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Summary

This paper presents a control design for the one-phase Stefan problem under actu-
ator delay via a backstepping method. The Stefan problem represents a liquid-solid
phase change phenomenonwhich describes the time evolution of amaterial’s temper-
ature profile and the interface position. The actuator delay is modeled by a first-order
hyperbolic partial differential equation (PDE), resulting in a cascaded transport-
diffusion PDE system defined on a time-varying spatial domain described by an
ordinary differential equation (ODE). Two nonlinear backstepping transformations
are utilized for the control design. The setpoint restriction is given to guarantee a
physical constraint on the proposed controller for the melting process. This constraint
ensures the exponential convergence of the moving interface to a setpoint and the
exponential stability of the temperature equilibrium profile and the delayed controller
in the1 norm. Furthermore, robustness analysis with respect to the delay mismatch
between the plant and the controller is studied, which provides analogous results to
the exact compensation by restricting the control gain.
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1 INTRODUCTION

1.1 Background
Liquid-solid phase transitions are physical phenomena which appear in various kinds of science and engineering processes.
Representative applications include sea-ice melting and freezing15, continuous casting of steel31, cancer treatment by cryosurg-
eries32, additive manufacturing for materials of both polymer18 andmetal6, crystal growth7, lithium-ion batteries16, and thermal
energy storage systems36. Physically, these processes are described by a temperature profile along a liquid-solid material, where
the dynamics of the liquid-solid interface is influenced by the heat flux induced by melting or solidification. A mathematical
model of such a physical process is called the Stefan problem11, which is formulated by a diffusion PDE defined on a time-
varying spatial domain. The domain’s length dynamics is described by an ODE dependent on the Neumann boundary value of
the PDE state. Apart from the thermodynamical model, the Stefan problem has been employed to model several chemical, elec-
trical, and social dynamics such as tumor growth process10, domain walls in ferroelectric thin films29, spreading of invasive
species in ecology35, and information diffusion on social networks27.
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While the numerical analysis of the one-phase Stefan problem is broadly covered in the literature, their control related
problems have been addressed relatively fewer. In addition to it, most of the proposed control approaches are based on finite-
dimensional approximations with the assumption of an explicitly given moving boundary dynamics8,1,30. Diffusion-reaction
processes with an explicitly known moving boundary dynamics are investigated in1 based on the concept of inertial manifold5

and the partitioning of the infinite dimensional dynamics into slow and fast finite dimensional modes. Motion planning boundary
control has been adopted in30 to ensure asymptotic stability of a one-dimensional one-phase nonlinear Stefan problem assum-
ing a prior known moving boundary and deriving the manipulated input from the solutions of the inverse problem. However,
the series representation introduced in30 leads to highly complex solutions that reduce controller design possibilities.
For control objectives, infinite-dimensional approaches have been used for stabilization of the temperature profile and the

moving interface of a 1D Stefan problem, such as enthalpy-based feedback31 and geometric control28. These works designed
control laws ensuring the asymptotical stability of the closed-loop system in the L2 norm. However, the result in28 is stated
based on physical assumptions on the liquid temperature being greater than the melting point, which needs to be guaranteed by
showing strictly positive boundary input.
Recently, boundary feedback controllers for the Stefan problem have been designed via a “backstepping transformation"24,33

which has been used for many other classes of infinite-dimensional systems. For instance,13 designed a state feedback control
law and a state observer for the one-phase Stefan problem by introducing a nonlinear backstepping transformation for moving
boundary PDE, which achieved the exponentially stabilization of the closed-loop system in the1 norm without imposing any a
priori assumption, with ensuring the robustness with respect to the uncertainty in physical parameters. As further extensions,17
investigated an input-to-state stability of the control of Stefan problem developed in13 with respect to an unknown heat loss
at the interface, and19 developed a boundary control design for the two-phase Stefan problem which models the temperature
dynamics in both the liquid and solid phases.
In the presence of actuator delay, a delay compensation technique has been developed intensively for many classes of systems

using a backstepping transformation21: see25 for linear ODE systems and23 for nonlinear ODE systems. Using the Lyapunov
method,20 presented the several analysis of the predictor-based feedback control for ODEs such as robustness with respect to
the delay mismatch and disturbance attenuation. To deal with systems under unknown and arbitrary large actuator delay, a
Lyapunov-based delay-adaptive control design was developed in3,4 for both linear and nonlinear ODEs with certain systems,
and2 extended the design for trajectory tracking of uncertain linear ODEs. For control of unstable parabolic PDE under a long
input delay,22 designed the stabilizing controller by introducing two backstepping transformations for the stabilization of the
unstable PDE and the compensation of the delay. By the similar technique, in34 the coupled diffusion PDE-ODE system in the
presence of the actuator delay is stabilized. Implementation issues on the predictor-bsaed feedback are covered in12 by studying
the closed-loop analysis under the sampled-data control.

1.2 Results and contributions
Our conference paper14 presented the delay compensated control for the one-phase Stefan problem under actuator delay for the
stabilization of the interface position and the temperature profile at a desired setpoint and the equillibrium temperature. This
paper extends the results in14 by:

• proving that the designed controller is equivalent to the prediction of the nominal control law for delay-free Stefan problem
over a time interval corresponding to the input delay,

• and addressing the robustness analysis of the closed-loop system with respect to the mismatch between the delay in the
plant and the one compensated by the designed control.

First, combining our previous result in13 with the result in22, two nonlinear backstepping transformations formoving boundary
PDE are employed. One is for the delay-free control design of Stefan problem based on13, and the other is for the compensation
of actuator delay formulated with Volterra and Fredholm type transformations based on22. The associated boundary feedback
controller remains positive under a setpoint restriction due to the energy conservation, which guarantees a condition of the model
to be valid. The closed-loop system with the proposed delay compensated controller achieves the exponential stabilization of the
moving interface to the desired setpoint while ensuring the exponential stability of the temperature profile and the controller to
the equillibrium set in the1-norm sense. Furthermore, the robustness analysis is investigated by proving that the positivity of
the controller and the exponential stability of the closed-loop systems hold for a given delay mismatch under sufficiently small
control gain.
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ
(t
)

 

 

s(t), state
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ŝ
(t
)

 

 

s(t), state
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liquid solid

delay

FIGURE 1 Schematic of 1D Stefan problem with actuator delay.

1.3 Organization
This paper is organized as follows. The Stefan problem with actuator delay is presented in Section 2, and the control objective
and our main result are stated in Section 3. Section 4 introduces a backstepping transformation for moving boundary problems
which enables us to design the state feedback control law. The physical constraints of this problem are stated in Section 5. The
stability analysis of the closed-loop system is established in Section 6. The equivalence of the designed control with a prediction
of the nominal control law is shown in Section 7. Robustness analysis with respect to the delay mismatch is studied in Section
8. Supportive numerical simulations are provided in Section 9. The paper ends with the conclusion in Section 10.

Notations
Throughout this paper, partial derivatives and several norms of spatially and temporally varying variables are denoted as

ut(x, t) =
)u
)t
(x, t), ux(x, t) =

)u
)x
(x, t),

||u(⋅, t)||L2(a,b) =

√

√

√

√

√

√

b

∫
a

u(x, t)2dx, ||u(⋅, t)||1(a,b) =
√

||u(⋅, t)||2L2(a,b) + ||ux(⋅, t)||2L2(a,b),

and analogously, the derivatives and norms of temporally varying variables are denoted as

̇f (t) =
df
dt
(t), ||f (⋅)||L2(a,b) =

√

√

√

√

√

√

b

∫
a

f (t)2dt, ||f (⋅)||1(a,b) =
√

||f (⋅)||2L2(a,b) + ||

̇f (⋅)||2L2(a,b).

2 DESCRIPTION OF THE PHYSICAL PROCESS

Consider a physical model which describes the melting or solidification mechanism in a pure one-component material of length
L in one dimension. In order to mathematically describe the position at which phase transition from liquid to solid occurs, we
divide the domain [0, L] into two time-varying sub-domains, namely, the interval [0, s(t)] which contains the liquid phase, and
the interval [s(t), L] that contains the solid phase. A heat flux enters the material through the boundary at x = 0 (the external
boundary of the liquid phase) which affects the dynamics of the liquid-solid interface. The boundary heat flux is manipulated as
a controller, and here we impose an actuator delay which is caused by several reasons such as computational time or communi-
cation delay. Specifically, the communication delay takes place during the time in which the signals are transmitted from sensors
to the controller and from the controller to the actuator, and the computational delay is caused during the time when the con-
troller completes the computation after receiving the signals from the sensors. As a consequence, the heat equation alone does
not provide a complete description of the phase transition and must be coupled with the dynamics that describes the moving
boundary. This configuration is shown in Fig. 1 .
Assuming that the temperature in the liquid phase is not lower than the melting temperature Tm of the material, the following

coupled system can be derived.

• The diffusion equation of the temperature in the liquid-phase is described by

Tt(x, t) = �Txx(x, t), 0 ≤ x ≤ s(t), � ∶= k
�Cp

, (1)
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with the boundary conditions

−kTx(0, t) = qc(t −D), (2)
T (s(t), t) = Tm, (3)

and the initial values

s(0) = s0, T (x, 0) = T0(x), ∀x ∈ [0, s0], qc(t) = qc,0(t), ∀t ∈ [−D, 0), (4)

where T (x, t), qc(t), �, Cp, k, and D are the distributed temperature of the liquid phase, manipulated heat flux, liquid
density, the liquid heat capacity, the liquid heat conductivity, and the input time delay respectively.

• The local energy balance at the position of the liquid-solid interface x = s(t) leads to the Stefan condition defined as the
following ODE

ṡ(t) = −�Tx(s(t), t), � ∶= k
�ΔH∗ , (5)

where ΔH∗ denotes the latent heat of fusion. Equation (5) expresses the velocity of the liquid-solid moving interface.

For the sake of brevity, we refer the readers to11, where the Stefan condition of a solidification process is derived.

Remark 1. As the moving interface s(t) depends on the temperature, the problem defined in (1)–(5) is nonlinear.

Remark 2. Due to the so-called isothermal interface condition that prescribes the melting temperature Tm at the interface through
(3), this form of the Stefan problem is a reasonable model only if the following condition holds:

T (x, t) ≥Tm for ∀x ∈ [0, s(t)], ∀t > 0. (6)

The model validity requires the liquid temperature to be greater than the melting temperature and such a condition yields the
following property on moving interface.

Lemma 1. If the model validity condition (6) holds, then the moving interface is always increasing, i.e.

ṡ(t) ≥0, for ∀t ≥ 0. (7)

Applying Hopf’s Lemma to the boundary condition (3) and the condition (6), the dynamics (5) yields Lemma 1 as shown
in11. By Remark 2, it is justified to impose the following assumption on the initial values.

