
Implementation of the DCT transform with

application to the JPEG transform of test images

François Chaplais

April 16, 2012

1 DCT transform in 2-D

1.1 Theoretical result

We recall this first result

Proposition 1. The two dimensional DCT of m× n matrix A is the product

Â = CmAC
T
n (1)

where the matrix CN has elements

CN (k, r) = uk cos

(
π

N
k

(
r +

1

2

))
(2)

with u0 =
√

1
N and uk =

√
2
N for k > 0. The inverse DCT is computed by

A = CT
mÂCn (3)

1.2 Matlab exercise

The JPEG transform uses the DCT on blocks of 8 × 8 pixels, so it is profitable
to precompute CN for N = 8. In Matlab, write a script that compute C8 using
(2) and store the result as a variable named C8 in a file with the same name.
Be careful that Matlab starts its indices at 1.

Check that the transpose of C8 is indeed the inverse of C8 (if not, check your
script).

2 Getting images on the internet

An interesting set of images can be found at
http://sipi.usc.edu/database/ Of particular interest ar the
Lena image

1

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/download.php?vol=misc&img=4.2.04


and the
Mandrill image
because both have been used as benchmarks in image processing. These are

TIFF, uncompressed images. Download the two images. Each image is 791 KB
in size.

2.1 Importing into Matlab

Using the “Import Data...” item of the “File” menu, import the TIFF images.
Each one is imported as 256× 256× 3 array of 8 bit unsigned integers, i.e. each
pixel is coded on three values between 0 and 255. It is highly recommended
that you rename the variable to a more descriptive name. To display an image
, use the “figure” command and type

image(imageName);

axis image; % for correct aspect ratio

to display the image stored in the variable imageName.
Figure 1 shows the Lena image, and figure 2 shows tha Mandrill image.

Figure 1: The original Lena image, scanned in the 70’s. This probably explains
the lack of saturation in the image

2

http://sipi.usc.edu/database/download.php?vol=misc&img=4.2.03


Figure 2: The Mandrill image. The hairy face makes it a challenge for accurate
compression

2.2 Color conversion

JPEG uses the color space YCBCr, as the RGB space is very redundant. The Y
channel is the luminance channel and provides the grayscale version of a color
image. The Cb and Cr are chrominance channels.

The conversion from RGB to YCBCr is (up to truncation errors) given by Y
Cb
Cr

 =

 0.299 0.587 0.114
−0.1687 −0.3313 0.5
0.5 −0.4187 −0.0813

 R
V
B

+

 0
128
128

 (4)

The provided Matlab routine

[Y,Cb,Cr]=convertYCbCr(x)

performs the conversion.
The inverse transform is given by R

G
B

 =

 1.000 0 1.402
1.000 −0.34414 −0.71414
1.000 1.772 0

 Y
Cb− 128
Cr − 128

 (5)

3

http://en.wikipedia.org/wiki/YCbCr
http://cas.ensmp.fr/~chaplais/Wavelet_Matlab/resources/convertYCbCr.m


The provided Matlab routine

z=convertYC2RGB(Y,Cb,Cr)

performs this conversion.

2.2.1 Matlab exercise

You will convert the two image to grayscale images using the formula (4) and
keeping only the Y channel. The output will be a 256× 256 matrix of unsigned
8 bit integers. Name the new images “GrayLena” and “GrayMandrill”.

To preview the images (the GrayLena image for instance), type

figure; colormap(gray(256));image(GrayLena);axis image;

3 JPEG encoding

3.1 Block divide

The first task is to divide the grayscale images into blocks of 8 × 8 pixels.
Fortunately, the dimension of the images are multiple of 8, so we will not have to
pad the image with zeros. This means we will have an array of size 8×8×32×32.

3.1.1 Matlab exercise

Write a function that will split an matrix of size 256× 256 into an array of size
8 × 8 × 64 × 64. Name the function “splitImage”.

