the standard notations of [26]
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and

z = L : h̃r(ṽ1, ṽ2, ṽ3,Z) = hr(m1ṽ,m2ṽ,m3ṽ,Z) = 0

where the mi are line vectors such that (mi)i=1,2,3 = l−1. A

necessary and sufficient condition for the functions gl and gr

to exist is that the following partial Jacobian matrices
(

∂h̃l

∂ṽ2
(ṽ1(0), ṽ2(0), ṽ3(0)) ∂h̃l

∂ṽ3
(ṽ1(0), ṽ2(0), ṽ3(0))

)

and
(

∂h̃r

∂ṽ1
(ṽ1(L), ṽ2(L), ṽ3(L))

)

are nonsingular. This yields the following necessary and

sufficient conditions for the existence of gl and gr: the

initial condition ϕ must be such that, for any u(z) =
(

u1(z) u2(z) u3(z)
)T

verifying Equations (14) and (15)

det

∣

∣

∣

∣

∣

∣

∣

∣

∂hl

∂u
(u(0))





















m12(ϕ(0)) m13(ϕ(0))

m22(ϕ(0)) m23(ϕ(0))

m32(ϕ(0)) m33(ϕ(0))





















∣

∣

∣

∣

∣

∣

∣

∣

, 0

and

∂hr

∂u
(u(L))





















m11(ϕ(L))

m21(ϕ(L))

m31(ϕ(L))





















, 0 (16)

If ϕ(z) verifies these conditions, then the Implicit Function

Theorem guarantees the existence of gl and gr. Further, the

well-posedness follows, according to Theorem A.2 in [26],

given that ϕ(z) also verifies conditions of C1 compatibility.

More precisely, this theorem guarantees that there exists

δ > 0 such that the hyperbolic system (10) with initial

condition (12) and boundary conditions (13) admits a unique

local C1 solution u = u(t, z) on the domain

{(t, z) | 0 ≤ t ≤ δ, 0 ≤ z ≤ L}

B. Remarks on stabilizability and observability

As recalled in [11], the stabilization of the slugging

phenomenon has been studied since as early as 1930. Of

the many solutions proposed to suppress the oscillations,

automatic control of the production choke is the one that has

prevailed. Many successful implementations of various con-

trollers have been reported since [21], [7], [20], [17]. These

controllers all use pressure sensors in feedback loop to stabi-

lize the flow by production choke actuation. Yet, theoretical

analysis of the controllability of slugging systems has only

appeared much later, with Imsland [23], Storkaas [30] and

Sinègre [28]. Their results only hold for finite-dimensional

models, and no result exists, to our knowledge, on the

controllability of a PDE model for slugging.

Similarly, the difficulty of placing sensors at deep loca-

tions has motivated investigations on observers using only

topside (and thus, easily accessible) measurements to esti-

mate the pressure everywhere in the pipe. Eikrem [14] and

Sinègre [28] provide examples of successfully implemented

observers, where the masses of gas and liquid inside the pipes

are dynamically estimated. Again, these results rely on ODE

models.

The industrial problem of controlling (resp. estimating)

the flow thanks to production choke actuation (resp. topside

measurements) translates, in the framework of this article,

into the one-sided boundary control (resp. observation) of

the strictly-hyperbolic system (10). The actuator is located

at boundary z = L, and the control law must be defined by

partially inverting function gr in Equation (15) with respect

to Z.

The most advanced results on these topics are found

in [25] and [26], where both the problems of one-sided

boundary controllability and observability of quasilinear hy-

perbolic systems are addressed. However, Li’s [26] results

all impose requirements on the signs of the eigenvalues.

More precisely, to have controllability (resp. observability)

by acting on the boundary condition at z = L, the number of

positive eigenvalues must be less than the number of negative

eigenvalues. These conditions are not fulfilled in the case of

slugging, as there are two positive eigenvalues, and one nega-

tive (see (11)). However, these conditions are only necessary,

and milder results could be investigated with our setup.

Indeed, Li’s results concern the exact controllability and

observability of the whole state of the PDE. For industrial

purposes, this is neither needed nor realistic. Stabilizability

and detectability would probably be more suitable objectives.

Recently, works by Krstic [25] have focused on the bound-

ary null control of a single hyperbolic PDE, with constant

(possibly unknown) propagation speed. These results do not

directly apply here either, as the phenomenon is genuinely

nonlinear (and state-dependent speed) in its propagation,

and consists of a coupled set of equations. However, the

backstepping approach could be used to obtain stabilizability

results for the considered problem.