Assumption 1. s0 > 0 and there exists Lipschitz constantH > 0 such that

Tm ≤ T0(x) ≤ Tm +H(s0 − x), ∀x ∈ (0, s0). (8)

Then, the condition (6) is guaranteed by the following lemma.

Lemma 2. With Assumption 1, if qc(t) is a bounded piecewise continuous function with generating nonnegative heat, i.e.,

qc(t −D) ≥ 0, ∀t ≥ 0, (9)

then there exists a unique classical solution for the Stefan problem (1)–(5) with satisfying the validity condition (6) for all t ≥ 0.

The definition of the classical solution of the Stefan problem can be seen in literature, for instance see Appendix A in13. The
proof of Lemma 2 is provided by maximum principle as shown in11. Due to the requirement on the heat input stated in Lemma
2, we impose the following assumption.

Assumption 2. The past input qc,0(t) for t ∈ [−D, 0) is a bounded piecewise continuous function and maintains nonnegative, i.e.

qc,0(t) ≥ 0, ∀t ∈ [−D, 0). (10)

With Assumption 1 and 2, the model validity condition (6) remains if qc(t) ≥ 0 for ∀t ≥ 0 by Lemma 2.



SHUMON KOGA ET AL 5

3 CONTROL PROBLEM STATEMENT

The control objective is to drive the moving interface s(t) to a desired setpoint sr by manipulating the heat flux qc(t). As derived
in13, the steady-state solution of the temperature profile Teq(x) governed by the Stefan problem (1)–(5) with setting the equi-
llibrium interface position as the setpoint sr is uniquely given by the uniform melting temperature, namely, Teq(x) = Tm for
all x ∈ [0, sr]. Hence, the primary objective is driving s(t) to sr , and consequently the convergence of T (x, t) to Tm for all
x ∈ [0, s(t)] is required: we aim to achieve

s(t)→ sr , T (x, t)→ Tm for all x ∈ [0, s(t)], as t→∞ (11)

for given (T0(x), s0)which satisfies Assumption 1. Note that while we aim T (x, t)→ Tm the liquid phase is not solidified as long
as the condition (6) is satisfied. The condition qc(t) ≥ 0 for t ≥ 0 imposes the choice of the setpoint as described below. The
plant (1)–(5) obeys the following energy conservation law:

d
dt

⎛

⎜

⎜

⎝

k
�

s(t)

∫
0

(T (x, t) − Tm)dx +
k
�
s(t) +

t

∫
t−D

qc(�)d�
⎞

⎟

⎟

⎠

= qc(t), ∀t ≥ 0. (12)

The left hand side of (12) denotes the growth of internal energy of the plant and the stored energy by the delayed heat controller,
and its right hand side denotes the external work provided by the injected heat flux. The control objective is achieved if and only
if the following limit on the total energy is satisfied:

lim
t→∞

⎛

⎜

⎜

⎝

k
�

s(t)

∫
0

(T (x, t) − Tm)dx +
k
�
s(t) +

t

∫
t−D

qc(�)d�
⎞

⎟

⎟

⎠

= k
�
sr , (13)

which can be derived by substituting (11) and qc(t)→ 0 into the left hand side of (13). Taking integration of (12) from t = 0 to
t = ∞with the help of qc(t) > 0 for t > 0 and (13), the following assumption on the setpoint is provided as a necessary condition.

Assumption 3. The setpoint is chosen to satisfy

sr > s0 + �
⎛

⎜

⎜

⎝

0

∫
−D

qc,0(t)
k

dt + 1
�

s0

∫
0

(T0(x) − Tm)dx
⎞

⎟

⎟

⎠

. (14)

Next, we state our main result.

Theorem 1. Under Assumptions 1-3 and if the initial data are such that (T0(⋅)−Tm, s0−sr , qc,0(⋅)) ∈ 1(0, s0)×ℝ×1(−D, 0),
the closed-loop system consisting of the plant (1)–(5) and the control law

qc(t) = − c
⎛

⎜

⎜

⎝

t

∫
t−D

qc(�)d� +
k
�

s(t)

∫
0

(T (x, t) − Tm)dx +
k
�
(s(t) − sr)

⎞

⎟

⎟

⎠

, (15)

where c > 0 is an arbitral control gain, maintains the model validity (6) and is exponentially stable in the sense of the norm

||T (⋅, t) − Tm||21(0,s(t))
+ (s(t) − sr)2 + ||qc(⋅)||21(t−D,t)

(16)

The proof of Theorem 1 is established through Sections 4–6.

4 BACKSTEPPING TRANSFORMATION

4.1 Change of variables
Introduce reference error variables defined by

u(x, t) ∶=T (x, t) − Tm, X(t) ∶= s(t) − sr . (17)

Next, we introduce a variable

v(x, t) =
qc(t − x −D)

k
, ∀x ∈ [−D, 0]. (18)
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Here, the variable x ∈ [−D, 0] in (18) is not the spatial coordinate x ∈ (0, s(t)) of the system (1)–(5), but a newly introduced
variable for an alternative representation of the delayed input, as introduced in22. Hence, the variable qc(t − x −D) in (18) still
represents the boundary heat input (not an input acting on the space x ∈ (0, s(t))), during the time period from t−D to t. Then,
(18) gives the boundary values of current input v(−D, t) = qc(t)∕k and delayed input v(0, t) = qc(t −D)∕k, and v(x, t) satisfies
a transport PDE. Hence, the coupled (v, u,X)-system is described as

vt(x, t) = − vx(x, t), −D < x < 0 (19)
v(−D, t) =qc(t)∕k, (20)
ux(0, t) = − v(0, t), (21)
ut(x, t) =�uxx(x, t), 0 < x < s(t) (22)
u(s(t), t) =0, (23)

Ẋ(t) = − �ux(s(t), t). (24)

Now, the control objective is to design qc(t) to stabilize the coupled (v, u,X)-system at the origin.

4.2 Direct transformation
We consider backstepping transformations for the coupled PDEs-ODE system as

w(x, t) =u(x, t) − c
�

s(t)

∫
x

(x − y)u(y, t)dy − c
�
(x − s(t))X(t), (25)

z(x, t) =v(x, t) + c

0

∫
x

v(y, t)dy + c
�

s(t)

∫
0

u(y, t)dy + c
�
X(t). (26)

The transformation (25) is the same transformation as the one proposed in13 for delay-free Stefan problem. The formulation of
(26) is motivated by a design in fixed domain introduced in22. Noting that s(t) appearing in (25) and (26) can be rewritten by
s(t) = X(t) + sr, both are nonlinear transformations. Taking derivatives of (25) and (26) in x and t along with the solution of
the system (19)–(24), we have

wx(x, t) =ux(x, t) −
c
�

s(t)

∫
x

u(y, t)dy − c
�
X(t), (27)

zx(x, t) =vx(x, t) − cv(x, t), (28)

zt(x, t) = − vx(x, t) − c

0

∫
x

vy(y, t)dy + c

s(t)

∫
0

uyy(y, t)dy − cux(s(t), t),

= − vx(x, t) + cv(x, t). (29)

By (28) and (29), we get zt(x, t) = −zx(x, t). In addition, by substituting x = 0 in (26) and (27), wx(0, t) = −z(0, t) holds. On
the other hand, becausew transformation does not depend on v,w system is not changed from the delay-free target system given
in13. Thus, the target (z,w,X)-system is obtained by

zt(x, t) = − zx(x, t), −D < x < 0 (30)
z(−D, t) =0, (31)
wx(0, t) = − z(0, t), (32)

wt(x, t) =�wxx(x, t) +
c
�
ṡ(t)X(t), 0 < x < s(t) (33)

w(s(t), t) =0, (34)
Ẋ(t) = − cX(t) − �wx(s(t), t). (35)
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The control design is achieved through evaluating (26) at x = −D together with the boundary conditions (20) and (31), which
yields

qc(t) = − ck
⎛

⎜

⎜

⎝

0

∫
−D

v(y, t)dy + 1
�

s(t)

∫
0

u(y, t)dy + 1
�
X(t)

⎞

⎟

⎟

⎠

. (36)

Finally, substituting the definitions (17) and (18) in (36), the control law (15) is obtained.
In a similar manner, the inverse transformations are obtained by

u(x, t) =w(x, t) +
�
�

s(t)

∫
x

 (x − y)w(y, t)dy +  (x − s(t))X(t), (37)

v(x, t) =z(x, t) −

0

∫
x

�(x − y)z(y, t)dy −
�
�
�(x)

s(t)

∫
0

� (y)w(y, t)dy − � (s(t))�(x)X(t), (38)

where

 (x) =

√

c�
�
sin

(√

c
�
x
)

, (39)

�(x) =cecx, �(x) = 1
�
cos

(√

c
�
x
)

. (40)

5 PHYSICAL CONSTRAINTS

Noting that (7) should hold since qc(t) > 0 is required by Remark 2 and Lemma 2 to satisfy (6), the overshoot beyond the setpoint
sr is prohibited to achieve the control objective s(t) → sr , i.e. s(t) < sr is required to be satisfied for ∀t > 0. In this section,
we prove that the closed-loop system with the proposed control law (15) guarantees qc(t) > 0 and s(t) < sr for ∀t > 0, namely
"physical constraints".

Lemma 3. With Assumption 2 and 3, the control law (14) for the system (1)-(5) generates a positive input signal, i.e.,

qc(t) >0, ∀t > 0. (41)

Proof. Taking the time derivative of (15) together with the solution of (1)–(5), we obtain

q̇c(t) = − c
⎛

⎜

⎜

⎝

qc(t) − qc(t −D) + k

s(t)

∫
0

Txx(x, t)dx − kTx(s(t), t)
⎞

⎟

⎟

⎠

,

= − c
(

qc(t) − qc(t −D) − kTx(0, t)
)

,
= − cqc(t). (42)

The differential equation (42) yields

qc(t) = qc(0)e−ct. (43)

Additionally, substituting t = 0 into the control law (15) leads to

qc(0) = −c
⎛

⎜

⎜

⎝

0

∫
−D

qc(�)d� +
k
�

s0

∫
0

(T0(x) − Tm)dx +
k
�
(s0 − sr)

⎞

⎟

⎟

⎠

, (44)

Hence, Assumption 3 leads to

qc(0) > 0. (45)

Applying (45) to (43), the positivity of the controller (41) is satisfied.
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Lemma 4. The following property of liquid temperature profile holds:

T (x, t) ≥Tm for all x ∈ [0, s(t)]. (46)

Proof. Applying Lemma 3 with Assumption 2 to Lemma 2, (46) is shown directly.

