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Abstract

We study the stabilization problem of a linear time-invariant system with an unknown stochastic input delay. We propose to robustly
compensate for the stochastic delay with a constant time horizon prediction-based controller. We prove the mean-square exponential
stabilization of the closed-loop system under a sufficient condition, which requires the range of the delay values to be sufficiently narrow
and the constant delay used in the prediction-based controller to be chosen in this range. Numerical simulations illustrate the relevance
of this condition and the merits of our control design.
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1 Introduction

Time delays are ubiquitous in engineering systems. Espe-
cially, the development of communication technology led
to the large spread of sophisticated network control sys-
tems [39, 44]. Yet, information transmitted through these
networks often suffers from lag [40], data reordering, pack-
ets dropouts [13], data corruption or quantization [7]. Such
phenomena play a crucial role in the dynamic of vehicu-
lar traffic [16]. Indeed, in addition to the driver reaction
time, wireless vehicle-to-vehicle communication [46] used
to monitor vehicles ahead when beyond the line of sight of-
ten introduces substantial communication delays and packet
losses [4,32] while transmitting the remote vehicles informa-
tion. These phenomena can be accounted for by a stochastic
delay model (see [14, 15]).

When a delay affects the input of a dynamical system,
prediction-based laws [1, 41] are the state-of-the-art con-
trol strategy [35]. It was first applied to linear systems with
constant input delays (see [27, 30]), then extended to han-
dle time-varying delays (see [2, 34]), uncertain input de-
lays or disturbances (see [28, 33]), and nonlinear systems
(see [3,20]). The main ingredient of this class of control law
requires calculating a state prediction over a time window
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of the length of the delay or future value of the delay in the
case of a time-varying delay. However, this strategy diffi-
cultly translates to the case of unknown future delay varia-
tions and even more to stochastic delays.

While a vast number of works [17, 18, 22, 31, 42] have in-
vestigated the stability or stabilization of Stochastic Delay
Differential Equations (SDDEs) in various contexts, only a
few works have considered the case where the delay itself is
a stochastic variable. Indeed, prediction-based control laws
have been applied to linear SDDEs in [6], but the delay it-
self is assumed to be constant. Up to our knowledge, ones
of the few studies to consider the delay as a stochastic vari-
able are [23,24,29,43]. While [43] studies a piecewise con-
stant process and [29] analyzes a deterministic delay term
multiplied by a random variable, [23, 24] consider stochas-
tic state delays modeled as a Markov process with a finite
number of states. The authors then consider each delay value
separately, following the so-called technique of probabilis-
tic delay averaging. This constant delay reasoning inspired
the core of our analysis methodology.

In this paper, we consider for the first time the problem
of prediction-based control of dynamical systems subject to
stochastic input delays. We consider linear dynamics and
model the delay as a Markov process with a finite number of
states. We propose to use a prediction-based controller aim-
ing at compensating for this delay. Yet, due to its stochastic
nature and the fact that the current delay value is unlikely
to be measured, we design a constant-horizon prediction.
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This control strategy builds on the delay-robustness results
obtained for prediction-based controllers in the determinis-
tic case. Indeed, delay-robust compensation can be achieved
not only for a constant time-delay [33], but also for a time-
varying one provided that the delay rate remains sufficiently
small [3] or using a small-gain approach [19]. In this pa-
per, we extend these results to the stochastic delay case and
establish that a constant horizon prediction-based controller
guarantees mean-square exponential stabilization of the sys-
tem provided that the horizon prediction is sufficiently close
to the delay values. This is the main contribution of the pa-
per.

This paper is organized as follows. In section 2, we begin
with the problem statement and state our main theorem.
In section 3, we propose a backstepping transformation to
reformulate the system, which establishes the preliminaries
to analyze the stability of the closed-loop system in section
4. Simulation results are given in section 5 to illustrate the
relevance of the stabilization conditions we formulated.

Notations.
In the following sections, for a signal v : (x, t)∈ [0,1]×R→
v(x, t) ∈ R, we denote ‖v(t)‖ its spatial L2-norm

‖v(t)‖=

√∫ 1

0
v(x, t)2dx (1)

For a square matrix A, λ (A) denotes its spectrum. For a
symmetric square matrix A, min(λ (A)) and max(λ (A)) are
its minimum and maximum eigenvalues respectively.

Additionally, |A| denotes its Euclidean norm

|A|=
√

max(λ (AT A)) (2)

in which AT denotes the transpose of A.

E(x) denotes the expectation of a random variable x. For a
random signal x(t) (t ∈T ⊂R), the conditional expectation
of x(t) at the instant t knowing that x(s) = x0 at the instant
s≤ t is denoted E[s,x0](x(t)).

Finally, ei ∈ Rr (r ∈ N+ and i ∈ {1, ...,r}) denotes the ith

unit vector, that is, e1 =
(

1 0 · · · 0
)T

, e2 =
(

0 1 · · · 0
)T

,

..., er =
(

0 0 · · · 1
)

.