To summarize the above discussion, the two following

problems could be considered and are of practical interest

Problem 3.1: Consider Equation (10) with boundary con-

ditions (13), where Z is the control input. Given ū(z) an

equilibrium profile, and ϕ an initial condition close to ū, is

there a feedback law Z = ψ(u1, u2, u3) such that ū is a stable

equilibrium?

Concerning observability, we formulate a similar problem

Problem 3.2: Consider Equation (10) with boundary con-

ditions (13), with a constant known input Z. Assuming

that the topside pressure u2(t, z = L) is measured, can one

construct an observer û such that û2(t, z = 0) →
t→+∞

u2(t, z =

0)?

IV. Numerical validation

In this section, we illustrate the relevance of the proposed

model by numerical simulations. The main result is that the

model is able to reproduce the oscillations corresponding

to the slugging behavior. The solution of the mixed initial-

boundary value problem is computed using the method of

characteristics.

A. Method of characteristics

The method is based on the following transformation of

the equations. Let u be a C1 solution of system (10) with
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boundary conditions (13). For i = 1, 2, 3, let ζi : t > 0 7→
ζi(t) ∈ [0, L] be such that

dζi

dt
(t) = λi(u(t, ζ(t))) (17)

The existence of such functions is guaranteed by the Cauchy-

Lipschitz theorem (see e.g. [18]). Now, consider the func-

tions γi : t 7→ u(t, ζi(t)). For each i, γi verifies the scalar

equation

li(γi)
dγi

dt
= li(γi)

(

∂u

∂t
(t, ζ(t)) +

dζi

dt

∂u

∂z
(t, ζ(t))

)

= li(γi)

(

∂u

∂t
(t, ζi(t)) + λi(γi)

∂u

∂z
(t, ζi(t))

)

= li(γi)

(

∂u

∂t
(t, ζi(t)) + A(γi)

∂u

∂z
(t, ζi(t))

)

= li(γi)

(

∂u

∂t
(t, ζi(t)) + A(u(t, ζi(t)))

∂u

∂z
(t, ζi(t))

)

= li(γi)S (ζi)

This yields the following propagation equations, for i =

1, 2, 3

li(u(t, ζ(t))

(

du(t, ζ(t))

dt
− S

)

= 0 (18)

The curves (t, ζ(t)) in the R2 plane are called characteristic

curves, and Equations (17) are referred to as the character-

istic equations. Along these curves, the system is reduced

to a set of 3 coupled Ordinary Differential Equations. This

induces the following numerical scheme.

B. Numerical scheme

Consider the discretized time-space grid

{t ∈ {0,∆t, ...n∆t, ...}, z ∈ {0,∆z, ...k∆z, ..., L}}. The time

and space steps ∆t and ∆z are constant, and we assume that

the Courant-Friedrichs-Lewy condition

max
i=1,2,3

λi(u) <
∆z

∆t
(19)

is always verified, namely, for all values of the solution

u (therefore in each block). The Euler-scheme discretized

equations corresponding to the characteristic equations (17)

and the propagation equations (18) read

ζi(n + 1) − ζi(n)

∆t
= λi(u(n, ζi(n))) (20)

and

li(u(n, ζi(n)))

(

u(n + 1, ζi(n + 1)) − u(n, ζi(n))

∆t
− S

)

= 0 (21)

Let us assume that the solution is known at time t = t0 +

n∆t for all z ∈ {0,∆z, ..., k∆z, ..., L}. We now detail how to

determine the solution at time t + ∆t, and location z = k∆z.

t

z

t W���ûW

]

1

z = L

z = 0

]
1

3

2

1

]

]

]

Fig. 2. Solving of the discrete characteristic equations backward in time.

c) Case 1: k , 0, L
∆z

: We consider the characteristic

curves passing through the point (t + ∆t, z). According to

(20), their discretized equations read
z−ζi(n)

∆t
= λi(u(n, ζi(n))),

where the ζi, i = 1, 2, 3 are unknowns to be determined. This

is done by applying Newton’s algorithm to find the solution

to the 3 equations

ψ(ζi) = z − ζi − ∆tλ(u(n, ζi)) = 0 (22)

This point is illustrated on Figure 2. One should notice that

the CFL conditions (19) guarantee that ∀i z−∆z < ζi < z+∆z.