Lemma 5. The following properties of the moving interface hold:

ṡ(t) ≥0, ∀t > 0, (47)
s0 <s(t) < sr , ∀t > 0. (48)

Proof. Applying Lemma 4 to Lemma 1, (47) is derived. Then, the condition (47) leads to s0 < s(t). By the control law (15), the
following relation holds under the closed-loop system:

k
�
(s(t) − sr) = −

1
c
qc(t) −

t

∫
t−D

qc(�)d� −
k
�

s(t)

∫
0

(T (x, t) − Tm)dx, (49)

Finally, applying (41) and (46) to the equation above, the inequality s(t) < sr is derived, which leads to (48).

6 STABILITY ANALYSIS

In this section, we derive the conclusion of Theorem 1 by applying Lyapunov analysis and showing the norm equivalence with
the help of (47) and (48).

6.1 Change of variable
Introduce a change of variable

!(x, t) = w(x, t) + (x − s(t)) z(0, t). (50)

Using (50), the target (z,w,X)-system (30)–(35) is described by (z, !,X)-system as

z(−D, t) =0, (51)
zt(x, t) = − zx(x, t), −D < x < 0 (52)
!x(0, t) =0, (53)

!t(x, t) =�!xx(x, t) − (x − s(t)) zx(0, t) + ṡ(t)
(

c
�
X(t) − z(0, t)

)

, 0 < x < s(t) (54)

!(s(t), t) =0, (55)
Ẋ(t) = − cX(t) − �(!x(s(t), t) − z(0, t)). (56)

6.2 Stability analysis of (z, !,X)-system
Firstly, we prove the exponential stability of the (z, !,X)-system. Let V1 be the functional defined by

V1 =

0

∫
−D

e−mxzx(x, t)2dx, (57)

where m > 0 is a positive parameter. (57) satisfies

||zx(⋅, t)||2L2(−D,0) ≤ V1 ≤ emD||zx(⋅, t)||2L2(−D,0). (58)
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Note that (51) yields zx(−D, t) = 0 through taking the time derivative and applying PDE (52). With the help of it, taking the
time derivative of (57) together with (51)-(52) leads to

V̇1 = − 2

0

∫
−D

e−mxzx(x, t)zxx(x, t)dx

= −

0

∫
−D

e−mx
( d
dx
zx(x, t)2

)

dx

= − e−mxzx(x, t)2|x=0x=−D +

0

∫
−D

( d
dx
e−mx

)

zx(x, t)2dx

= − zx(0, t)2 − m

0

∫
−D

e−mxzx(x, t)2dx. (59)

Let V2 be the functional defined by

V2 =
1
2

(

1
s2r
||!(⋅, t)||2L2(0,s(t)) + ||!x(⋅, t)||2L2(0,s(t))

)

= 1
2

s(t)

∫
0

(

1
s2r
!(x, t)2 + !x(x, t)2

)

dx. (60)

(60) satisfies max{s2r , 1}||!(⋅, t)||
2
1(0,s(t))

≤ 2V2 ≤ max{1∕s2r , 1}||!(⋅, t)||
2
1(0,s(t))

Note that taking the total time derivative of
(55) yields !t(s(t), t) = −ṡ(t)!x(s(t), t). Taking the time derivative of (60) together with (53)-(55), we obtain

V̇2 =
ṡ(t)
2

(

1
s2r
!(s(t), t)2 + !x(s(t), t)2

)

+

s(t)

∫
0

(

1
s2r
!(x, t)!t(x, t) + !x(x, t)!xt(x, t)

)

dx

=
ṡ(t)
2
!x(s(t), t)2 +

1
s2r

s(t)

∫
0

!(x, t)
(

�!xx(x, t) − (x − s(t)) zx(0, t) + ṡ(t)
(

c
�
X(t) − z(0, t)

))

dx

+ !x(s(t), t)!t(s(t), t) − !x(0, t)!t(0, t) −

s(t)

∫
0

!xx(x, t)!t(x, t)dx

= − �
s2r
||!x(⋅, t)||2L2(0,s(t)) −

1
s2r
zx(0, t)

s(t)

∫
0

(x − s(t))!(x, t)dx +
ṡ(t)
s2r

(

c
�
X(t) − z(0, t)

)

s(t)

∫
0

!(x, t)dx

− �||!xx(⋅, t)||2L2(0,s(t)) + zx(0, t)!(0, t) −
ṡ(t)
2
!x(s(t), t)2 − ṡ(t)

(

c
�
X(t) − z(0, t)

)

!x(s(t), t). (61)

Applying Young’s and Cauchy Schwarz inequalities to the second terms on the first and second line of the (61) with the help of
(48) yields

|

|

|

|

zx(0, t)

s(t)

∫
0

(x − s(t))!(x, t)dx
|

|

|

|

≤

1
2
zx(0, t)2 +

1
2
1

⎛

⎜

⎜

⎝

s(t)

∫
0

(x − s(t))!(x, t)dx
⎞

⎟

⎟

⎠

2

,

≤

1
2
zx(0, t)2 +

1
2
1

⎛

⎜

⎜

⎝

s(t)

∫
0

(x − s(t))2 dx
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

s(t)

∫
0

!(x, t)2dx
⎞

⎟

⎟

⎠

,

≤

1
2
zx(0, t)2 +

s3r
6
1

||!(⋅, t)||2L2(0,s(t)),

≤

1
2
zx(0, t)2 +

2s5r
3
1

||!x(⋅, t)||2L2(0,s(t)), (62)
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|zx(0, t)!(0, t)| ≤

2
2
zx(0, t)2 +

1
2
2

!(0, t)2,

≤

2
2
zx(0, t)2 +

2sr

2

||!x(⋅, t)||2L2(0,s(t)), (63)

where we utilized Poincare’s inequality ||!(⋅, t)||2L2(0,s(t)) ≤ 4s2r ||!x(⋅, t)||
2
L2(0,s(t))

and Agmon’s inequality !(0, t)2 ≤
4sr||!x(⋅, t)||2L2(0,s(t)), and 
1 > 0 and 
2 > 0 are positive parameters to be determined. Hence, applying (62) and (63) to (61)

with the choice of 
1 =
8s5r
3�

and 
2 =
8s3r
�
, the following differential inequality is deduced

V̇2 ≤ −
�
2
||!xx(⋅, t)||2L2(0,s(t)) −

�
2s2r

||!x(⋅, t)||2L2(0,s(t)) +
16s3r
3�

zx(0, t)2

+ ṡ(t)
(

2 c
2

�2
X(t)2 + 2z(0, t)2 + 1

2s3r
||!(⋅, t)||2L2(0,s(t))

)

. (64)

Let V3 be the functional defined by

V3 =
1
2
X(t)2. (65)

Taking the time derivative of (65) and applying Young’s and Agmon’s inequalities, we obtain

V̇3 = − cX(t)2 − �X(t)(!x(s(t), t) − z(0, t))

≤ − c
2
X(t)2 +

4�2sr
c

||!xx(⋅, t)||2L2(0,s(t)) +
4D�2

c
||zx(⋅, t)||2L2(−D,0). (66)

Let V be the functional defined by

V = qV1 + V2 + pV3, (67)

where q > 0 and p > 0 are positive parameters to be determined. Combining (59), (64), and (66), we get

V̇ ≤ − �
2

(

1 −
8p�2sr
c�

)

||!xx(⋅, t)||2L2(0,s(t)) −
�
2s2r

||!x(⋅, t)||2L2(0,s(t)) −

(

q −
16s3r
3�

)

zx(0, t)2

− m
(

q − p
4D�2

mc

)

||zx(⋅, t)||2L2(−D,0) −
pc
2
X(t)2

+ ṡ(t)
(

2 c
2

�2
X(t)2 + 2z(0, t)2 + 1

2s3r
||!(⋅, t)||2L2(0,s(t))

)

. (68)

Hence, by choosing the parameters as

p = c�
16�2sr

, q = max

{

16s3r
3�

, D�
2msr

}

, (69)

the inequality (68) leads to

V̇ ≤ − �
4
||!xx(⋅, t)||2L2(0,s(t)) −

�
2s2r

||!x(⋅, t)||2L2(0,s(t)) − m
(

q − p
4D�
mc

)

||zx(⋅, t)||2L2(−D,0) −
pc
2
X(t)2

+ ṡ(t)
(

2 c
2

�2
X(t)2 + 2z(0, t)2 + 1

2s3r
||!(⋅, t)||2L2(0,s(t))

)

,

≤ − �
8s2r

V2 −
mq
2
e−mDV1 −

pc
2
X(t)2 + ṡ(t)

(

4c
�2
V3 + 8DV1 +

1
sr
V2

)

, (70)

from which we obtain the form of

V̇ ≤ − bV + aṡ(t)V , (71)

where

b = min
{

m
2
e−mD, �

8s2r
, c
}

, a = max
{

8D
q
, 1
sr
, 4c

2

p�2

}

. (72)
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The differential inequality (71) does not directly lead to the exponential decay of the norm. To deal with it, we consider the
following norm (of which the equivalence with V follows from Lemma 5)

W = V e−as(t). (73)

Taking the time derivative of (73) with the help of (71), we have

Ẇ =
(

V̇ − aṡ(t)V
)

e−as(t) ≤ −bW . (74)

Hence, it leads toW (t) ≤ W (0)e−bt. Substituting (73) and applying ea(s(t)−s0) ≤ ea(sr−s0) ≤ easr derived from (48), the exponential
stability of (z, !,X)-system is shown as

V (t) ≤ V (0)easre−bt. (75)

6.3 Stability analysis of (z,w,X)-system
Taking the square of (50) and applying Young’s and Cauchy Schwarz inequality, we obtain

||!(⋅, t)||21(0,s(t))
≤2||w(⋅, t)||21(0,s(t))

+K1||zx(⋅, t)||2L2(−D,0), (76)

||w(⋅, t)||21(0,s(t))
≤2||!(⋅, t)||21(0,s(t))

+K1||zx(⋅, t)||2L2(−D,0), (77)

where K1 =
8Ds3r
3
+ 8Dsr . Consider the following norm

Π(t) = ||zx(⋅, t)||2L2(−D,0) + ||w(⋅, t)||21(0,s(t))
+X(t)2. (78)

Then, recalling ||zx(⋅, t)||2L2(−D,0) ≤ V1 ≤ emD||zx(⋅, t)||2L2(−D,0) and K2||!(⋅, t)||
2
1(0,s(t))

≤ 2V2 ≤ K3||!(⋅, t)||21(0,s(t))
where

K2 = max{s2r , 1} and K3 = max{1∕s
2
r , 1}, applying (77) to (78) yields the following bound:

Π ≤(1 +K1)||zx(⋅, t)||2L2(−D,0) + 2||!(⋅, t)||
2
1(0,s(t))

+X(t)2,

≤(1 +K1)V1 + 4K2V2 + 2V3. (79)

Moreover, recalling V = qV1 + V2 + pV3 and applying the above inequalities, the following bound on V is derived:

V ≤qemD||zx(⋅, t)||2L2(−D,0) +
K3
2
||!(⋅, t)||21(0,s(t))

+
p
2
X(t)2,

≤
(

qemD +
K1K3
2

)

||zx(⋅, t)||2L2(−D,0) +
K3
2
||w(⋅, t)||21(0,s(t))

+
p
2
X(t)2. (80)

Therefore, (79) and (80) leads to the following equivalence of the norm V and Π:

�V (t) ≤ Π(t) ≤ �̄V (t), (81)

where � = 1

max
{

qemD+ K1K3
2
,K3,

p
2

} and �̄ = max
{

1
q

(

K1 + 1
)

, 4K2,
2
p

}

. By (75) and (81), we have

Π(t) ≤ �̄
�
Π(0)easre−bt, (82)

which yields the exponential stability of (z,w,X)-system.