2 Problem Statement and Main Result

We consider the following controllable linear dynamics

Ẋ(t) = AX(t)+BU(t−D(t)) (3)

in which the Rn-valued random variable X and U ∈ R are
the state and control input, respectively. The stochastic delay
D is a Markov process with the following properties:

(1) D(t)∈ {Di, i∈ {1, ...,r}}, r ∈N with 0 < D≤D1 < D2 <
... < Dr ≤ D.

(2) The transition probabilities Pi j(t1, t2), which quantify the
probability to switch from Di at time t1 to D j at time t2
((i, j) ∈ {1, ...,r}2, t2 ≥ t1 ≥ 0), are differentiable func-
tions Pi j : R2→ [0,1] satisfying

r

∑
j=1

Pi j(t1, t2) = 1, (0≤ t1 ≤ t2) (4)

(3) The realizations of t 7→D(t) are continuous from the right.

We consider the following constant time horizon prediction-
based control law

U(t) = K
[

eAD0X(t)+
∫ t

t−D0

eA(t−s)BU(s)ds
]

(5)

in which K is a feedback gain such that A+BK is Hurwitz,
and D0 ∈ [D,D] is constant.

Exact compensation of the non-constant delay in (3) requires
the function φ : t → t −D(t) to be invertible in order to
define the feedback law U(t) = KX(φ−1(t)). However, in
the case of a stochastic delay, the function has no reason to
be invertible. In addition, even if it were, the computation
of φ−1(t) would require to know future realizations of the
delay which is impossible in practice.

For these reasons, we therefore propose to use the constant
horizon prediction-based controller (5). Note that, if the time
lag D was constant and equal to D0, the control law would
then correspond to the exact prediction of the state X over
a time window of D0 units. Consistently, we now formulate
the main result of the paper which states that robust com-
pensation is achieved if the time delay remains sufficiently
close to D0.

Theorem 1 Consider the closed-loop system consisting of
the system (3) and the control law (5). There exists a positive
constant ε?(K) such that, if

|D0−D j| ≤ ε
?(K), j ∈ {1, ...,r} (6)

there exist positive constants R and γ such that

E[0,(ϒ(0),D(0))](ϒ(t))≤ Rϒ(0)e−γt (7)

with

ϒ(t) = |X(t)|2 +
∫ t

t−D−D0

U(s)2ds (8)
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The prediction-based control law (5) would exactly com-
pensate for the input delay with a constant time lag equal to
D0. In other words, if D(t) = D0, applying the variation of
constant formula, it would follow that U(t) = KX(t +D0)
and that, after D0 units of time, the corresponding closed-
loop dynamics would be Ẋ = (A+BK)X which is expo-
nentially stable. Condition (6) guarantees that the prediction
performed in (5) remains sufficiently accurate in the case of
a stochastic delay. In details, (6) requires the sequence of the

random delay D =
(

D1 · · · Di · · · Dr

)T

r∈N
to be limited in

a vicinity ε? of the constant D0.

Note that this result is consistent with the delay-robustness
results obtained in the deterministic delay case. Indeed, [3,
25] provide a similar robust compensation result for a time-
differentiable delay function, under the assumptions that
both the range of variation of the delay and its variation rate
is sufficiently limited. A similar result was obtained in [19]
but through a small-gain approach enabling to avoid restrict-
ing the delay rate. Finally, as the delay process under consid-
eration only takes a finite number of values, it is worth notic-
ing that similar robustness properties were also obtained in a
discrete-time context in [8] where the prediction is approxi-
mated to respect causality. Hence, this theorem falls within
this framework and extends it to the stochastic context.

Finally, note that the limit ε? depends on the feedback gain
K, the choice of which is likely to play a crucial role in
practice. However, capturing this dependence is a complex
task from a Lyapunov stability point of view and would
require additional studies.

We now provide the proof of this theorem in the following
sections.

3 PDE Representation of the Delay and Backstepping
Transformation

First, to represent the control input which is subject to a
stochastic delay, we define a distributed actuator vector as,

for x ∈ [0,1], v(x, t) =
(

v1(x, t) · · · vk(x, t) · · · vr(x, t)
)T

with vk(x, t) =U(t +Dk(x−1)). This enables to rewrite (3)
as 

Ẋ(t) = AX(t)+Bδ (t)T v(0, t)
ΛDvt(x, t) = vx(x, t)

v(1, t) = 1U(t)
(9)

in which ΛD = diag(D1, ...,Dr), 1 is a r-by-1 all-ones vector
and δ (t) ∈ Rr is such that, if D(t) = D j,

δi(t) =
{

1 if i = j
0 otherwise

(10)

Hence, δ (t) is a Markov process with the same transition
probabilities as the process D(t), but with the finite number

of states (ei) instead of (Di). In the sequel, δ (t) and D(t)
will thus be equivalently used.