Also, the solution is known at time t for all z = k∆z, but the

algorithm uses the values of the λi and dλi

dz
at locations which

are not exactly on the grid. The interpolation methods used

to compute these intermediate values are discussed in details

in Section IV-C.

Once the ζi, i = 1, 2, 3 have been determined, they can be

used to find the value of the solution at the point (t + ∆t, z).

Indeed, Equations (21) can be rewritten as

u(n + 1, z) =





















l1(u(n, ζ1))

l2(u(n, ζ2))

l3(u(n, ζ3))





















−1 



















l1(u(n, ζ1))
[

u(n, ζ1) + ∆tS
]

l2(u(n, ζ2))
[

u(n, ζ2) + ∆tS
]

l3(u(n, ζ3))
[

u(n, ζ3) + ∆tS
]





















(23)

This explicit formula requires the values of the solution at

locations ζi, i = 1, 2, 3. Again, these points are unlikely to

be exactly at grid points, and interpolation is needed (see

Section IV-C).

d) Case 2: k=0: In this case, the two characteristic

curves corresponding to positive eigenvalues leave the do-

main. The corresponding propagation equations are replaced

by the boundary conditions (6) and (7). After having solved

the characteristic equation corresponding to λ1 < 0 and

having computed ζ1, this yields the following system to be
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solved

ψl(u1, u2, u3) =












































l1(u(n, ζ1))











































u1

u2

u3





















T

− u(n, ζ1) − ∆tS























ρLu1u2u3bar − ΦG

[

ρLRTu1 + (1 − u1)u2bar
]

ΦG − u1

[

Φg + ρLv∞ + PI(pr − u2)
]













































=





















0

0

0





















(24)

This system of nonlinear equations is solved, again, using

Newton’s algorithm.

e) Case 3: k = L
∆z

: Similarly, in this case, the charac-

teristic curve corresponding to λ1 < 0 exits the domain. It is

replaced by the right boundary condition. Again, this yields

a system of 3 equations which is solved using Newton’s

algorithm.

The aforedescribed method allows to compute the values

at time t+∆t, for all locations k∆z, provided that the solution

is known at time t. In this numerical scheme, the estimation

of the value of the solution between the nodes of the grid is

of great importance. This is the topic of the next paragraph.

C. Interpolation methods

The interpolation method used to compute the value of

the solution and the eigenvalues between the nodes of

the grid is crucial to obtain the convergence of the nu-

merical scheme. A malicious effect implied by the usage

of insufficiently accurate interpolation is the generation of

spurious oscillations, especially close to the boundaries of

the spatial domain where steep gradients can be observed.

This point was investigated by Tsai [32], who uses cubic

Hermite splines with estimates of the spatial derivative of the

solution. These are provided by additional PDEs to solve.

His method provides a good accuracy at the expense of

and increased computational complexity. In this article, the

intermediate values are computed using the following three

points Lagrange interpolation formula

f (z0 + p∆z) =
p(p − 1)

2
f (z0 − ∆z)

+ (1 − p2) f (z0) +
p(p + 1)

2
f (z0 + ∆z)

with |p| ≤ 1. In particular, when computing the value of the

solution at point (t + ∆t, z), one has to evaluate the solution

at point (t, ζi), with z−∆z < ζi < z+∆z. The formula is used

by setting p =
ζi−z

∆z
.

D. Simulations

The model was tested on a 2500-meter long vertical well.

The simulation was initialized at the equilibrium, with a fully

opened production choke Z = 100%. The time step was

chosen to be ∆t = 0.01 s and the space step was set to

∆z = 61.25 m. A typical value of the largest eigenvalue is

|λ1| ≈ 300 m.s−1, so that the CFL conditions are satisfied.

After a time t = 5 h, the production choke was gradually

closed to Z = 60%. Then, after 7 more hours, the production

choke was closed to Z = 20%. The resulting variations of

0 2 4 6 8 10 12 14 16
125

130

135

140

145

150

Time [h]

B
o

tt
o

m
 p

re
s
s
u

re
 [

b
a

r]

0 2 4 6 8 10 12 14 16

20

40

60

80

100

Time [h]

P
ro

d
u

c
ti
o

n
 c

h
o

k
e

 o
p

e
n

in
g

 [
%

]

Fig. 3. Variations of the bottom side pressure and production choke
opening. At Z = 20%, the system is stable.