6.4 Stability analysis of (v, u,X)-system
Taking the spatial derivative of the transformation (26) in x leads to

zx(x, t) = vx(x, t) − cv(x, t). (83)

Taking the square on both sides of (83) and applying Young’s inrquality, the following bound is obtained:

||zx(⋅, t)||2L2(−D,0) ≤ 2||vx(⋅, t)||
2
L2(−D,0)

+ 2c2||v(⋅, t)||2L2(−D,0). (84)

By the inverse transformation (38) and Poincare’s inequality, we have

||v(⋅, t)||2L2(−D,0) ≤N1||zx(⋅, t)||2L2(−D,0) +N2||w(⋅, t)||2L2(0,s(t)) +N3X(t)2, (85)
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where N1 = 16D2
(

1 + cD
2
(1 − e−2D)

)

, N2 =
2csr
�2
(1 − e−2D), and N3 =

2c
�2
(1 − e−2D). Also, by rewriting (83) as vx(x, t) =

zx(x, t) + cv(x, t), the following inequality is derived:

||v(⋅, t)||21(−D,0)
≤ 2||zx(⋅, t)||2L2(−D,0) + (2c

2 + 1)||v(⋅, t)||2L2(−D,0). (86)

Combining (85) with (86), the following inequality holds

||v(⋅, t)||21(−D,0)
≤(2 + (2c2 + 1)N1)||zx(⋅, t)||2L2(−D,0) + (2c

2 + 1)(N2||w(⋅, t)||2L2(0,s(t)) +N3X(t)2). (87)

Moreover, as shown in13, there exist positive constantsMi > 0 for i = 1, 2, 3, 4 such that

||w(⋅, t)||21(0,s(t))
≤M1||u(⋅, t)||21(0,s(t))

+M2X(t)2, (88)

||u(⋅, t)||21(0,s(t))
≤M3||w(⋅, t)||21(0,s(t))

+M4X(t)2. (89)

Then, adding (84) to (88) and (87) to (89), we have

||zx(⋅, t)||2L2(−D,0) + ||w(⋅, t)||21(0,s(t))
+X(t)2 ≤2||vx(⋅, t)||2L2(−D,0) + 2c

2
||v(⋅, t)||2L2(−D,0)

+M1||u(⋅, t)||21(0,s(t))
+ (M2 + 1)X(t)2, (90)

||v(⋅, t)||21(−D,0)
+ ||u(⋅, t)||21(0,s(t))

+X(t)2 ≤L1||zx(⋅, t)||2L2(−D,0) + L2||w(⋅, t)||
2
1(0,s(t))

+ L3X(t)2, (91)

where L1 = 2 + (2c2 + 1)N1, L2 = (2c2 + 1)N2 +M3, and L3 = (2c2 + 1)N3 +M4 + 1. Define the following norm

Ξ(t) =||v(⋅, t)||21(−D,0)
+ ||u(⋅, t)||21(0,s(t))

+X(t)2. (92)

Then, (90) and (91) leads to

MΞ(t) ≤ Π(t) ≤ M̄Ξ(t), (93)

where M̄ = max
{

2, 2c2,M1,M2 + 1
}

,M = 1
max{L1,L2,L3} . Finally, applying (93) to (82) we arrive at

Ξ(t) ≤ M̄
M

�̄
�
Ξ(0)easre−bt. (94)

Noting the definition (18) (v(x, t) = qc(t − x − D)∕k) and using integration by substitution, we get ||v(⋅, t)||21(−D,0)
=

||qc(⋅)||1(t−D,t). Applying this relation to (94) completes the proof of Theorem 1.

7 RELATION BETWEEN THE DESIGNED CONTROL LAW AND A STATE PREDICTION

As developed in some literature for ODE systems, the delay compensated control via the method of backstepping is known to be
equivalent to the predictor-based feedback where the control law is derived to stabilize the future state called "predictor state",
see Section 2 in21 for instance. Hence, one might have a question whether our delay compensated control is also equivalent to
the predictor-based feedback. This is not a trivial question in the case of Stefan problem due to the complicated structure of
ODE dynamics whose state is the domain of the PDE.
The nominal control design for delay-free Stefan problem developed in13 is given by

q̄c(t) = − c
⎛

⎜

⎜

⎝

k
�

s(t)

∫
0

(T (x, t) − Tm)dx +
k
�
(s(t) − sr)

⎞

⎟

⎟

⎠

, (95)

where we defined the notation q̄c(t) to distinguish with the delay compensated control law (15). Thus, our interest lies in proving
qc(t) ≡ q̄c(t + D) because q̄c(t + D) is the prediction of the nominal control. We start from the expression of q̄c(t + D) which
can be described as

q̄c(t +D) = − c
⎛

⎜

⎜

⎝

k
�

s(t+D)

∫
0

(T (x, t +D) − Tm)dx +
k
�
(s(t +D) − sr)

⎞

⎟

⎟

⎠

. (96)
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Integrating ODE dynamics ṡ(t) = −�Tx(s(t), t) given in (5) from t to t +D yields

s(t +D) = s(t) − �

t+D

∫
t

Tx(s(�), �)d�. (97)

Next, integrating PDE dynamics Tt = �Txx given in (1) in time from t to t+D leads to T (x, t+D) = T (x, t)+� ∫ t+D
t Txx(x, �)d�.

Furthermore, integrating the both sides in space from 0 to s(t +D), we obtain
s(t+D)

∫
0

(T (x, t +D) − Tm)dx =

s(t+D)

∫
0

(T (x, t) − Tm)dx + �

s(t+D)

∫
0

t+D

∫
t

Txx(x, �)d�dx,

=

s(t+D)

∫
0

(T (x, t) − Tm)dx + �

t+D

∫
t

(Tx(s(t +D), �) − Tx(0, �)d�,

=

s(t+D)

∫
0

(T (x, t) − Tm)dx + �

t+D

∫
t

Tx(s(t +D), �)d� +
�
k

t

∫
t−D

qc(�)d�. (98)

Therefore, substituting (97) and (98) into (96), we get

q̄c(t +D) = − c
⎛

⎜

⎜

⎝

k
�

s(t+D)

∫
0

(T (x, t) − Tm)dx + k

t+D

∫
t

(Tx(s(t +D), �) − Tx(s(�), �))d� +

t

∫
t−D

qc(�)d� +
k
�
(s(t) − sr)

⎞

⎟

⎟

⎠

. (99)

Consequently, it remains to consider the following term
t+D

∫
t

(Tx(s(t +D), �) − Tx(s(�), �))d� =

t+D

∫
t

s(t+D)

∫
s(�)

Txx(x, �)dxd�,

=1
�

s(t+D)

∫
s(t)

s−1(x)

∫
t

T�(x, �)d�dx,

=1
�

s(t+D)

∫
s(t)

(

T (x, s−1(x)) − T (x, t)
)

dx. (100)

where we switched the order of the integrations in time and space from the first line to the second line with defining the inverse
function s−1(x). The existence and uniqueness of s−1(x) is guaranteed due to the continuous and monotonically increasing
property of s(t) provided qc(t) > 0. Thus, boundary condition T (s(t), t) = Tm, ∀t ≥ 0 given in (3) implies T (x, s−1(x)) = Tm
from which (100) is given by

t+D

∫
t

(Tx(s(t +D), �) − Tx(s(�), �))d� = −
1
�

s(t+D)

∫
s(t)

(

T (x, t) − Tm
)

dx. (101)

Substituting (101) into (99), we arrive at

q̄c(t +D) = − c
⎛

⎜

⎜

⎝

k
�

s(t)

∫
0

(T (x, t) − Tm)dx +

t

∫
t−D

qc(�)d� +
k
�
(s(t) − sr)

⎞

⎟

⎟

⎠

≡ qc(t). (102)

Therefore, we conclude that the delay compensated control (15) is indeed the prediction of the nominal control law (95).

8 ROBUSTNESS TO DELAY MISMATCH

The results established up to the last section are based on the control design with utilizing the exact value of the actuator
delay. However, in practice, there is an error between the exact time delays and the identified delays. Hence, guaranteeing the
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performance of the controller under the small delay mismatch is important. In this section, D > 0 is denoted as the identified
time delay and ΔD is denoted as the delay mismatch (can be either positive or negative), which yieldsD+ΔD as the exact time
delay from the controller to the plant. Thus, the system we focus on is described by

Tt(x, t) =�Txx(x, t), x ∈ (0, s(t)), (103)
−kTx(0, t) =qc(t − (D + ΔD)), (104)
T (s(t), t) =Tm, (105)

ṡ(t) = − �Tx(s(t), t), (106)

with the control law given in (15) which utilizes the identified delay D. Since the control law is not changed, the same back-
stepping transformation in (25) and (26) can be applied, but the target (z,w,X)-system needs to be redescribed due to the
modification of (104). The theorem for the robustness to delay mismatch is provided under the restriction on the control gain,
as stated in the following.

Theorem 2. Under Assumptions 1-3, there exists a positive constant c̄ > 0 such that ∀c ∈ (0, c̄) the closed-loop system
consisting of the plant (103)–(106) and the control law (15) maintains the model validity (6) and is exponentially stable in the
sense of the norm (16).

An important characteristic to note in Theorem 2 is that the existence of c̄ is ensured for any givenΔD as long asD+ΔD > 0.
An analogous description with respect to the small delay mismatch is given in the following corollary.

Corollary 1. Under Assumptions 1-3, for any given c > 0 there exists a positive constant "̄ > 0 such that for all ΔD ∈ ℝ
satisfying |ΔD| < "̄ the closed-loop system (103)–(106), (15) satisfies the samemodel validity and stability property as Theorem
2.

