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Abstract— In this paper we consider the stabilization of an
underactuated system of linear first-order hyperbolic Partial
Differential Equations consisting of one rightward-convecting
transport PDE and two leftward-convecting equations. The
system is underactuated in the sense that only one of the two
leftward-convecting equations is actuated at the boundary. This
is a fundamental difference compared to existing results in the
literature, as it is usually assumed that all of the equations
convecting in at least one direction are independently actuated
at the boundary. The proposed approach combines a backstep-
ping transformation and successive state transformations which
allow the reformulation of the original system as a neutral
system with distributed state delays and distributed input
delays. Assuming that the actuator dynamics are asymptotically
stable, the stabilization of the system is reduced to that of a
simpler neutral system with only distributed state delays and
a delayed control. Designing a predictor, it becomes possible
to stabilize this simpler system. The proposed feedback law is
then combined with a low pass-filter to guarantee the existence
of delay-robustness margins for the closed-loop system.

I. INTRODUCTION

In all real-life systems, signals, energy, matter and other
quantities cannot be immediately transported across space.
When modeling systems where propagation phenomena are
fast enough with respect to other dynamics, these transport
delays are usually neglected. Nevertheless, as performance
requirements for physical systems grow more stringent and
large-scale interconnected systems become more prevalent
(sometimes spanning hundreds of kilometers in length, as is
the case for electrical grids and pipelines), detailed models
that include propagation mechanisms are required to ade-
quately represent their dynamic behavior [1], [2], [3], [4], [5].
One natural mathematical representation of these transport
phenomena is through hyperbolic Partial Differential Equa-
tions (PDEs).

The control of coupled hyperbolic PDEs is an active
research topic [6], [7], [8], [9]. Unlike results for linear
Ordinary Differential Equations (ODEs), constructive control
designs, even for linear hyperbolic PDEs, are harder to find
and often require specific controllability results [10], [11],
or many independent actuators to be available [12]. From
an application standpoint, reducing the number of required
actuators provides clear advantages in terms of cost, weight,
and overall system design complexity.

In this paper, we explore the effect of removing full
actuation from one boundary of the backstepping design
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in [13]. We consider a system consisting of one rightward-
convecting transport PDE and two leftward-convecting equa-
tions, with only one of the leftward-convecting equations
actuated at the boundary. To construct a stabilizing control
law for this system, we rely on backstepping techniques
inspired by [14] in order to equivalently reformulate the
three-PDE system stabilization problem as that of stabilizing
a difference equation with pointwise and distributed delays
in both the state and the control. Using a transform inspired
by [15], the (direct) control action on one of the PDEs is
recast as an (indirect) action on the two remaining PDEs with
a pointwise-plus-distributed delay structure. If the resulting
actuator transfer function does not have any poles on the
complex right-half plane, a dynamic inversion procedure can
be applied to stabilize the whole system using predictor-
based techniques [16], [17], [18]. The stability requirement
for this transfer function is the main limitation in the pro-
posed approach as one could conceivably still stabilize the
system as long as there are no unstable modes in the system
corresponding to transmission zeros of the control operator.
Nevertheless, this more restrictive assumption allows for a
simpler explicit construction of a dynamic control operator.
As a final step, it will be shown that an adequate low-pass
filter can be added to the control design that renders the final
control operator strictly proper. This property is desirable
from a robustness perspective (with respect to high-frequency
noise or delays in the control loop) as has been shown in [19],
[20], [21].

The paper is organized as follows: in Section II, we present
the problem under consideration, before reformulating it as a
time-delay difference equation in Section III. Then, Section
IV focuses on the design of a control law stabilizing this
difference equation, which is then modified via a low-pass
filter in Section V to guarantee delay-robust stabilization.
Finally, the merits of our design are illustrated in numerical
simulations in Section VI, before drawing conclusions.