Now, we introduce v̂(x, t) to represent the control input U(t)
within the interval [t−D0, t], and the corresponding input
estimation error ṽ(x, t) defined as

{
v̂(x, t) =U(t +D0(x−1))
ṽ(x, t) = v(x, t)−1v̂(x, t)

(11)

Then, the extended state (X(t), v̂(x, t), ṽ(x, t)) satisfies


Ẋ(t) = AX(t)+Bv̂(0, t)+Bδ (t)T ṽ(0, t)

D0v̂t(x, t) = v̂x(x, t)
v̂(1, t) =U(t)

ΛDṽt(x, t) = ṽx(x, t)−ΣDv̂x(x, t)
ṽ(1, t) = 0

(12)

in which ΣD = (D1−D0
D0

, ..., Dr−D0
D0

)T and 0 is a r-by-1 all-
zeros vector.

Besides, to ease the stability analysis, we also introduce
another actuator µ(x, t) = U

(
t−D0 +D(x−1)

)
to de-

scribe the history of the input on a longer time window
[t −D−D0, t −D0]. Correspondingly, we extend the dy-
namic to (X(t), v̂(x, t), ṽ(x, t),µ(x, t)) satisfying



Ẋ(t) = AX(t)+Bv̂(0, t)+Bδ (t)T ṽ(0, t)
D0v̂t(x, t) = v̂x(x, t)

v̂(1, t) =U(t)
ΛDṽt(x, t) = ṽx(x, t)−ΣDv̂x(x, t)

ṽ(1, t) = 0
Dµt(x, t) = µx(x, t)

µ(1, t) = v̂(0, t)

(13)

In other words, v̂ now cascades into the transport PDE satis-
fied by µ . Finally, in view of stability analysis, we introduce
the backstepping transformation (see [26])

w(x, t) =v̂(x, t)−KeAD0xX(t)

−D0

∫ x

0
KeAD0(x−y)Bv̂(y, t)dy

(14)

Lemma 2 The backstepping transformation (14), jointly
with the control law (5), transform the plant (13) into the
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target system (X(t),w(x, t), ṽ(x, t),µ(x, t))



Ẋ(t) = (A+BK)X(t)+Bδ (t)T ṽ(0, t)+Bw(0, t)

D0wt(x, t) = wx(x, t)−D0KeAD0xBδ (t)T ṽ(0, t)
w(1, t) = 0

ΛDṽt(x, t) = ṽx(x, t)−ΣDh(t +D0(x−1))
ṽ(1, t) = 0

Dµt(x, t) = µx(x, t)
µ(1, t) = KX(t)+w(0, t) (15)

in which, h is defined for t ≥ 0 as

h(t) = D0K
[
(A+BK)eAD0X(t)+ eAD0Bδ (t)T ṽ(0, t) (16)

+ eAD0Bw(0, t)+D0(A+BK)
∫ 1

0
eAD0(1−x)B

(
w(x, t)

+Ke(A+BK)D0xX(t)+
∫ x

0
KD0e(A+BK)D0(x−y)Bw(y, t)dy

)
dx
]

PROOF. The space-derivative of the backstepping transfor-
mation (14) can be written as

wx(x, t) =v̂x(x, t)−KAD0eAD0xX(t)−D0KBv̂(x, t)

−D0

∫ x

0
KAD0eAD0(x−y)Bv̂(y, t)dy

(17)

Besides, the time-derivative of (14) reads

wt(x, t) =v̂t(x, t)−D0

∫ x

0
KeAD0(x−y)Bv̂t(y, t)dy

−KeAD0xAX(t)−KeAD0xBv̂(0, t)

−KeAD0xBδ (t)T ṽ(0, t)

(18)

From (14), (17) and (18) with an integration by parts, we
obtain the two equations with respect to w in (15). Finally,
from the definition of ṽ and v̂ in (11), one can observe
that h(t +D0(x−1)) = v̂x(x, t) = D0U̇(t +D0(x−1)) which
gives the desired expression of h(t) for t ≥ 0, taking a time-
derivative of (5) and using the inverse backstepping trans-
formation of (14), which is

v̂(x, t) =w(x, t)+Ke(A+BK)D0xX(t)

+
∫ x

0
KD0e(A+BK)D0(x−y)Bw(y, t)dy

(19)

We are now ready to carry out the stability analysis.

4 Lyapunov Stability Analysis

4.1 Preliminaries

Let us define the state of the target system (15) as
Ψ = (X ,w, ṽ,µ) ∈ Rn × L2([0,1],R) × L2([0,1],Rr) ×
L2([0,1],R) , DΨ. Note that (15) was reformulated as a
dynamical system involving a random parameter, as studied
in [21] or [10]. However, the results presented in [10] on the
existence of solutions consider a more complex stochastic
framework. This is why, for the sake of self-containedness,
we now formulate a well-posedness result.

Following [21], by a weak solution to the closed-loop system
(3) and (5), we refer to a Rn×L2([−D,0],R)×R-valued
random variable (X(X0, t),Ut(U0, ·),D(t)), the realizations
of which satisfy an integral form of (3) and (5), that is,

X(t) = X(0)+
∫ t

0
(AX(s)+BU(s−D(s)))ds (20)

and (5) for t ≥ 0.