Remark 3. An explicit estimate of "̄ can be represented by a monotonically decreasing function "̄(c) which satisfies
limc→+0 "̄(c) = +∞ and limc→+∞ "̄(c) = +0, at least, according to the Lyapunov proof in the sequel. Moreover, such properties
of the monotonic functions yield the equivalence of the inequalities 0 < |ΔD| < "̄(c) and 0 < c < c̄(|ΔD|) ∶= "̄−1(|ΔD|)where
"̄−1(|ΔD|) is the inverse function of "̄(c) such that "̄−1("̄(c)) = c, and thus the estimate of c̄ is also a monotonically decreasing
function in |ΔD| which satisfies lim

|ΔD|→+0 c̄(|ΔD|) = +∞ and lim
|ΔD|→+∞ c̄(|ΔD|) = +0.

The proof of Theorem 2 is established through the remaining of this section.

8.1 Reference error system
Introduce the same definition of the reference errors as in (17) and (18), namely, u(x, t) = T (x, t) − Tm,X(t) = s(t) − sr . For the
delayed input state, we modify to the following definition

v(x, t) = qc(t − x − (D + ΔD))∕k. (107)

Then, the system (103)–(106) is rewritten as a reference error (u, v,X)-system as

vt(x, t) = − vx(x, t), −(D + ΔD) < x < max{0,−ΔD} (108)
v(−(D + ΔD), t) =qc(t)∕k, (109)

ux(0, t) = − v(0, t), (110)
ut(x, t) =�uxx(x, t), 0 < x < s(t) (111)
u(s(t), t) =0, (112)

Ẋ(t) = − �ux(s(t), t). (113)
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8.2 Target system
We apply the same transformations as in (25)–(26). Since the boundary condition at the controller’s position is replaced by
(109), evaluating (26) at x = −(D + ΔD) yields

z(−(D + ΔD), t) =
qc(t)
k

+ c

0

∫
−(D+ΔD)

v(y, t)dy + c
�

s(t)

∫
0

u(y, t)dy + c
�
X(t). (114)

Rewriting the control law (15) using the delayed input state (107), we obtain

qc(t)
k

= −c
⎛

⎜

⎜

⎝

−ΔD

∫
−(D+ΔD)

v(y, t)dy + 1
�

s(t)

∫
0

u(y, t)dy + 1
�
X(t)

⎞

⎟

⎟

⎠

. (115)

By (114) and (115), it holds

z(−(D + ΔD), t) =c

0

∫
−ΔD

v(x, t)dx. (116)

Let f (t) be defined by

f (t) ∶=

0

∫
−ΔD

v(x, t)dx. (117)

To describe the closed-form of the target system, the formulation of (117) needs to be rewritten with respect to the variables
(z,w,X). Applying the inverse transformation (38) to (117) and calculating the integrations, we deduce (see Appendix A for
the derivation)

f (t) = −

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx − (1 − e−cΔD)
⎛

⎜

⎜

⎝

�
�

s(t)

∫
0

� (y)w(y, t)dy + � (s(t))X(t)
⎞

⎟

⎟

⎠

. (118)

Then, we obtain the target (z,w,X)-system as

zt(x, t) = − zx(x, t), −(D + ΔD) < x < max{0,−ΔD} (119)
z(−(D + ΔD), t) =cf (t), (120)

wx(0, t) = − z(0, t), (121)

wt(x, t) =�wxx(x, t) +
c
�
ṡ(t)X(t), 0 < x < s(t) (122)

w(s(t), t) =0, (123)
Ẋ(t) = − cX(t) − �wx(s(t), t). (124)

8.3 Physical constraints
The conditions for the model validity (6) need to be satisfied by proving the positivity of the control law as explained in Section
5. Taking the time derivative of the controller (15) along the solution of (103)–(106), we obtain

q̇c(t) = −cqc(t) + c
(

qc(t −D) − qc(t − (D + ΔD))
)

. (125)

The solution to (125) is hard to solve explicitly, however, it is possible to investigate the positivity of qc(t) a priori since the
differential equation (125) has the closed form in qc . To ensure it, the following lemma is deuced.

Lemma 6. For a given ΔD ∈ R, there exists c∗ > 0 such that ∀c ∈ (0, c∗) the solution to the delay differential equation (125)
satisfies the positivity, i.e., qc(t) > 0 for all t ≥ 0.

Owing to Lemma 6, with sufficiently small control gain c > 0, the properties ṡ(t) > 0 and s0 < s(t) < sr are satisfied ∀t > 0
as explained in Lemma 5, which are utilized for the stability analysis. The proof of Lemma 6 is given in Appendix B.
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8.4 Stability analysis
Introduce the same change of variable as (50), i.e.,!(x, t) = w(x, t)+(x − s(t)) z(0, t). Then, the resulting target system becomes

z(−(D + ΔD), t) =cf (t), (126)
zt(x, t) = − zx(x, t), −(D + ΔD) < x < max{0,−ΔD} (127)
!x(0, t) =0, (128)

!t(x, t) =�!xx(x, t) − (x − s(t)) zx(0, t) + ṡ(t)
(

c
�
X(t) − z(0, t)

)

, 0 < x < s(t) (129)

!(s(t), t) =0, (130)
Ẋ(t) = − cX(t) − �(!x(s(t), t) + z(0, t)). (131)

Inequalities of f (t)2 and f ′(t)2 are derived in Appendix C, and they are utilized in stability analysis. The form of the inequalities
are slightly changed depending on ΔD > 0 or ΔD < 0, due to the domain −(D + ΔD) < x < max{0,−ΔD} for z-subsystem.
Thus, the (z, !,X)-system’s stability needs to be analyzed by separating the cases of ΔD > 0 (underestimated delay mismatch)
and ΔD < 0 (over-estimated delay mismatch), as presented in20 to prove delay-robustness for linear ODE systems.

8.4.1 Underestimated delay mismatch: ΔD > 0
Consider

V1 =

0

∫
−(D+ΔD)

e−mxz(x, t)2dx. (132)

Taking the time derivative of (132), we have

V̇1 = −z(0, t)2 + em(D+ΔD)c2f (t)2 − mV1. (133)

Applying the bound given in Appendix C.1 with the help of ΔD > 0 and ||z(⋅, t)||2L2(−ΔD,0) ≤ ||z(⋅, t)||2L2(−(D+ΔD),0) to (133)
yields

V̇1 ≤ −z(0, t)2 + em(D+ΔD)c2
(

2M̄1||z(⋅, t)||2L2(−(D+ΔD),0) + M̄2||!(⋅, t)||2L2(0,s(t)) + M̄3z(0, t)2 + M̄4X(t)2
)

− mV1, (134)

where

M̄1 =
sign(ΔD)

2c
(

1 − e−2cΔD
)

, M̄2 =
8sr
�2
(1 − e−cΔD)2, M̄3 =

8
c2
(1 − e−cΔD)2, M̄4 =

4
�2
(1 − e−cΔD)2. (135)

Next, we consider

V2 =

0

∫
−(D+ΔD)

e−mxzx(x, t)2dx. (136)

(136) satisfies ||zx(⋅, t)||2L2(−(D+ΔD),0) ≤ V2 ≤ em(D+ΔD)||zx(⋅, t)||2L2(−(D+ΔD),0). Taking the time derivative of (136) together with
(126)-(127), we have

V̇2 = − zx(0, t)2 + em(D+ΔD)c2f ′(t)2 − mV2. (137)

Applying the bound given in Appendix C.2 to (133) yields

V̇2 ≤ − zx(0, t)2 − mV2 + em(D+ΔD)c2
(

4|ΔD|||zx(⋅, t)||2L2(−(D+ΔD),0) + 2c
2M̄1||z(⋅, t)||2L2(−(D+ΔD),0)

)

+ em(D+ΔD)c2
(

c2
(

M̄2||!(⋅, t)||2L2(0,s(t)) + M̄3z(0, t)2 + M̄4X(t)2
))

. (138)

Hence, we have

V̇1 + rV̇2 ≤ −
(

1 − c2em(D+ΔD)M̄3(1 + rc2)
)

z(0, t)2 + em(D+ΔD)c2M̄2(1 + rc2)||!(⋅, t)||2L2(0,s(t))
− (m − 2em(D+ΔD)c2M̄1(1 + rc2))V1 + em(D+ΔD)c2M̄4(1 + rc2)X(t)2

− rzx(0, t)2 − r(m − 4em(D+ΔD)c2ΔD)V2 (139)
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Since (!,X)-subsystem (128)–(131) is the same formulation as in the exact prediction case, using the same norm V3 =
1
2
||!(⋅, t)||21(0,s(t))

= 1
2
∫ s(t)
0 (!(x,t)

2

s2r
+ !x(x, t)2)dx and V4 =

1
2
X(t)2, the time derivative of them yields the same norm estimate

as in the exact prediction case, which are

V̇3 ≤ −
�
2
||!xx(⋅, t)||2L2(0,s(t)) −

�
2s2r

||!x(⋅, t)||2L2(0,s(t)) +
16s3r
3�

zx(0, t)2

+ ṡ(t)
(

2 c
2

�2
X(t)2 + 2z(0, t)2 + 1

2s3r
||!(⋅, t)||2L2(0,s(t))

)

, (140)

V̇4 ≤ −
c
2
X(t)2 +

4�2sr
c

||!xx(⋅, t)||2L2(0,s(t)) +
�2

c
z(0, t)2. (141)

Let V be the Lyapunov function defined by

V = V1 + rV2 + qV3 + pV4, (142)

where r > 0, q > 0, p > 0 are positive parameters to be determined. Applying (139)–(141) to the time derivative of (142) with
choosing

q =
8sr
�
, p = c

2�2
, r =

28s4r
3�2

, (143)

we get

V̇ ≤ −
(1
2
− 8em(D+ΔD)(1 − e−cΔD)2(1 + rc2)

)

z(0, t)2 − r
2
zx(0, t)2

− (m − em(D+ΔD)c
(

1 − e−2cΔD
)

(1 + rc2))V1

− r
(

m − 4em(D+ΔD)c2|ΔD|
)

V2 −
c2

4�2
{

1 − 16em(D+ΔD)(1 − e−cΔD)2(1 + rc2)
}

X(t)2

− 2sr||!xx(⋅, t)||2L2(0,s(t)) −
2
sr
||!x(⋅, t)||2L2(0,s(t)) −

(

1
2s3r

−
8sr
�2
em(D+ΔD)c2(1 − e−cΔD)2(1 + rc2)

)

||!(⋅, t)||2L2(0,s(t))

+ qṡ(t)
{

2c2

�2
X(t)2 + 8D||zx(⋅, t)||2L2(−D,0) +

sr
2
||!(⋅, t)||2L2(0,s(t))

}

, (144)

where we substitute the definition of M̄i for i = 1, 2, 3, 4 given in (135). Applying inequalities x ≥ 1− e−x for all x ≥ 0 to (144)
with setting m = (D + ΔD)−1, one can derive that for all ΔD ∈ (0, "̄(c)) where

"̄(c) =min

⎧

⎪

⎨

⎪

⎩

min
{

1, �
s2r c

}

c
√

32e(1 + rc2)
, 1
2

⎛

⎜

⎜

⎜

⎝

√

√

√

√

D2 +
min

{

1, 4
1+rc2

}

2ec2
−D

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (145)

there exist positive constants b > 0 and a > 0 such that V̇ ≤ −bV +aṡ(t)V holds. Since "̄(c) defined by (145) is a monotonically
decreasing function in c satisfying limc→+0 "̄(c) = +∞ and limc→+∞ "̄(c) = +0, as addressed in Remark 3, the inequality
0 < ΔD < "̄(c) is equivalent to 0 < c < c̄(ΔD) ∶= "̄−1(ΔD). Using the same technique as deriving from (71) to (94) in exact
compensation case, we conclude Theorem 2 for underestimated delay mismatch.