Notations
We denote the functional space where the PDE states will

be defined as χ = (L2([0, 1];R))3 with the associated norm

||w||χ =

(∫ 1

0

wT (ν)w(ν)dν

) 1
2

. (1)

We denote D = L2([−τ, 0],R2) the Banach space of L2

functions mapping the interval [−τ, 0] into R2. For a function
φ : [−τ,∞) 7→ R, its partial trajectory φ[t] ∈ D is defined by
φ[t](θ) = φ(t+θ),−τ ≤ θ ≤ 0. The associated norm is given

by ||φ[t]||D =
(∫ 0

−τ φ
T (t+ θ)φ(t+ θ)dθ

) 1
2

. We define for

every r > 0, ||φ[t]||r =
(∫ 0

−r φ
T (t+ θ)φ(t+ θ)dθ

) 1
2

. We
denote Id the identity matrix of dimension 2. We define



the right closed half-plane as C+ = {s ∈ C | <(s) ≥ 0}.
Finally, for any proper and stable transfer matrix G(s), we
denote σ̄(G(s)) the largest singular value of G(s) (s ∈ C)
and σ(G(s)) its smallest one.

II. SYSTEM UNDER CONSIDERATION

We consider a class of underactuated linear balance
laws composed of one rightward-convecting transport PDE
and two leftward-convecting equations. These equations can
model (among others) a Drif-Flux Model (DFM) as described
in [22]. For this example, it models the flow of liquid (oil,
water and drilling fluid being considered as one liquid phase)
and gas along a drillstring. More precisely, the equations cor-
respond to two mass and one momentum conservation laws.
This class of systems has been studied in the literature [13] in
the case of full actuation at one-boundary. Here, we consider
that only one of the two leftward-convecting equations can
be actuated. More precisely, the class of systems under
consideration in this paper is

∂tw(t, x) + Λ∂xw(t, x) = Σ(x)w(t, x), (2)

where w(t, x) = (u(t, x), v1(t, x), v2(t, x))T is the state of
the system, the different arguments evolving in {(t, x) s.t.
t > 0, x ∈ [0, 1]}. We consider the boundary conditions

u(t, 0) = q1v1(t, 0) + q2v2(t, 0), (3)
v1(t, 1) = ρ1u(t, 1) + V (t), v2(t, 1) = ρ2u(t, 1), (4)

The diagonal matrix Λ is given by Λ = diag(λ,−µ1,−µ2),
where the different velocities λ, µ1, µ2 are assumed to be
constant and positive. The boundary couplings q1, q2, ρ1 and
ρ2 are assumed to be constant. The in-domain coupling
matrix is given by

Σ(x) =

 0 σ+
1 (x) σ+

2 (x)
σ−+1 (x) 0 σ−−1 (x)
σ−+2 (x) σ−−2 (x) 0

 ,

where the functions σ+
i and σ−−i and σ−+i are continuous.

Note that the matrix Σ does not have any diagonal term, as
these terms can be easily removed using a simple exponential
change of coordinates (see [23] for details). The initial
conditions of the state w = (u, v1, v2)T is denoted w0 =
(u0, v01 , v

0
2)T . It is assumed to belong to χ. The control

input V (t) takes values in R. We denote τ1 and τ2 the
characteristic transport times τ1 = 1

λ+ 1
µ1
, τ2 = 1

λ+ 1
µ2
, and

τ = max(τ1, τ2) the largest transport time. The system (2)-
(4) is well-posed [23, Theorem A.6, page 254]. This class
of system (2)-(4) is fundamentally different to the one
considered in [13] as only one of the two leftward-convecting
equations is actuated. Thus, the techniques developed in[13]
cannot be straightforwardly adjusted to stabilize (2)-(4). In
addition, we require the two following assumptions.

Assumption 1: The boundary parameters are such that
|ρ1q1|+ |ρ2q2| < 1.

Assumption 2: The boundary couplings of the system (2)-
(4) verify ρ2q1 6= 0.
To these two (somehow natural) assumptions, we will add,
later in the paper, a third assumption that corresponds to an
asymptotic stability condition on the actuation chain.