Similarly, by a weak solution to (15), we refer to a DΨ×R-
valued random variable (X(X0, t),w(w0, ·, t), ṽ(ṽ0, ·, t),
µ(µ0, ·, t),D(t)), the realizations of which are a weak solu-
tion of (15), that is, in the PDEs standard sense [11, Defi-
nition 3.1.4] of weak solutions for the transport PDEs and
under an integral form for the ODE.

Lemma 3 For every initial condition (X0,U0) ∈ Rn ×
L2([−D,0],R), the closed-loop system consisting of (3)
and the control law (5) has a unique weak solution such that

X(t) = eAtX(0)+
∫ t

0
eA(t−s)BU(s−D(s))ds (21)

Consequently, for each initial condition in DΨ, the target
system (15) also has a unique weak solution.

PROOF. We first focus on the existence of a solution. No-
tice that, for X defined in (21), performing an integration by
parts,

X(0)+
∫ t

0
(AX(s)+BU(s−D(s)))ds

=X(0)+
∫ t

0
BU(s−D(s))ds+

∫ t

0
AeAsX(0)ds

+
∫ t

0

(∫ s

0
AeA(s−ξ )ds

)
BU(ξ −D(ξ ))dξ

=eAtX(0)+
∫ t

0
eA(t−ξ )BU(ξ −D(ξ ))dξ = X(t)

(22)

which corresponds to an integral form of (3). Observe
that U(t − D(t)) = δ (t)(U(t−D1) . . . U(t−Dr))

T , in
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which δ (t) is a bounded almost-everywhere continu-
ous function (due to the assumption that the realizations
of D and thus δ are right-continuous [9, Exercise 4
p.7]) and thus integrable and also square-integrable. As
U0 ∈ L2([−D,0],R), it follows from Cauchy-Schwarz’s
inequality, that t→U(t−D(t)) is integrable on the interval
[0,D]. Consequently, the integral in (21) is well-defined for
t ∈ [0,D], and X is bounded on the interval [0,D].

Then, as U0 ∈ L2([−D,0],R), U defined in (5) remains
bounded on the interval [0,D] from the corresponding in-
verse Volterra integral equation [5, 45]. Consequently, by a
straightforward iterative argument on time intervals of length
D, one can prove that both X and U , as defined through (21)
and (5) remain bounded for positive times, and that, conse-
quently, the integral in (21) is well-defined. Hence, (21) and
(5) define a weak solution to the closed-loop system.

Secondly, we prove the uniqueness of this solution. Suppose
that there exist two different solutions (X1,U1) and (X2,U2)
for a given initial condition. It then holds


(Ẋ1− Ẋ2)(t) =A(X1−X2)

+B(U1(t−D(t))−U2(t−D(t)))
(X1−X2)(0) =0

(23)

with U1 =U2 for t < 0, and for t ≥ 0


U1(t) = K

(
eAD0X1(t)+

∫ t

t−D0

eA(t−s)BU1(s)ds
)

U2(t) = K
(

eAD0X2(t)+
∫ t

t−D0

eA(t−s)BU2(s)ds
) (24)

For any delay realization, it thus holds that U1(t−D(t)) =
U2(t −D(t)) for t ∈ [0,D], which, in turns, gives X1(t) =
X2(t) for t ∈ [0,D]. Iterating on intervals of length D, we
then obtain X1 = X2 and U1 =U2 for t ∈ R+.

Let us now observe that the well-posedness of the closed-
loop system (3) and (5) implies the one of (9) and (5) by
equivalence. The one of (13) and (5) and thus of (15) by
backstepping transformation then follow (see [38, Theorem
3.1]).

From Lemma 3, (Ψ,δ ) thus defines a continuous-time
Markov process and we can therefore introduce the follow-
ing elements for stability analysis.

In the sequel, we consider the following Lyapunov functional

candidate

V (Ψ) =XT PX +bD0

∫ 1

0
(1+ x)w(x)2dx

+ c
r

∑
l=1

∫ 1

0
(1+ x)(el ·D)T ṽ(x)2dx

+dD
∫ 1

0
(1+ x)µ(x)2dx

(25)

with b,c,d > 0, P the symmetric positive definite so-
lution of the equation P(A + BK) + (A + BK)T P = −Q,
for a given symmetric positive definite matrix Q, and

D =
(

D1 · · · Di · · · Dr

)T

r∈N
and where · denotes the

Hadamard multiplication and the square in ṽ(x)2 should be
understood component-wise.