8.4.2 Over-estimated delay mismatch: ΔD < 0
We consider the same definitions of V1, V2, V3, V4 as those in the case ΔD > 0. However, in the case of ΔD < 0,
the bounds given in Appendix C yields f (t)2 ≤ 2M̄1||z(⋅, t)||2L2(0,−ΔD) + M̄2||!(⋅, t)||2L2(0,s(t)) + M̄3z(0, t)2 + M̄4X(t)2 and

f ′(t)2 ≤ 4|ΔD|||zx(⋅, t)||2L2(0,−ΔD) + 2c
2M̄1||z(⋅, t)||2L2(0,ΔD) + c

2
(

M̄2||!(⋅, t)||2L2(0,s(t)) + M̄3z(0, t)2 + M̄4X(t)2
)

. Hence, the
bounds of (134) and (138) are replaced by

V̇1 ≤ − z(0, t)2 + em(D+ΔD)c2
(

2M̄1||z(⋅, t)||2L2(0,−ΔD) + M̄2||!(⋅, t)||2L2(0,s(t)) + M̄3z(0, t)2 + M̄4X(t)2
)

− mV1, (146)

V̇2 ≤ − zx(0, t)2 − mV2 + em(D+ΔD)c2
(

4|ΔD|||zx(⋅, t)||2L2(0,−ΔD) + 2c
2M̄1||z(⋅, t)||2L2(0,ΔD)

)

+ em(D+ΔD)c2
(

c2
(

M̄2||!(⋅, t)||2L2(0,s(t)) + M̄3z(0, t)2 + M̄4X(t)2
))

. (147)
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We additionally consider

V5 =

−ΔD

∫
0

e−mxz(x, t)2dx, (148)

V6 =

−ΔD

∫
0

e−mxzx(x, t)2dx. (149)

Then, we have emΔD||z(⋅, t)||2L2(0,−ΔD) ≤ V5 ≤ ||z(⋅, t)||2L2(0,−ΔD) and e
mΔD

||zx(⋅, t)||2L2(0,−ΔD) ≤ V6 ≤ ||zx(⋅, t)||2L2(0,−ΔD). The
time derivatives of (148) and (149) are given by

V̇5 = − emΔDz(−ΔD, t)2 + z(0, t)2 − mV5, (150)
V̇6 = − emΔDzx(−ΔD, t)2 + zx(0, t)2 − mV6. (151)

Then, by redefining the Lyapunov function V as

V = V1 + rV2 + qV3 + pV4 +
1
4
V5 +

r
4
V6, (152)

with the same choices of the parameters as (143), the time derivative of (152) satisfies the following inequality

V̇ ≤ −
(1
4
− 8em(D+ΔD)(1 − e−cΔD)2(1 + rc2)

)

z(0, t)2 − r
4
zx(0, t)2

− mV1 − rmV2 −
c2

4�2
{

1 − 16em(D+ΔD)(1 − e−cΔD)2(1 + rc2)
}

X(t)2

−
(m
4
− emDc

(

e−2cΔD − 1
)

(1 + rc2)
)

V5 −
(m
4
− 4remDc2|ΔD|

)

V6

− 2sr||!xx(⋅, t)||2L2(0,s(t)) −
2
sr
||!x(⋅, t)||2L2(0,s(t)) −

(

1
2s3r

−
8sr
�2
em(D+ΔD)c2(1 − e−cΔD)2(1 + rc2)

)

||!(⋅, t)||2L2(0,s(t))

+ qṡ(t)
{

2c2

�2
X(t)2 + 8D||zx||2L2(−D,0) +

sr
2
||!||2L2(0,s(t))

}

. (153)

Setting m = D−1 and noting ΔD < 0, one can derive that for all ΔD ∈ (−"(c), 0) where

"(c) = min

⎧

⎪

⎨

⎪

⎩

1
c
ln

⎛

⎜

⎜

⎜

⎝

min
{

1, �
cs2r

}

8
√

e(1 + rc2)
+ 1

⎞

⎟

⎟

⎟

⎠

, 1
2c
ln
(

1
8eDc(1 + rc2)

+ 1
)

, 1
32erc2

⎫

⎪

⎬

⎪

⎭

(154)

there exist positive constants b > 0 and a > 0 such that V̇ ≤ −bV + aṡ(t)V holds. Applying the same technique with the
derivation for underestimated delay mismatch below (145), we conclude Theorem 2 for over-estimated delay mismatch.

8.5 Robustness to model mismatch from uncertain advection and reaction
Our main focus in Section 8 is on the delay-robustness, however, one might wonder the robustness to model’s mismatch caused
by uncertain advection and reaction. Such amodel is developed in18 for thermodynamicmodel of screw extrusion-based polymer
3D-printing, where the advection is caused by the rotating screw and the reaction is given by Newton’s law of the convective
heat flux, and the delay-free control is designed through backstepping method with a more complex gain kernel. Motivated by
this physical process, we consider

Tt(x, t) =�Txx(x, t) + Δ�Tx(x, t) − Δ�(T (x, t) − Tm), x ∈ (0, s(t)), (155)
−kTx(0, t) =qc(t −D), (156)
T (s(t), t) =Tm, (157)

ṡ(t) = − �Tx(s(t), t), (158)

where Δ� and Δ� are uncertain advection speed and the reaction coefficient, respectively. We study the robustness of the
proposed control (15) with respect to the uncertain parameters (Δ�,Δ�).
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Theorem 3. Under Assumptions 1-3, and assuming that Δ� ≥ 0 and Δ� ≥ 0, there exists a positive constant R > 0 such that if
Δ�2 + Δ�2 < R then the closed-loop system consisting of the plant (155)–(158) and the control law (15) maintains the model
validity (6) and is exponentially stable in the sense of the norm (16).

Proof. We provide the proof succinctly by showing (i) positivity of the control, (ii) perturbed target system, (iii) and stability
analysis. Note that both Lemmas 1 and 2 are still valid owing to the maximum principle, referring to Section 7.2 in9. The time
derivative of the control law yields

q̇c(t) = − cqc(t) + Δ�
ck
�
(T (0, t) − Tm) + Δ�

ck
�

s(t)

∫
0

(T (x, t) − Tm)dx, ∀t ≥ 0. (159)

We prove qc(t) > 0 for all t ≥ 0 by contradiction approach similarly to18. By Assumption 3, qc(0) > 0 is ensured. Assume that
there exists a finite time t̄ > 0 such that qc(t) > 0 for all t ∈ [0, t̄) and qc(t̄) = 0. Then, applying Lemma 2, it holds T (x, t) ≥ 0
for all x ∈ [0, s(t)] and for all t ∈ [0, t̄). Applying this to (159) leads to

q̇c(t) > − cqc(t), ∀t ∈ [0, t̄). (160)

Thus, applying comparison principle to the differential inequality (160) yields qc(t̄) ≥ qc(0)e−ct̄ > 0, which contradicts with
the assumption qc(t̄) = 0. Therefore, by contradiction, we can ensure that qc(t) > 0 for all t ≥ 0. Next, we apply the same
transformations (25)–(26) to the system (103)–(106) with uncertain advection and reaction, and also apply the change of variable
(50), which yields the following target system:

z(−D, t) =0, (161)
zt(x, t) = − zx(x, t) + F , −D < x < 0 (162)
!x(0, t) =0, (163)

!t(x, t) =�!xx(x, t) + Δ�!x(x, t) − Δ�!(x, t) − (x − s(t)) zx(0, t) + ṡ(t)
(

c
�
X(t) − z(0, t)

)

+ G(x), 0 < x < s(t) (164)

!(s(t), t) =0, (165)
Ẋ(t) = − cX(t) − �(!x(s(t), t) − z(0, t)). (166)

where F and G are additional terms caused by the uncertain parameters (Δ�,Δ�). Finally we consider the Lyapunov function
V defined by (67). Applying the same procedure from (57) to (68), and taking the bound of ||G||, one can obtain the following
inequality:

V̇ ≤ − b
2
(

1 − (Δ�2 + Δ�2)∕R
)

V + aṡ(t)V , (167)

where R > 0 is a positive constant that is not dependent on the parameters (Δ�,Δ�), which completes the proof of Theorem 3.

Under known parameters of the advection and reaction, the delay-compensated control is an interesting design problem. This
is possibly achievable by combining the proposed procedure in this paper with the design procedure in18 which is involved with
a more complex gain kernel in the backstepping transformation. We have not derived it in this paper, and will consider in a
future work.

9 NUMERICAL SIMULATION

In this section, we provide the simulation results of the proposed delay compensated controller under the accurate value on the
delay and the delay mismatch.

9.1 Exact Compensation
The performance of the proposed delay compensated controller is investigated by comparing to the performance of the nominal
controller (95). As in28 and13, the simulation is performed considering a strip of zinc whose physical properties are given in Table
1 using the boundary immobilization method with a finite difference discretization studied in26. The time delay, the past heat
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TABLE 1 Physical properties of zinc

Description Symbol Value
Density � 6570 kg ⋅m−3
Latent heat of fusion ΔH∗ 111,961 J ⋅ kg−1

Heat Capacity Cp 389.5687 J ⋅ kg−1 ⋅ K−1
Thermal conductivity k 116 w ⋅m−1
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FIGURE 2 The closed-loop response of (1)-(5) with the delay compensated control law (15) (red) and the uncompensated
control law (95) (blue). The proposed delay compensated control is success with satisfying the required conditions (41), (46)–
(48). The uncompensated control fails through the violation of the required conditions: the heat input becomes negative after
t = 4[min], and then the boundary temperature gets below the melting temperature after t = 7[min], which physically causes
the solidification from x = 0 to x = s(t) and hence violates the condition for the model maintaining the phase of “liquid-solid",
and finally the monotonicity of the interface is violated around t = 8[min].

input, and the initial values are set asD = 2 [min], qc(t) = 500 [W/m] for ∀t ∈ [−D, 0), s0 =0.1 [m], and T0(x) = T̄ (1−x∕s0)+Tm
with T̄ = 50 [K]. The setpoint and the controller gain are chosen as sr = 0.15 m and c =0.01/s, which satisfies the setpoint
restriction (14). This setup renders a challenging problem due to a small initial reference error sr − s0 > 0, a large time delay
D > 0, and a large past heat input qc(t) ≥ 0 for t ∈ [−D, 0], since the model is an irreversible process in which an overshoot
beyond the setpoint is prohibited to achieve the control objective.
Fig. 2 shows the simulation results of the closed-loop system of the plant (1)–(5) with the proposed delay compensated

control (15) (red) and the uncompensated control law (95) (blue). The closed-loop responses of the moving interface s(t), the
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(a) Monotonicity of the interface dynamics is satisfied with smaller gain,
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(b) Positivity of the heat input is satisfied with smaller gain, but is violated
with larger gain.
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(c) The boundary temperature keeps above the melting temperature with
smaller gain, while it reaches below the melting temperature with larger
gain, which violates the temperature condition for the liquid phase.