Assumption 1 is equivalent (in the case where τ1 and τ2
are rationally independent) to the fact that the difference
system

Z(t) =

(
ρ1q1 0
ρ2q1 0

)
Z(t− τ1) +

(
0 ρ1q2
0 ρ2q2

)
Z(t− τ2), (5)

is exponentially stable (where Z ∈ D). More precisely, it
has been shown in [24] and [14] that a necessary condi-
tion to guarantee the existence of delay-robustness margins
for (2)-(4) is that the open-loop system without in-domain
couplings must be exponentially stable. This is equivalent
to the exponential stability of (5) (see [14] for details).
Therefore, Assumption 1 constitutes a reasonable assumption
as it is necessary for the existence of robustness margins for
the closed-loop system. Second, Assumption 2 guarantees
the stabilizability of the second leftward-convecting PDE
through its boundary. Note that, however, it may be con-
servative as (under some conditions) it should be possible to
stabilize this unactuated PDE through its in-domain coupling
terms. This situation, which considerably complexifies the
control design, may be a direction of future work but is out
of the scope of the paper.

III. TIME-DELAY FORMULATION OF THE PDE SYSTEM

In this section, we show that the original system (2)-
(4) can be rewritten as a time-delay system of neutral type
(difference system) with distributed delay terms. This is a
straightforward application of [14]. More precisely, we have
the following theorem.

Theorem 1: There exist L∞([0, τ ],R)-functions G1,1,
G1,2, G2,1 and G2,2 which only depend on the system pa-
rameters such that the system (2)-(4) has stability properties
equivalent to those of the difference system defined by

z1(t) = ρ1q1z1(t− τ1) + ρ1q2z2(t− τ2) + V (t) (6)

+

∫ τ

0

[G1,1(ν)z1(t− ν) +G1,2(ν)z2(t− ν)] dν

z2(t) = ρ2q1z1(t− τ1) + ρ2q2z2(t− τ2) (7)

+

∫ τ

0

[G2,1(ν)z1(t− ν) +G2,2(ν)z2(t− ν)] dν,

i.e., there exist two constants C1 > 0 and C2 > 0 and a
constant r > 0 such that for all t > τ ,

C1||(z1, z2)||r ≤ ||w||χ ≤ C2||(z1, z2)||D. (8)

Moreover, there exists a transformation F such that for all
t > τ , (z1(t), z2(t)) = F(w(t, ·)).

Proof: The proof of this Theorem can be found in[14].
It relies on successive backstepping transformations.
This theorem means that we can consider the system (6)-(7)
for the design of the control law. The resulting feedback law
could then be expressed as a function of w using the operator
F . System (6)-(7) consists of two difference equations, only
one being actuated. To simplify the problem, a natural choice
is to define an alternative control law by

V̄ (t) = V (t) + ρ1q1z1(t− τ1) + ρ1q2z2(t− τ2)

+

∫ τ

0

[G1,1(ν)z1(t− ν) +G1,2(ν)z2(t− ν)] dν. (9)

Then the system (6)-(7) rewrites as

z1(t) = V̄ (t) (10)
z2(t) = ρ2q1V̄ (t− τ1) + ρ2q2z2(t− τ2) (11)

+

∫ τ

0

[
G2,1(ν)V̄ (t− ν) +G2,2(ν)z2(t− ν)

]
dν.

Choosing V̄ as a feedback in z2 and such that the
solution of equations (11) converges to zero will imply the



stabilization of z1 (and consequently of the original state
w using Theorem 1). Consequently, we can consider only
equation (11) for the design of the control law V̄ . This is
the approach we pursue in the next two sections.

However, it is worth noticing that the control law V (t)
resulting from such an approach requires the cancelation of
the reflection terms ρ1q1z1(t − τ1) and ρ1q2z2(t − τ2). As
shown in [19], this may have major consequences regarding
the robustness margins of the closed-loop system since the
corresponding feedback law is not strictly proper. To avoid
this problem and make the control law strictly proper, we
choose to combine it with a well-tuned low pass filter, the
design of which is detailed in Section V.