As the functional V is not differentiable with respect to
time t when evaluated at Ψ(t) and δ (t), we introduce the
infinitesimal generator L (see [24] and [22]) as

LV (Ψ,δ ) (26)

= limsup
∆t→0+

1
∆t

(
E[t,(Ψ,δ )](V (Ψ(t +∆t),δ (t +∆t)))−V (Ψ,δ )

)

We also define L j, the infinitesimal generator of the Markov
process (Ψ,δ ) for the target system obtained from (15) by
fixing δ (t) = e j, as

L jV (Ψ) =
dV
dΨ

(Ψ,e j) f j(Ψ) (27)

in which f j denotes the operator corresponding to the dy-
namics of the target system (15) with the fixed value δ (t) =
e j, that is, for Ψ = (X ,w, ṽ,µ),

f j(Ψ)(x) =


(A+BK)X +BeT

j ṽ(0)+Bw(0)
1

D0

[
wx(x)−D0KeAD0xBeT

j ṽ(0)
]

Λ
−1
D

[
ṽx(x)−ΣDh(·+D0(x−1))

]
1
D µx(x)

 (28)

For the sake of conciseness, in the sequel, we denote
V (t), LV (t) and L jV (t), for short, instead of V (Ψ(t),δ (t)),
LV (Ψ(t),δ (t)) and LV (Ψ(t)) respectively.

It is worth noticing that, due to the fact that V does not
depend explicitly on δ and (4), the infinitesimal generators
are related as follows

LV (t) =
r

∑
j=1

Pi j(0, t)
dV
dΨ

(Ψ(t)) f j(Ψ(t))+
r

∑
j=1

∂Pi j

∂ t
(0, t)V (t)

=
r

∑
j=1

Pi j(0, t)L jV (t) (29)
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Therefore, in view of stability analysis, as a first step, one can
focus on the derivative of the Lyapunov functional evaluated
for a dynamic with a fixed delay, that is, L jV . This is the
approach we follow in the sequel.

4.2 Lyapunov analysis

Lemma 4 Assume there exists a positive constant ε such
that

|D0−D j| ≤ ε, j ∈ {1, ...,r} (30)

Then, there exist (b,c,d,η) ∈ (R∗+)4 which are independent
of ε such that the Lyapunov functional V defined in (25)
satisfies

LV (t)≤−(η−g(ε))V (t), t ≥ D (31)

with the function g : R+→ R+ satisfying limε→0 g(ε) = 0.

PROOF. Taking a derivative of (25) and applying integra-
tions by parts and Young’s inequality, we obtain

dV
dΨ

(Ψ) f j(Ψ) (32)

=−X(t)T QX(t)+2X(t)T PB(w(0, t)+ ṽ j(0, t))

+2b
∫ 1

0
(1+ x)w(x, t)

(
wx(x, t)−D0KeAD0x

×Bṽ j(0, t)
)
dx+2c

r

∑
l=1

∫ 1

0
(1+ x)ṽl(x, t)

(
ṽlx(x, t)

+
(

1− Dl

D0

)
h(t +D0(x−1))

)
dx

+2d
∫ 1

0
(1+ x)µ(x, t)µx(x, t)dx

≤−
(

min(λ (Q))

2
−4d|K|2

)
|X(t)|2−d‖µ(t)‖2

−b(1−2D0|K||B|e|A|D0 γ1)‖w(t)‖2

− c
r

∑
l=1

(
1− 2

D0
|D0−Dl |γ2

)
‖ṽl(t)‖2

−
(

b−4d− 4|PB|2

min(λ (Q))

)
w(0, t)2−

(
c− 4|PB|2

min(λ (Q))

−2bD0|K||B|e|A|D0
1
γ1

)
ṽ j(0, t)2− c ∑

l 6= j
ṽl(0, t)2−dµ(0, t)2

+
2c
D0

r

∑
l=1
|D0−Dl |

1
γ2
‖h(t +D0(x−1))‖2

for any γ1,γ2 ≥ 0.

Therefore, applying (30) and Lemma 6 given in Appendix,

one gets for t ≥ D,

LV (t) =
r

∑
j=1

Pi j(0, t)
dV
dΨ

(Ψ) f j(Ψ) (33)

≤−
(

min(λ (Q))

2
−4d|K|2

)
|X(t)|2

−b
(

1−2D0|K||B|e|A|D0γ1

)
‖w(t)‖2

− c
r

∑
l=1

(
1− 2

D0
|D0−Dl |γ2

)
‖ṽl(t)‖2−d‖µ(t)‖2

−
(

b−4d− 4|PB|2

min(λ (Q))

)
w(0, t)2−

(
c− 4|PB|2

min(λ (Q))

−2bD0|K||B|e|A|D0
1
γ1

) r

∑
j=1

Pi j(0, t)ṽ j(0, t)2

− c
r

∑
j=1

Pi j(0, t)∑
l 6= j

ṽl(0, t)2−dµ(0, t)2

+
2crε

D0

1
γ2

MV (t)

in which the positive constant M does not depend on ε and
is defined in Lemma 6.

Observing that D0 ∈ [D,D], let us choose (b,c,d,γ1,γ2) ∈
(R∗+)5 as follows

(a) d <
min(λ (Q))

8|K|2
(34)

(b) b≥ 4d +
4|PB|2

min(λ (Q))
(35)

(c) γ1 <
1

2D|K|e|A|D|B|
(36)

(d) γ2 <
1
4

min

{(
1− D1

D

)−1

,

(
Dr

D
−1
)−1

}
(37)

(e) c≥ 4|PB|2

min(λ (Q))
+2bD|K||B|e|A|D 1

γ1
(38)

From (33), one then obtains (31) with the well-defined con-

stant η = min
{

min(λ (Q))−8d|K|2
2max(λ (P)) , 1−2D|K||B|e|A|Dγ1

2D , 1
4Dr

, 1
2D

}
,

and the function

g(ε) =
2cr
D0

1
γ2

Mε (39)

which satisfies limε→0 g(ε) = 0.