FIGURE 3 The closed-loop response under the "underestimated" delay mismatch with D = 30 [sec] and ΔD = 30 [sec]. The
simulations are conducted with the control gain c = 0.01 [/sec] (red) and c = 0.1 [/sec] (blue). The delay-robustness is observed
only with smaller gain in terms of the model validity, namely, under the large gain (blue), the required conditions (41), (46)–(48)
are violated as observed in the uncompensated control in Fig. 2 .

boundary heat control qc(t), and the boundary temperature T (0, t) are depicted in Fig. 2 (a)–(c), respectively. As stated in their
captions, the proposed delay compensated controller ensures all the conditions proved in Lemma 3–5 with the convergence of
the interface position to the setpoint, while the uncompensated control does not provide such a behavior. Hence, the numerical
result is consistent with the theoretical result, and the proposed controller achieves better performances than the uncompensated
controller under the actuator delay.

9.2 Robustness to Delay Mismatch
To evaluate the delay robustness, the performance of the proposed controller is investigated under the delay mismatch. First,
the simulation is conducted with the underestimated delay mismatch where the time delay from the actuator to the plant is 60
[sec] while the compensating time delay in the controller is D = 30 [sec], i.e., the delay mismatch is ΔD = 30 [sec]. The
closed-loop responses are depicted in Fig. 3 with the choices of the control gain c = 0.01 [1/sec] (red) and c = 0.1 [1/sec]
(blue). Fig. 3 (a) illustrates the convergence of the interface position to the setpoint, however, the monotonicity of the interface
dynamics is violated with larger gain (red). From Fig. 3 (b) and (c) we can observe that the positivity of the control input and
the temperature condition for the liquid phase are satisfied only with the lower gain (blue) for all time, while the simulation
with the larger gain (red) violates these conditions too. Hence, with the underestimated delay mismatch, the robustness is well
illustrated for sufficiently small gain c > 0, which is consistent with Theorem 2.
Next, we have studied the simulation with the over-estimated delay mismatch with the same value of the time delay from

the actuator to the plant 60 [sec] but the compensating time delay in the controller is D = 90 [sec], i.e., the delay mismatch is
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(a) The interface position converges to the setpoint without overshooting.
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(b) The heat input maintains positive.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

(c) The boundary temperature is greater than melting temperature, which
satisfies the temperature condition for the liquid phase.

FIGURE 4 The closed-loop response under the "overestimated" delay mismatch with D = 90 [sec] and ΔD = −30 [sec]. The
simulations are conducted with the control gain c = 0.01 [/sec] (red) and c = 0.1 [/sec] (blue). In this case, all the constraints
for the model validity are satisfied with both smaller gain and larger gain.

ΔD = -30 [sec]. The closed-loop responses are depicted in Fig. 4 with the same choices of the control gain as in simulation of
underestimated delay mismatch. While the magnitude of the delay mismatch is same as the one conducted in the underestimated
delay mismatch, we can observe from Fig. 4 (b) and (c) that the positivity of the control input and the temperature condition for
the model validity are satisfied for all time with both smaller control gain (red) and larger control gain (blue). Although Theorem
2 guarantees these properties only for sufficiently small control gain c > 0, the numerical results illustrate that the restriction on
the control gain to satisfy these properties is not equivalent between the underestimated and over-estimated delay mismatch.
Indeed, as far as we have investigated the numerical results with the over-estimated delay mismatch using other values of the

control gain c and the delay perturbation ΔD, the positivity of the control input is satisfied for every cases and the convergence
of the interface position to the setpoint is depicted without overshooting. These observations from the numerical simulation
leads us to conjecture that the delay-compensated controller might exhibit greater sensitivity to delay mismatch when it is
underestimated rather than over-estimated in terms of the model validation. Hence, once the user is faced with some range of
the uncertainty in the actuator delay, it is better to choose small control gain c > 0, and additionally, it might be better to choose
larger value of the compensating delay in the controller to be conservative.

10 CONCLUSIONS

This paper presented a boundary control design for the one-phase Stefan problem under an actuator delay to achieve exponential
stability in the1-norm using full state measurements. Combining our previous contribution13 with the contribution in22, two
nonlinear backstepping transformations for moving boundary problems are utilized and the associated backstepping controller
is proved to remain positive with a proper choice of the setpoint due to energy conservation. Then, some physical constraints
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required for the validity of the model are verified and the proof of stability. The equivalence to the exact prediction of the nominal
control law is shown, and the robustness to delay mismatch is analyzed.
An analogous state estimation problem is not a trivial extension, especially when the sensor delay appears in the measurement

of the interface position. This problem is motivated by the estimation of sea ice melting15, where the thickness of the sea ice can
bemeasured by satellites which causes a time delay to acquire the data through some communication. In such a case, the interface
position at current time needs to be estimated, and the estimated interface position should be incorporated in the domain of the
estimated temperature profile, which leads to a completely different structure of the system from the plant for control problem
we have studied. This extension is considered as a future work.

How to cite this article: Williams K., B. Hoskins, R. Lee, G. Masato, and T. Woollings (2016), A regime analysis of Atlantic
winter jet variability applied to evaluate HadGEM3-GC2, Q.J.R. Meteorol. Soc., 2017;00:1–6.

APPENDIX

A CALCULATION OF DOUBLE INTEGRALS

We show (118) from (117). Substituting the inverse transformation (38), (v(x, t) = z(x, t) − ∫ 0
x �(x − y)z(y, t)dy −

�
�
�(x) ∫ s(t)

0 � (y)w(y, t)dy − � (s(t))�(x)X(t)) into (117) yields

f (t) =

0

∫
−ΔD

v(x, t)dx =

0

∫
−ΔD

z(x, t)dx −

0

∫
−ΔD

0

∫
x

�(x − y)z(y, t)dydx −

0

∫
−ΔD

�(x)dx
⎛

⎜

⎜

⎝

�
�

s(t)

∫
0

� (y)w(y, t)dy + � (s(t))X(t)
⎞

⎟

⎟

⎠

. (A1)

Since �(x) = cecx (see (40)), the followings are obtained:
0

∫
−ΔD

�(x)dx = 1 − e−cΔD, (A2)

0

∫
−ΔD

0

∫
x

�(x − y)z(y, t)dydx =

0

∫
−ΔD

0

∫
x

cec(x−y)z(y, t)dydx = ecx
0

∫
x

e−cyz(y, t)dy
|

|

|

|

|

|

|

x=0
x=−ΔD +

0

∫
−ΔD

z(x, t)dx

= − e−cΔD
0

∫
−ΔD

e−cyz(y, t)dy +

0

∫
−ΔD

z(x, t)dx. (A3)

Substituting (A2) and (A3) into (A1), we arrive at

f (t) =

0

∫
−ΔD

v(x, t)dx =

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx − (1 − e−cΔD)
⎛

⎜

⎜

⎝

�
�

s(t)

∫
0

� (y)w(y, t)dy + � (s(t))X(t)
⎞

⎟

⎟

⎠

, (A4)

which is same as (118). The time derivative of (A4) is given with the help of the target system, as

ft(x, t) = −

0

∫
−ΔD

e−c(x+ΔD)zx(x, t)dx − (1 − e−cΔD)
⎛

⎜

⎜

⎝

�
�

s(t)

∫
0

� (y)wt(y, t)dy + � (s(t))Ẋ(t) + ṡ(t)� ′(s(t))X(t)
⎞

⎟

⎟

⎠

= −
⎛

⎜

⎜

⎝

e−c(x+ΔD)z(x, t)|x=0x=−ΔD + c

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx
⎞

⎟

⎟

⎠

− (1 − e−cΔD)
⎛

⎜

⎜

⎝

z(0, t) −
c�
�

s(t)

∫
0

� (y)w(y, t)dy + ṡ(t)X(t)
⎛

⎜

⎜

⎝

c
�

s(t)

∫
0

� (y)dy + � ′(s(t))
⎞

⎟

⎟

⎠

− cX(t)� (s(t))
⎞

⎟

⎟

⎠

(A5)
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Since � (x) = 1
�
cos

(√

c
�
x
)

(see (40)), we have

ft(x, t) = − z(0, t) + z(−ΔD, t) − c

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx + (1 − e−cΔD)
⎛

⎜

⎜

⎝

c�
�

s(t)

∫
0

� (y)w(y, t)dy − cX(t)� (s(t))
⎞

⎟

⎟

⎠

= −

0

∫
−ΔD

zx(x, t)dx − c

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx + (1 − e−cΔD)
⎛

⎜

⎜

⎝

c�
�

s(t)

∫
0

� (y)w(y, t)dy − cX(t)� (s(t))
⎞

⎟

⎟

⎠

. (A6)

B PROOF OF LEMMA 6

By rescaling the time t by defining t̄ = ct, p(t̄) = qc(t), D̄ = cD, Δ̄ = cΔD, and by dropping the bar on the variables to reduce
the notational burdens, the delay differential equation (125) is rewritten as

ṗ(t) = − p(t) + p(t −D) − p(t −D − Δ), (B7)
p0 = 0 > 0. (B8)

Hence, to derive Lemma 6, it suffices to show that there exists Δ∗∗ > 0 such that the solution to (B7) with a positive initial
condition is positive. We deduce it by proving the following two lemmas.
Let us define T1 = min {D,D + Δ}, T2 = max {D,D + Δ},Mp = maxs∈[−T2,0] |p(s)|, andM

′
p = maxs∈[−T2,0] |ṗ(s)|.

Lemma 7. There exists Δ∗ such that, if |Δ| < Δ∗, it holds

|p(t)| ≤Mpe
−
t , t ≥ 0 (B9)

for some 
 ∈ (0, 1).