IV. STABILIZATION OF THE DIFFERENCE EQUATION (11)

In this section, we design a control law V̄ that stabilizes
the difference equation (11). The resulting feedback law can
then be used for the stabilization of (2).

Note that the actuation in (11) appears both through the
pointwise delay term ρ2q1V̄ (t − τ1) and the distributed
delay term

∫ τ
0
G2,1(ν)V (t−ν)dν. This distributed actuation

term has been seldom studied in the literature [25], [26],
is uncommon when considering difference equation and is
a major difference compared to the existing results given
in [14]. An additional difficulty is induced by the fact that
the delay inside the integral lies between 0 and τ , whereas
the pointwise delay is equal to τ2. Thus, we cannot directly
cancel the integral term using the pointwise delayed control
term as the resulting control law would not be causal. The
approach we have chosen to design our stabilizing control
law is described as follows

1) We first consider successive state transformations that
make the delays in the distributed part of the actuation
larger that the pointwise delay (Subsection IV-A).

2) Then, it becomes possible to use the pointwise delayed
actuation term to cancel the integral part, while pre-
serving causality. Under an additional condition on the
dynamics, the compensation of this integral actuation
term does not create unstable loops and the resulting
system rewrites as a difference equation with only a
pointwise delayed actuation. (Subsection IV-B).

3) For such a system, we design a state-predictor. We
finally show that the corresponding proposed control
law guarantees the stabilization of the original system
(Subsection IV-C).

A. Successive state transformations

In this section, we perform successive state transforma-
tions that will make the delays in the distributed part of the
actuation larger that the pointwise delay. This is crucial to be
able to causally cancel this integral term. Inspired by [15],
let us consider the following family of state transformations
defined for k ∈ N by y0(t) = z2(t) and

yk+1(t) = yk(t) +

∫ (k+1)τ2

kτ2

Rk(ξ)V̄ (t− ξ)dξ. (12)

where the functions Rk are L∞([kτ2, (k+1)τ2],R)-functions
defined by the integral equation

Rk(x) = −Ḡk(x) +

∫ x

kτ2

G2,2(x− ξ)Rk(ξ)dξ. (13)

Note that for a given Ḡk, this equation always admit a
solution as it is a Volterra equation [27]. The functions
Ḡk are L∞([kτ2, kτ2 + τ ],R) defined for all k ∈ N? by
Ḡ0(x) = G2,1(x) and by (14) if (k + 2)τ2 ≥ kτ2 + τ and
by (15) if (k + 2)τ2 ≤ kτ2 + τ .

With these definitions, we have the following lemma
Lemma 1: For every k ∈ N, the state yk is solution of the

following difference equation

yk = ρ2q2yk(t− τ2) +

∫ τ

0

G2,2(ν)yk(t− ν)dν

+ ρ2q1V̄ (t− τ1) +

∫ τ+kτ2

kτ2

Ḡk(ν)V̄ (t− ν)dν. (16)

Proof: The proof is based on an induction argument.
The case k = 0 is a consequence of the definition of y0 and
Ḡ0. Let us assume that the property holds at rank k. Using
(12), we have

yk+1 − ρ2q2yk+1(t− τ2)−
∫ τ

0

G2,2(ν)yk+1(t− ν)dν

= ρ2q1V̄ (t− τ1) +

∫ τ+kτ2

kτ2

Ḡk(ν)V̄ (t− ν)dν +

∫ (k+1)τ2

kτ2

Rk(ν)V̄ (t− ν)dν − ρ2q2
∫ (k+2)τ2

(k+1)τ2

Rk(ν − τ2)V̄ (t− ν)dν

−
∫ τ

0

∫ (k+1)τ2

kτ2

G2,2(ν)Rk(ξ)V̄ (t− ξ − ν)dξdν. (17)