4.3 Proof of Theorem 1

Firstly, as limε→0 g(ε) = 0, there exists ε∗ > 0 such that η−
g(ε) = γ > 0 for ε < ε∗. Therefore, according to Dynkin’s
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formula [12, Theorem 5.1, p. 133], from (31), one obtains
for ε < ε∗

E[D,(Ψ,D)(D)](e
γtV (t))− eγDV (D) (40)

= E[D,(Ψ,D)(D)]

(∫ t

D
[γeγsV (s)+ eγsLV (s)]ds

)
≤ 0

from which, using standard conditional expectation proper-
ties, one deduces

E[0,(Ψ,D)(0)](e
γtV (t))≤E[0,(Ψ,D)(0)](e

γDV (D)) (41)

Hence, it follows that

E[0,(Ψ,D)(0)](V (t))≤ E[0,(Ψ,D)(0)](V (D))e−γ(t−D) (42)

Noticing that V and ϒ are equivalent, that is, that there
exist positive constants q1 and q2 such that for ∀t ≥ 0,
q1V (t) ≤ ϒ(t) ≤ q2V (t) (see [25]), it thus follows that
E[0,(ϒ(0),D(0))](ϒ(t))≤ q2

q1
E[0,(ϒ(0),D(0))](ϒ(D))e−γ(t−D).

From the definition of ϒ in (8), one deduces that there exists
a constant R0 such that

ϒ(t)≤ R0ϒ(0), t ∈ [0,D] (43)

(see Lemma 5 in the appendix for a proof of this property).
Finally, the function ϒ thus satisfies E[0,(ϒ(0),D(0))](ϒ(t)) ≤
q2
q1

R0ϒ(0)e−γ(t−D), Theorem 1 is then proved with

R = q2
q1

R0eγD.

5 Simulations

To illustrate Theorem 1 and in particular the role played by
the condition (6), we consider the following toy example

Ẋ(t) =

[
0 1

−1 1

]
X(t)+

[
0

1

]
U(t−D(t)) (44)

The control law (5) is applied with the feedback gain
K =−

[
1 2
]

resulting in conjugate closed-loop eigenvalues
λ (A + BK) = {−0.5000 + 1.3229i,−0.5000 − 1.3229i}.
The initial conditions are chosen as X(0) = [1 0]T and
U(t) = 0, for t ≤ 0. The integral in (5) is discretized using
a trapezoı̈dal scheme. Finally, the simulations are carried
out with a discrete-time solver in Matlab-Simulink and a
sampling time ∆t = 0.01 s.

We consider 5 different delay values (D1,D2,D3,D4,D5) =
(0.5,0.75,1,1.25,1.5). Besides, the initial transition proba-

bilities are taken as 1 Pi j(0,0+) = 0.4985 (i∈ {1, ...,5}, j =
{3,4}) and Pi j(0,0+) = 0.001 (i ∈ {1, ...,5}, j = {1,2,5}),
which means that the delay values are initially concentrated
in D3 and D4.

In addition, we introduce the following Kolmogorov equa-
tion [23,36,37] to describe the time-evolution of the transi-
tion probabilities

∂Pi j(s, t)
∂ t

=− c j(t)Pi j(s, t)+
r

∑
k=1

Pik(s, t)τk j(t), s < t

Pii(s,s) =1 and Pi j(s,s) = 0 for i 6= j (45)

in which τi j and c j = ∑
r
k=1 τ jk are positive-valued functions

such that τii(t) = 0.

In details, τi j∆t is approximately the probability of transition
from Di to D j on the interval [t, t+∆t). Similarly, 1−c j(t)∆t
represents somehow the probability of staying at D j during
the time interval [t, t +∆t).

Here, we choose for simulation the transition rates τi j as

τ(t) =
(
{τi j(t)}

)
1≤i, j≤r (46)

=0.03



0 e−10t e−10t e−10t e−10t

e−10t 0 1
2 − e−10t 1

2 − e−10t e−10t

e−10t 1−3e−10t 0 e−10t e−10t

e−10t 1−3e−10t e−10t 0 e−10t

e−10t e−10t e−10t e−10t 0


The delay values will therefore gradually evolve towards a
uniform distribution among the delay values D2, D3 and D4.

Firstly, we pick D0 = 1. This results in a value 2 ε =
max j=1,...,r |D0−D j|= 0.5. Fig. 1 represents the results ob-
tained for Monte-Carlo simulations of 100 trials. One can
observe that the resulting mean value of the state, which ap-
proximates the expectation of Theorem 1, indeed converges
to the origin.