the bottom side pressure are pictured in Figure 3. The period

of the oscillations is approximately 30 minutes, which is in

accordance with the results of [29], for a similar well. More-

over, the model reproduces an important feature of slugging

wells. It is a well-known fact that choking down the well,

i.e. reducing the opening of the production valve, stabilizes

the flow (at the expense of the production level, which then

decreases). This behavior was proved to correspond to a

Hopf bifurcation in [33], the system switching stability as

the choke opening decreases. As pictured on Figure 3, the

bifurcation point for this system is located between a 20%

and 60% choke opening. To illustrate the mechanism of the

oscillations, “snapshots” of the liquid mass hold-up profiles

over one slugging cycle are pictured on Figure 4. Also note

that the model illustrates the need for control to increase the

production. Figure 5 depicts the instantaneous, averaged, and

equilibrium oil production for a choke opening of Z = 60%.

It stresses that stabilizing the flow around the equilibrium

would results into a production increase.

V. Conclusion

A low-dimensional distributed parameters drift-flux model

for two-phase slugging flow has been presented. The model

equations take the form of a first-order quasilinear hyperbolic

system, along with boundary conditions at both sides of the

space domain. Well-posedness of this setting is proved, and

the questions of one-sided boundary control and observation

are discussed. A presented numerical scheme, based on the

method of characteristics, allows to compute the approximate

solution of the equations. The simulations stress the ability

of the model to reproduce the pressure and flow rates

oscillations corresponding to the slugging behavior.

Several directions for future works are considered. The

problems formulated in Section III-B are an interesting

challenge for the PDE control theory. They would constitute

a link between a very practical industrial problem and more
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Fig. 5. Instant, average, and equilibrium oil production during slugging.
The equilibrium production is higher than the average of the oscillations,
but needs feedback control to be stabilized around.

theoretical topics. The recently published results by Li [26]

and Krstic [25] encourage us to think that solutions may be

around the corner.

Besides, concerning the numerical simulations, critical

improvements must be made. The numerical scheme has

difficulties when the solution approaches critical points,

where the considered functions are not C1. In particular,

the right boundary condition (15) is not Lipschitz when the

topside pressure u2(t, L) reaches the separator pressure Ps.

A space grid refined at the vicinity of the boundaries is

considered as a possible solution to this issue. Also, more

advanced comparisons with the reference multiphase flow

simulator OLGA
TM

should provide a quantitative evaluation

of the performances of the model and the numerical scheme.
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Appendix

The matrices corresponding to the hyperbolic form of the

system read

A(u) =





























u3 0 0

0 u3 u2 +
(1−u1)u2

2

ρLu1RT
bar

ρLRTu1+(1−u1)u2bar

(1−u1)2u2
2bar2 ρLRTv∞

2 (ρLRTu1+(1−u1)u2bar)((1−u1)u2
2bar2−ρ2

L
u1RTv∞

2)
ρL(1−u1)u2

3bar2 u3 − 2v∞
ρLRTu1+(1−u1)u2bar

u2bar





























and

S (z) =





















0

0

−g sin θ(z)





















The eigenvalues of A read





















λ1

λ2

λ3





















=































u3 − (1 − u1)v∞ − ρLRTu1v∞
u2bar

− ρlRTu1+(1−u1)u2bar

ρLRT (1−u1)u1u2bar

√

u1(1 − u1)RT
[

(1 − u1)u2
2
bar2 − ρLRTu2

1
ρLv∞2

]

u3

u3 − (1 − u1)v∞ − ρLRTu1v∞
u2bar

+
ρlRTu1+(1−u1)u2bar

ρLRT (1−u1)u1u2bar

√

u1(1 − u1)RT
[

(1 − u1)u2
2
bar2 − ρLRTu2

1
ρLv∞2

]































and the left eigenvectors are given by





















l1(u)

l2(u)

l3(u)





















=

































1
(1−u1)2u2bar2

ρLRTρLv∞2 − (1−u1)u1

u2
− (1−u1)u2bar

√
u1(1−u1)RT[(1−u1)u2

2
bar2−ρLRTu2

1
ρLv∞2]

ρ2
L
R2T 2v∞2u1

− (1−u1)2u2bar

ρLRTv∞

1 0 0

1
(1−u1)2u2bar2

ρLRTρLv∞2 − (1−u1)u1

u2

(1−u1)u2bar
√

u1(1−u1)RT[(1−u1)u2
2
bar2−ρLRTu2

1
ρLv∞2]

ρ2
L
R2T 2v∞2u1

− (1−u1)2u2bar

ρLRTv∞
































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