Using the change of variables η = ξ + ν, the last inte-
gral rewrites Ik =

∫ (k+1)τ2
kτ2

(
∫ τ+ξ
ξ

G2,2(η − ξ)Rk(ξ)V̄ (t −
η)dη)dξ. Using Fubini’s theorem and using the definitions
of Ḡk and Rk concludes the proof.
Let us now define N = mink{k ∈ N |kτ2 ≥ τ1}. For this
N , we have

yN (t) = ρ2q2yN (t− τ2) +

∫ τ

0

G2,2(ν)yN (t− ν)dν (18)

+ ρ2q1V̄ (t− τ1) +

∫ Nτ2+τ−τ1

Nτ2−τ1
ḠN (ν + τ1)V̄ (t− τ1 − ν)dν.

Thanks to the proposed changes of variables, we have
managed to make the distributed delay on the actuation larger
than the actuation pointwise delay.

B. Reformulation as a system with only one actuation term
We can now use the pointwise-delayed actuation to cancel

the distributed delayed actuation term. However, this direct
cancellation may create some unstable loops. To avoid this
situation, we consider that the actuation dynamics is asymp-
totically stable by formulating the following assumption 1.

Assumption 3: The holomorphic function

C(s) = ρ2q1 +

∫ τ+Nτ2−τ1

Nτ2−τ1
ḠN (ν + τ1)e−νsdν, (19)

1This assumption corresponds to some specific conditions on the different
parameters of the system. The analysis of such a condition is out of the
scope of this paper. However, one must be aware that this assumption is
conservative. More precisely, see [28], the only necessary condition for the
stabilizability of (18) is that the state operator (O(s) = 1− ρ2q2e−τ2s −∫ τ
0 G2,2(ν)e−νsdν) and C(s) do not share any common zeros on the

closed right half-plane. Unfortunately, we have not been able to design a
control law only based on this general condition. This will be the purpose
of further investigations



Ḡk+1(x) =


Ḡk(x)− ρ2q2Rk(x− τ2)−

∫ (k+1)τ2
kτ2

G2,2(x− ξ)Rk(ξ)dξ if (k + 1)τ2 ≤ x ≤ kτ2 + τ

−ρ2q2Rk(x− τ2)−
∫ (k+1)τ2
x−τ G2,2(x− ξ)Rk(ξ)dξ if kτ2 + τ ≤ x ≤ (k + 2)τ2

−
∫ (k+1)τ2
x−τ G2,2(x− ξ)Rk(ξ)dξ if (k + 2)τ2 ≤ x ≤ (k + 1)τ2 + τ

(14)

Ḡk+1(x) =


Ḡk(x)− ρ2q2Rk(x− τ2)−

∫ (k+1)τ2
kτ2

G2,2(x− ξ)Rk(ξ)dξ if (k + 1)τ2 ≤ x ≤ (k + 2)τ2

Ḡk(x)−
∫ (k+1)τ2
kτ2

G2,2(x− ξ)Rk(ξ)dξ if (k + 2)τ2 + τ ≤ x ≤ kτ2 + τ

−
∫ (k+1)τ2
x−τ G2,2(x− ξ)Rk(ξ)dξ if kτ2 + τ ≤ x ≤ (k + 1)τ2 + τ

(15)

does not have any roots on the closed right half-plane.
Lemma 2: A feedback law stabilizing the difference equa-

tion

yN (t) =ρ2q2yN (t− τ2)

+

∫ τ

0

G2,2(ν)yN (t− ν)dν + Ṽ (t− τ1) (20)

results in a control law V stabilizing the system (10)–(11),
defined through the following integral equation

Ṽ (t) = ρ2q1V̄ (t) +

∫ τ+Nτ2−τ1

Nτ2−τ1
ḠN (ν + τ1)V̄ (t− ν)dν.

(21)
Proof: Define a new control input Ṽ as in (21) with

which (18) rewrites as (20). Consequently, if there exists a
feedback law Ṽ stabilizing (20), then the convergence of
Ṽ to zero implies the convergence of V̄ to zero due to
Assumption 3 (the control chain is asymptotically stable).
This, in turn, implies the convergence of both z1 and z2 to
zero due to (12).