On the other hand, the choice of a larger prediction hori-
zon D0 = 1.25 (corresponding to the larger value ε = 0.75)
results into a diverging behaviour pictured in Fig. 2. This

1 To avoid a conflict between the initial condition in (45) and
their discretized version used in simulation, we denote their initial
conditions as Pi j(0,0+).
2 The previous proof guarantees the existence of ε?, but can dif-
ficulty be used to provide an interesting estimate of it. Indeed,
picking Q= I2 in the Lyapunov equation and the intermediate con-
stants according to (34)–(38) results into a value of ε? ≈ 3e−20,
which is of course very conservative and cannot be used in prac-
tice. This originates mainly from the value of M ≈ 1e15 obtained
in Lemma 6 and could in all likelihood be decreased by avoiding
the use of equivalence constants in the definitions of both η and M.

7



confirms that the choice of prediction horizon D0 should be
restricted in a sufficiently small range to guarantee the sta-
bility of the dynamics, on average.

(a) Example of a realization of the stochastic delay D

(b) Realization of the signals U , x1 and x2 corresponding to the
delay pictured in (a)

(c) Monte Carlo simulation of the closed-loop input U (100 trials)

(d) Monte Carlo simulation of log‖x‖ (100 trials)

Fig. 1. Simulation results of the closed-loop system (44) and (5)
for D = (0.5,0.75,1.0,1.25,1.5)T , X(0) = [1 0]T and U(t) = 0
for t ≤ 0. The prediction horizon is D0 = 1.0. The transition prob-
abilities follow the dynamics (45)-(46). (a) and (b) picture results
corresponding to one delay realization. (c) and (d) present the re-
sults of 100 trials, in which the means and the standard deviations
are highlighted by the coloured lines.

It can be seen from the graph of the time lag change (Fig.1.a)
that the delay, which originally takes mainly its value among
D3 and D4, becomes gradually evenly distributed between
D2, D3 and D4. This change in transition probabilities ex-
plains why the choice of D0 = D3 yields closed-loop sta-
bility on average, while the one of D0 = D4 does not. The

prediction horizon should thus reflect on this distribution
evolution to improve the compensation capabilities of the
controller. Future works should focus on this aspect.

(a) Example of a realization of the stochastic delay D

(b) Realization of the signals U , x1 and x2 corresponding to the
delay pictured in (a)

(c) Monte Carlo simulation of the closed-loop input U (100 trials)

(d) Monte Carlo simulation of ‖x‖ (100 trials)

Fig. 2. Simulation results of the closed-loop system (44) and (5)
for D = (0.5,0.75,1.0,1.25,1.5)T , X(0) = [1 0]T and U(t) = 0
for t ≤ 0. The prediction horizon is D0 = 1.25. The transition
probabilities follow the dynamics (45)-(46). (a) and (b) picture
results corresponding to one delay realization. (c) and (d) present
the results of 100 trials, in which the means and the standard
deviations are highlighted by the coloured lines.

6 Conclusion

In this paper, we proposed a constant horizon prediction-
based controller to compensate for a stochastic input delay
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modelled as a Markov process with a finite number of val-
ues. We proved the exponential mean-square stability of the
closed-loop control system provided that the delay values
are limited and in the vicinity of the chosen prediction hori-
zon. Simulations on a toy example illustrated the relevance
of this condition and the interest of this prediction-based
control law.

Simulation results emphasize the crucial role played by the
delay distribution and its evolution. However, the robust-
ness analysis provided in this paper does not distinguish be-
tween the probability distributions. It is built on the worst-
case scenario of a uniform probability of taking any delay
value. Hence, the sufficient condition we obtain is likely
to be somehow conservative. Relaxing this condition by in-
cluding the delay distribution into the stability analysis is an
important direction of future work. Adapting the prediction-
horizon to the current delay distribution could also be an
interesting design feature to explore, as it is likely to in-
crease the closed-loop delay-robustness. Similarly, captur-
ing the dependence on the feedback gain on this robustness
margin is an important practical question for control tuning,
which should be explored.

Finally, the delay process considered in this work has a finite
number of states. Extending this analysis to the case where
the delay can take values in a given continuum is another
challenging theoretical issue worth exploring in the future.

A Technical Lemmas

Lemma 5 Consider (3). There exists a constant R0 such
that the function ϒ defined in (8) satisfies

ϒ(t)≤ R0ϒ(0), t ∈ [0,D] (A.1)

PROOF. Using (21) in Lemma 3, for t ∈ [0,D], and defining
N1 = 2e2|A|D max{1, |B|2D}, it holds

|X(t)|2 (A.2)

≤N1

(
|X(0)|2 +

∫ t−D

−D
U(s)2ds

)
=N1

(
|X(0)|2 +

∫ min{t−D,0}

−D
U0(s)2ds+

∫ t−D

min{t−D,0}
U(s)2ds

)
with U(t)=U0(t) for t ≤ 0. Thus, by using Theorem 2 in [5],
the prediction-based control law can be also written as

U(t) (A.3)