Proof. The proof of this lemma follows from Halanay inequality. By Mean-Value theorem, there exists a(t) ∈ [t − T2, t − T1]
such that Δṗ(a(t)) = p(t −D) − p(t −D − Δ) holds, ∀t ≥ 0. Hence, by the use of such a(t), (B7) is given by

ṗ(t) = − p(t) + Δṗ(a(t)), t ≥ 0 (B10)

Moreover, applying triangle inequality to (B7), we get

|ṗ(t)| ≤3 max
s∈[−T2,0]

p(t + s), t ≥ 0. (B11)

Applying (B11) to (B10) yields

ṗ(t) ≤ − p(t) + 3|Δ| max
s∈[−2T2,0]

p(t + s), t ≥ 0. (B12)

Applying Halanay inequality to (B12) leads to (B9) with Δ∗ = 1
3
, where 
 is a solution to


 + 3|Δ|e
T2 − 1 = 0. (B13)

Since the left hand side of (B13) is a monotonically increasing function in 
 with having negative value at 
 = 0 and positive
value at 
 = 1, the solution to (B13) satisfies 
 ∈ (0, 1), which completes the proof of Lemma 7.

Hereafter we assume |Δ| ≤ Δ∗ = 1
3
.

Lemma 8. There exists Δ⋆⋆ > 0 such that, if |Δ| < Δ⋆⋆ and if  0 is positive-valued, the solution of (B7) satisfies

p(t) >0 , t ≥ 0. (B14)

Proof. Assume that the positive lower and upper bounds of T1 and T2 such that T ≤ T1 ≤ T2 ≤ T̄ are known. This is verified
supposing that Δ is small enough.
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(i) Prove (B14) for t ∈ [0, T1]:
Applying the variation of constant formula to (B10), it holds

p(t) =e−tp(0) + Δ

t

∫
0

e−(t−s)ṗ(a(s))ds, (B15)

in which a(s) ∈ [s − T2, s − T1]. Since a(s) ∈ [−T2, 0] for s ∈ [0, t] and t ∈ [0, T1], (B15) leads to

p(t) ≥e−tp(0) − |Δ|M ′
p

t

∫
0

e−(t−s)ds = e−tp(0) − |Δ|M ′
p(1 − e

−t). (B16)

Therefore, choosing k =Mp − � > 0 in which � > 0 is small enough, and provided that

|Δ| ≤ Δ1 ∶=
�

M ′
p(eT − 1)

, (B17)

(B16) leads to

p(t) ≥e−tp(0) − � 1 − e
−t

eT − 1
,

≥(p(0) − �)e−t,
≥ke−t, t ∈ [0, T1]. (B18)

(ii) Prove (B14) for t ∈ [T1, T2]:
We evaluate Δṗ(a(t)) in (B10) by separating the cases a(t) ≤ 0 and a(t) > 0 as follows

Δṗ(a(t)) ≤
⎧

⎪

⎨

⎪

⎩

|Δ| max
s∈[−T2,0]

|ṗ(s)| if a(t) ≤ 0

3|Δ| max
s∈[−T2,0]

|p(t + s)| ≤ 3|Δ|Mp if a(t) > 0
(B19)

where we used Lemma 7 in the second line considering |p(t)| ≤ Mpe−
t ≤ Mp for t ≥ 0. Combining the two cases, it holds
that Δṗ(a(t)) ≤ |Δ|M whereM = max

{

maxs∈[−T2,0] |ṗ(s)|, 3maxs∈[−T2,0] |p(s)|
}

. Applying this inequality and the variation of
constant formula to (B10), as previously, one concludes that

p(t) =e−(t−T1)p(T1) +

t

∫
T1

e−(t−s)Δṗ(a(s))ds, (B20)

≥e−tk − |Δ|M

t

∫
T1

e−(t−s)ds = e−tk − |Δ|M(1 − e−(t−T1)), (B21)

in which we used p(T1) ≥ ke−T1 by (B18). Consequently, defining 
̃0 = 1 + �0 for some �0 > 0, and provided that

|Δ| ≤ Δ2 ∶= min

{

Δ1,
k(1 − e−�0T )
M(eT − eT )

}

, (B22)

one concludes from (B21) that

p(t) ≥ ke−
̃0t , t ∈ [0, T2], (B23)

(iii) Prove (B14) for t ≥ T2:
Finally, we consider t ≥ T2. We define the sequence

t0 =T2 (B24)

tn+1 =
1

1 − 

ln
(

1 + e(1−
)tn
)

, n ∈ ℕ (B25)
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This sequence is increasing as (B25) leads to tn+1 ≥ 1
1−


ln
(

e(1−
)tn
)

= tn. If it were bounded, then the sequence tn would
converge to a point t⋆ such that

t⋆ = 1
1 − 


ln
(

1 + e(1−
)t⋆
)

⇔ e(1−
)t⋆ = 1 + e(1−
)t⋆ , (B26)

from which we see that such t⋆ does not exist. Therefore, the sequence (tn) is unbounded. Consequently, there exists n ∈ ℕ such
that tn ≤ t < tn+1. Moreover, we define the sequence


̃0 = 1 + �0, (B27)


̃n+1 = 1 −
1
tn
ln
(

e(1−
̃n)tn − C0
)

, (B28)

where C0 ∈ (0, 1). By definition, one has 
̃n+1 > 
̃n > 1 and the following relation

e(1−
̃n)tn = e(1−
̃n+1)tn + C0. (B29)

Using these sequences, we prove the following statement.
(#) ∀n ∈ ℕ it holds p(t) ≥ ke−
̃nt for t ∈ [0, tn].
The statement (#) is shown for n = 0 through (i) and (ii). We use induction approach, namely, assume the statement (#) is true
for n, and we prove the statement for n + 1. It is clear that the statement holds for t ∈ [0, tn] by the assumption, and therefore,
we consider t ∈ [tn, tn+1]. Then, using the variation of constant formula to (B10) and Lemma 7, it holds

p(t) =e−(t−tn)p(tn) +

t

∫
tn

e−(t−s)Δṗ(a(s))ds,

≥e−te(1−
̃n)tnk − 3|Δ|Mp

t

∫
tn

e−(t−s)e−
(s−T2)ds,

≥e−te(1−
̃n)tnk −
3|Δ|e
T2Mp

1 − 

(e−
t − e−t+(1−
)tn). (B30)

Then, by the use of (B30), a condition for p(t) ≥ ke−
n+1t, t ∈ [0, tn+1] is

e(1−
̃n)tnk −
3|Δ|e
T2Mp

1 − 

(e(1−
)t − e(1−
)tn) ≥ke(1−
̃n+1)t. (B31)

With the help of t ∈ [tn, tn+1], (B25), and (B29), a sufficient condition on Δ to satisfy (B31) for ∀n ∈ ℕ is

|Δ| ≤ Δ3 ∶=
k(1 − 
)C0
3e
T2Mp

. (B32)

Therefore, by construction, if

|Δ| ≤ min
{

Δ1,Δ2,Δ3
}

, (B33)

then for any t ≥ 0, there exists n ∈ ℕ such that t ∈ [tn, tn+1] and 
̃n+1 > 1 such that

p(t) ≥ ke−
̃n+1t > 0, (B34)

which completes the proof of Lemma 8.

C NORM ESTIMATE

C.1 Bound of f (t)2

Applying Young’s inequality, we have

f (t)2 ≤2
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx
⎞

⎟

⎟

⎠

2

+ 2(1 − e−cΔD)2
⎛

⎜

⎜

⎜

⎝

�2

�2

⎛

⎜

⎜

⎝

s(t)

∫
0

� (y)w(y, t)dy
⎞

⎟

⎟

⎠

2

+ � (s(t))2X(t)2
⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

. (C35)
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For both cases of ΔD > 0 and ΔD < 0, by applying Cauchy-Schwarz inequality, we deduce

⎛

⎜

⎜

⎝

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx
⎞

⎟

⎟

⎠

2

≤
⎛

⎜

⎜

⎝

max{0,ΔD}

∫
min{0,ΔD}

e−2c(x+ΔD)dx
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

max{0,ΔD}

∫
min{0,ΔD}

z(x, t)2dx
⎞

⎟

⎟

⎠

= M̄1

⎛

⎜

⎜

⎝

max{0,ΔD}

∫
min{0,ΔD}

z(x, t)2dx
⎞

⎟

⎟

⎠

, (C36)

where M̄1 =
sign(ΔD)

2c

(

1 − e−2cΔD
)

. Also, applying Young’s, Cauchy-Schwarz inequality,

⎛

⎜

⎜

⎝

s(t)

∫
0

� (y)w(y, t)dy
⎞

⎟

⎟

⎠

2

≤
⎛

⎜

⎜

⎝

s(t)

∫
0

� (y)(!(x, t) − (x − s(t)) z(0, t))dy
⎞

⎟

⎟

⎠

2

≤
⎛

⎜

⎜

⎝

s(t)

∫
0

� (y)!(x, t)dx + �
�c

(

1 − cos
(√

c
�
s(t)

))

z(0, t)
⎞

⎟

⎟

⎠

2

,

≤2
⎛

⎜

⎜

⎝

s(t)

∫
0

� (y)!(x, t)dx
⎞

⎟

⎟

⎠

2

+ 2�2

�2c2
z(0, t)2 ≤

2sr
�2

||!(⋅, t)||2L2(0,s(t)) +
2�2

�2c2
z(0, t)2. (C37)

Applying (C36) and (C37) into (C35), the following inequality is derived

f (t)2 ≤2M̄1

⎛

⎜

⎜

⎝

max{0,−ΔD}

∫
min{0,−ΔD}

z(x, t)2dx
⎞

⎟

⎟

⎠

+ M̄2||!(⋅, t)||2L2(0,s(t)) + M̄3z(0, t)2 + M̄4X(t)2, (C38)

where

M̄2 =
8sr
�2
(1 − e−cΔD)2, M̄3 =

8
c2
(1 − e−cΔD)2, M̄4 =

4
�2
(1 − e−cΔD)2. (C39)

C.2 Bound of f ′(t)2

Note that

f ′(t) = −

0

∫
−ΔD

zx(x, t)dx − c

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx + (1 − e−cΔD)
⎛

⎜

⎜

⎝

c�
�

s(t)

∫
0

� (y)w(y, t)dy − cX(t)� (s(t))
⎞

⎟

⎟

⎠

. (C40)

Thus, applying Young’s inequality,

(f ′(t))2 ≤4
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

0

∫
−ΔD

zx(x, t)dx
⎞

⎟

⎟

⎠

2

+ c2
⎛

⎜

⎜

⎝

0

∫
−ΔD

e−c(x+ΔD)z(x, t)dx
⎞

⎟

⎟

⎠

2

+ (1 − e−cΔD)2c2
⎛

⎜

⎜

⎜

⎝

�2

�2

⎛

⎜

⎜

⎝

s(t)

∫
0

� (y)w(y, t)dy
⎞

⎟

⎟

⎠

2

+ � (s(t))2X(t)2
⎞

⎟

⎟

⎟

⎠
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