C. Predictor design
In this section, in virtue of Lemma 2, we choose a control

law that stabilizes (20) as

Ṽ (t) = −
∫ τ

0

G2,2(ν)P (t, t− ν)dν (22)

in which, for t ≥ 0 and s ∈ [t−τ1−τ, t], P (t, s) is the state
prediction (see [16], [17])

P (t, s) = (23)
yN (s+ τ1) if s ∈ [t− τ − τ1, t− τ1]

ρ2q2P (t, s− τ2) +

∫ τ

0

G2,2(ν)P (t, s− ν)dν + Ṽ (s)

otherwise

Observe that the function2P (t, ·) is a τ1 units of time ahead
prediction of the function yN,t : s ∈ [−τ, 0] 7→ yN (t+ s).

Theorem 2: Under Assumptions 1-3, the closed-loop sys-
tem consisting of the plant (20) and the control law (22) is
exponentially stable.

Proof: The proof follows straightforwardly from the
fact that P (t, s) = yN (s + τ1) for any s ∈ [t− τ1 − τ, t]
which implies that Ṽ (t) = −

∫ τ
0
G2,2(ν)yN (t+τ1−ν)dν and

the result follows by plugging this control law back into (20)
which implies yN (t) = ρ2q2yN (t − τ2) with |ρ2q2| < 1 by
Assumption 1.

2We write P as a function of two arguments to emphasize the fact that
the prediction should be computed by incorporating measured delayed states
available at time t, to improve its robustness in practice.

Note that we voluntarily choose not to cancel the pointwise
delay term ρ2q2yN (t − τ2) in the closed-loop dynamics,
to guarantee that the transfer function relating Ṽ to yN is
strictly proper, a characteristic which is necessary in the
following section.

V. ROBUSTNESS ASPECTS

Although the control law V (t) designed in the previous
section guarantees the stabilization of the system (6)-(7), it
cancels the reflection terms ρ1q1z1(t−τ1) and ρ1q2z2(t−τ2)
and is consequently non strictly proper. As mentioned above,
this may raise important issues with respect to the existence
of robustness margins at high frequencies (where the integral
terms vanish) as we may, in presence of a small delay, add
instabilities instead of canceling them [19]. In this section,
we combine the control law V (t) with a low-pass filter
to make it strictly proper, while guaranteeing the nominal
stabilization. The analysis we propose will be done in the
Laplace domain. We will denote Z(s) = (z1(s), z2(s))T the
Laplace transform of the state (z1(t), z2(t))T . Let us denote
F (s) the holomorphic function defined by

F =

(
ρ1q1e−τ1s ρ1q2e−τ2s

ρ2q1e−τ1s ρ2q2e−τ2s

)
. (24)

It corresponds to the pointwise delay part of (6)-(7). Let us
also denote H(s), the transfer matrix corresponding to the
integral part of (6)-(7)

H(s) =

(∫ τ
0
G1,1(ν)e−νsdν

∫ τ
0
G1,2(ν)e−νsdν∫ τ

0
G2,1(ν)e−νsdν

∫ τ
0
G2,2(ν)e−νsdν

)
. (25)

The function H is strictly proper due to Riemann-Lebesgues’
lemma. Following the analysis done in the previous section,
he control law V̄ can be rewritten in the Laplace domain as
V̄ (s) = K̄(s)Z(s), where K̄(s) is a line-vector whose com-
ponents are holomorphic functions that are strictly proper.
We do not give their explicit expression due to the space
restrictions but they can be obtained using (12), (22) and an
alternative expression of (23) based on the transition matrix
of (20) (see [29]). Using (9), the control law V (s) can then
be rewritten as

V (s) = V̄−(F11(s)+H11(s))Z1(s)−(F12(s)+H12(s))Z2(s),

which can be represented as

V (s) = (K̄(s)− (1 0) (F (s) +H(s)))Z(s) = K(s)Z(s).