= KD

[
X(t)+

∫ t

0
ΦD(t,s)X(s)ds+

∫ 0

−D0

Φ0(t,s)U0(s)ds
]

with KD = KeAD0 , and ΦD and Φ0 two continuous functions

defined in [5]. Replacing (A.3) into (A.2), one obtains

|X(t)|2 ≤ N1

(
|X(0)|2 +

∫ min{t−D,0}

−D
U0(s)2ds (A.4)

+3KD

∫ t−D

min{t−D,0}
|X(s)|2ds

+3KD

∫ t−D

min{t−D,0}

∫ 0

−D0

Φ0(s,ξ )2U0(ξ )
2dξ ds

+3KD

∫ t−D

min{t−D,0}

∫ s

0
ΦD(s,ξ )2|X(ξ )|2dξ ds

)
Thus, using again (A.2) and (A.3) and by a straightforward
iteration on time intervals of length D, we can get that there
exist N2 > 0 and a continuous function Φ̃0 such that

|X(t)|2 ≤ N2|X(0)|2 +
∫ 0

−D
Φ̃0(t,s)U0(s)2ds (A.5)

Similarly, there exist a constant N3 > 0 and a continuous
function ˜̃

Φ0 such that

U(t)2 ≤ N3|X(0)|2 +
∫ 0

−D

˜̃
Φ0(t,s)U0(s)2ds (A.6)

Therefore, as from (8), it holds

ϒ(t) = |X(t)|2 +
∫ 0

t−D−D0

U0(s)2ds+
∫ t

0
U(s)2ds (A.7)

the conclusion follows from (A.5) and (A.6).

Lemma 6 Consider the function h defined in (16). There
exists M > 0 such that

‖h(t +D0(•−1))‖2 ≤MV (t), t ≥ D0 (A.8)

PROOF. First, from (16), h can be expressed as

h(t) = D0K
[
eAD0AX(t)+ eAD0 BU(t−D(t)) (A.9)

+BU(t)− eAD0BU(t−D0)+A
∫ t

t−D0

eA(t−s)BU(s)ds
]

Then, (A.9) gives

‖h(t +D0(•−1))‖2 (A.10)

=
∫ 1

0
h(t +D0(x−1))2dx

≤ 5|K|2D2
0

∫ 1

0

[
M1|X(t +D0(x−1))|2

+M2|U(t +D0(x−1)−D(t +D0(x−1)))|2

+M3|U(t +D0(x−1))|2 +M4|U(t +D0(x−2))|2

+ |A|2
∫ t+D0(x−1)

t+D0(x−2)
e2|A|(t+D0(x−1)−s)|B|2|U(s)|2ds

]
dx
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with 
M1 =e2|A|D|A|2

M2 =e2|A|D|B|2

M3 =|B|2

M4 =e2|A|D|B|2

(A.11)

From the definition of the dynamics (3), it holds

|X(t +D0(x−1))| (A.12)

=

∣∣∣∣eAD0(x−1)
(

X(t)−
∫ t

t+D0(x−1)
eA(t−s)BU(s−D(s))ds

)∣∣∣∣
≤e|A|D0

(
|X(t)|+

∫ t

t+D0(x−1)
e|A|(t−s)|B|

r

∑
j=1
|U(s−D j)|ds

)

≤e|A|D0 |X(t)|+ e2|A|D0 |B|
r

∑
j=1

∫ t

t+D0(x−1)
|U(s−D j)|ds

Then, with (19), the equation (A.10) gives

‖h(t +D0(•−1))‖2 (A.13)

≤ 5|K|2D2
0

[
2M1e2|A|D0 |X(t)|2

+2M1re4|A|D0 |B|2(‖µ(t)‖2 +M6|X(t)|2 +M6‖w(t)‖2)

+M2r(‖µ(t)‖2 +M6|X(t)|2 +M6‖w(t)‖2)

+M3M6|X(t)|2 +M3M6‖w(t)‖2 +M4‖µ(t)‖2

+M5(‖µ(t)‖2 +M6|X(t)|2 +M6‖w(t)‖2)
]

≤ 5|K|2D2
[MX |X(t)|2 +Mw‖w(t)‖2 +Mµ‖µ(t)‖2]

in which M5 = |A|2e2|A|D0 |B|2, M6 = 3(1+ |K|2e2|A+BK|D0

max
{

1,D2
0|B|2

}
) and the positive constants (MX ,Mw,Mµ)

are defined as follows
MX =2M1e2|A|D +M6(2M1re4|A|D|B|2 +M2r+M3 +M5)

Mw =M6(2M1re4|A|D|B|2 +M2r+M3 +M5)

Mµ =2M1re4|A|D|B|2 +M2r+M4 +M5 (A.14)

Consequently, from the definition of Lyapunov functional
V (t) in (25)

‖h(t +D0(•−1))‖2

≤5|K|2D2 max
{

MX

min(λ (P))
,

Mw

bD
,

Mµ

dD

}
V (t)

(A.15)

The lemma is then proved with the positive constant M =

5|K|2D2 max{ MX
min(λ (P)) ,

Mw
bD ,

Mµ

dD }.
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