The transfer function K(s) is composed of strictly proper
terms (namely the functions H(s) and K̄(s)) and of non-
strictly proper terms (namely the term F (s)). More precisely,
the functions H(s) and K̄(s) corresponds to integral terms
that vanish at high frequency, while the term (1 0)F (s)
corresponds to pointwise delays terms and (as mentioned



above) may be the source of robustness issues [19]. This is
why we are going to low-pass filter this term. To distinguish
the effects of the proper terms and of the non-proper terms in
the control law, we will rewrite the function K(s) as follows

K(s) = P (s)− (1 0)F (s), (26)

where P (s) = K̄(s) − (1 0)H(s). The following lemma
assesses several interesting properties on the different trans-
fer functions.

Lemma 3: Consider F,H,K and P defined in (24)–(26).
There exist ε0 > 0 and 0 < ε1 < 1 such that, for any s ∈ C+,

σ(Id− F (s)−H(s)−
(

1
0

)
K(s)) > ε0, (27)

σ̄(F (s)) < ε1 < 1. (28)

Furthermore, there exists M > 0 such that for any s ∈ C+

with |s| > M we have σ(Id−H(s)−
(

1
0

)
P (s)) > ε1.

Proof: The stability of the nominal closed-loop sys-
tem (6)-(7) assessed by its reformulation into (10)–(11)
and Lemma 2 together with Theorem 2 implies that the
characteristic equation of the closed-loop system is lower-
bounded on the closed complex right half-plane [30]. This
implies the first inequality (27) The second inequality (28) is
a consequence of Assumption 1. Since P and H are strictly

proper, σ(Id − H(s) −
(

1
0

)
P (s)) converges to 1 when

|s| → +∞ (s ∈ C+). This implies the last inequality.
We then have the following theorem

Theorem 3: Let w(s) be any low-pass filter such that for
all s ∈ C+{ |1− w(s)| < ε0

ε1
if |s| ≤M,

|1− w(s)| < 1
ε1
σ(Id−H(s)−

(
1
0

)
P (s)) if |s| > M,

(29)

where H and P are defined in (25)–(26) and M, ε0 and ε1
are defined in Lemma 3. Let us consider the control law
defined in the Laplace domain by

Vf (s) = Kf (s)Z(s) (30)

with Kf (s) = P (s) − (w(s) 0)F (s). Then, this control
law delay-robustly stabilizes the system (6)-(7).

Proof: Definition of w: Note that the filter w is well
defined since the second condition of (29) allows the conver-
gence of w to zero for high frequencies. The first condition
implies that w is close to one for sufficiently small |s|.
Stabilization: We first prove that the new control law Vf still
guarantees the stabilization of the system (6)-(7). Plugging
the control law inside (6)-(7), the characteristic equation of
the closed-loop system now rewrites

det(Id− F (s)−H(s)−
(

1
0

)
Kf (s)) = 0.

Using (30), this characteristic equation can be rewritten as

det(Id−H(s)−
(

1
0

)
P (s)−

(
1− w(s) 0

0 1

)
F (s)) = 0.

To ease the notations, we will denote Q(s) = Id− F (s)−
H(s) − (1 0)

T
Kf (s) so that the characteristic equation

rewrites det(Q(s)) = 0. To prove that the closed-loop

system is exponentially stable, we need to show that this
characteristic equation does not have any solution on C+.
By contradiction, let us assume that there exists s ∈ C+

such that det(Q(s)) = 0. If |s| > M , we have, using (29),

|1− w(s)|σ̄(F (s)) < σ(Id−H(s)−
(

1
0

)
P (s)).

Thus, σ(Q(s)) > 0 which leads to a contradiction. A similar
contradiction can be obtained when |s| ≤M . Consequently,
the characteristic equation cannot be satisfied on C+. This
proves the stability of the closed-loop system.
Delay-robustness: The new control law is now strictly proper.
This means that it is robust to small delays in the input
and uncertainties on the parameters. The complete robustness
proof follows the same ideas as that in [31].

VI. SIMULATION RESULTS

The proposed control law has been tested in simulations
using Matlab. The PDE system is simulated using a classical
finite volume method based on a Godunov scheme [32]. We
used 61 spatial discretization points (and a CFL number of
1). The algorithm we use to compute the different kernels
(which are required to obtain the system (6)-(7)) is adapted
from the one proposed in [31]. Using the method of charac-
teristics, we write the integral equations associated to the ker-
nel PDE-systems. These integral equations are solved using
a fixed-point algorithm. The predictor is implemented using
a backward Euler approximation of the integral involved
in (23). The numerical values used are: λ = 1, µ1 = 2,
µ2 = 1, q1 = q2 = 0.6 ρ1 = 0.9, ρ2 = 0.4, σ+−

1 =
σ+−
2 = 0.7, σ+

1 = 0, σ+
2 = 0.6, σ−−1 = 0.9, σ−−2 = 0.

These coefficients are chosen such that the PDEs system
is unstable in open-loop. Assumption 1 and Assumption 2
are obviously satisfied. Finally, we have checked during
the simulations that Assumption 3 was also satisfied. We
show in Figure 1 the evolution of the χ-norm of the system
for three different situations in presence of a delay of 0.2
seconds. In the first case, we have considered the ideal
situation of [13] where two actuations are available, one
acting at the boundary condition (4) (that we denote V1, i.e.
v1(t, 1) = ρ1u(t, 1) + V1(t)), the other one acting at the
boundary condition (4) (that we denote V2, i.e. v2(t, 1) =
ρ2u(t, 1) + V2(t)). To avoid robustness problems (see [14]
for details), we use these two control laws to cancel only the
integral terms in (6)-(7). As expected, the resulting control
system exponentially converges to zero. In the second case,
we consider the framework of Section II in which V2 is not
available anymore (V2 ≡ 0). We consider a naive approach,
where we would only use the control law V (t) ≡ V1(t) to
simply cancel the terms in (6). This implies V̄ = 0 and
that equation (7) remains unactuated. This strategy is not
convincing since the resulting closed-loop system diverges,
as one could expect due to the unstable nature of the open
loop dynamics. Finally, in the third case, we consider the
filtered control law Vf defined in (30) based on the new
original methodology developed in this paper. Such a control
law robustly stabilizes the system (2)-(4). The control efforts
for the first and the last strategies have been plotted in
Figure 2.

VII. CONCLUDING REMARKS

In this paper, we have developed a new and original
strategy to stabilize an underactuated PDEs system consisting
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Fig. 1. Evolution of the χ-norm of the closed-loop system with an input
delay of 0.2s for three different strategies: a) Two actuators available,
backstepping strategy [14], b) One actuator, naive backstepping strategy,
c) One actuator, filtered control law (30).
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Fig. 2. Evolution of the control effort for two different strategies a) Two
actuators available b) One actuator, filtered control law (30)

of one rightward-convecting transport PDE and two leftward-
convecting equations. A current limitation of the proposed
approach is that it requires a conservative assumption (As-
sumption 3) that guarantees the asymptotic stability of the
control chain. How to overcome such an assumption and how
to generalize the proposed approach to systems composed of
more than three equations are crucial questions which will
be the purpose of our next contributions.
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[2] B. Saldivar, S. Mondié, S.-I. Niculescu, H. Mounier, and
I. Boussaada, “A control oriented guided tour in oilwell
drilling vibration modeling,” Annual Reviews in Control,
vol. 42, pp. 100 – 113, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1367578816300888

[3] U. J. F. Aarsnes, M. S. Gleditsch, O. M. Aamo, A. Pavlov et al.,
“Modeling and avoidance of heave-induced resonances in offshore
drilling,” SPE Drilling & Completion, vol. 29, no. 04, pp. 454–464,
2014.

[4] J. de Halleux, C. Prieur, J.-M. Coron, B. d’Andréa Novel, and
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