If the split version of the Lena Grayscale image is called splitLena, then
accessing the block of coordinates i,j is done by

myblock = splitLena(:,:,i,j)

3.2 Matlab exercise: Block DCT

Now use the C8 matrix to perform a block DCT on each of the split images.
Script this into a function called “blockDCT”. Remember: to address a block
in a split image, put colons into the 2 first coordinates.

3.3 Quantization

A quantization matrix for the JPEG encoding is

DCTQ =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 194 113 92
49 64 78 87 103 121 120 101
72 92 95 98 121 100 103 99


(6)

4

http://cas.ensmp.fr/~chaplais/Wavelet_Matlab/resources/convertYC2RGB.m


This quantization matrix can be multipied by a scaling factor r that will af-
fect the compression performance and the quality of the restored image after
decompression. Let T = r × DCTQ

The quantization step consists in replacing each element xi,j of an image
block by

yi,j = round

(
xi,j
Ti,j

)
(7)

3.3.1 Matlab exercise

Write a function named “JPEGquant” that takes as argument a scaling factor
r, the qantization matrix DCTQ and a block split DCT of an image to produce
the quantized block split image.

Note: the DCTQ matrix is stored in the matlab file “DCTQ.mat”, so you
can retrieve it by executing

load DCTQ;

3.4 Compression

It seems that Matlab does on the fly compression when saving .mat files. Let
us consider the original “GrayLena” array and the quantized DCT of it that
we have called “quantLena” (with r = 1). Both arrays take the same space
in Matlab’s workspace, i.e. 262144 uint8. However the “GrayLena.mat” file
takes 217 Kb on disk, its zipped version takes the same space, while the file
“quantLena.mat” takes 61 Kb of disk space, as its zipped version does.

In short, Matlab already compresses the .mat files. We can use another
approach with sparse matrices to store the JPEG encoding.

3.4.1 Matlab exercise

Write a function “sparseSave” with arguments the previous quantization and a
filename, that does the following:

• After the block DCT has been quantized, convert back with the “mergeIm-
age” as defined in section 4.3

• convert the result to double format

• use the sparse function to convert the matrix where zero entries are ignored

• save the sparse matrix to the disk. This will be useful for the tests.

5

http://cas.ensmp.fr/~chaplais/Wavelet_Matlab/resources/DCTQ.mat


4 JPEG decoding

4.1 Rescaling the data blocks

Remember that we have quantized the DCT by

yi,j = round

(
xi,j
Ti,j

)
To recover the DCT (up to the quantization), we have to modify each block
according to the formula

xi,j = yi,jTi,j (8)

where T is the quantization matrix DCTQ multiplied by the scaling factor r.

4.1.1 Matlab exercise

Write a function “rescaleQuant” which takes the same arguments as “JPEGquant”
and does the rescaling Do not forget to convert the input signal to double, as r
is double. The output is double.

4.2 Inverse DCT

The inverse DCT is computed with the same matrix CN .

Proposition 2.

Let CN as in proposition 1. Then the inverse DCT is given by

A = CT
N ÂCN (9)

4.2.1 Matlab exercise

Write a line of code that computes the inverse block DCT using the routine
“blockDCT”.

4.3 Merging the blocks

We need now to merge the reconstructed split image into a conventional im-
age. To do so, write a function “mergeImage” modeled after “splitImage” that
recombines the blocks. The output must be uint8.

5 Collecting the work

5.1 Grayscale JPEG

Write 2 functions, “JPEGencode” and “JPEGdecode” that performs the coding
and decoding with a scaling r.

Write a script that encodes an graysale image, decodes it and displays the
resulting image. Play with r to test the quality.

See figures 3, 4 and 5 for comparisions. Try the Mandrill image.

6



50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 3: The original grayscale Lena image. The file is 215490 bytes on disk

5.2 ColorJPEG

The compression scheme in the color space does not rely on the quantization of
the DCT, but rather on the similarity (or not) of the chrominance of neighboring
pixels. In that, it is very close in spirit to the Haar transform that we shall see
in wavelets. We will implement a Haar variant to compress the chrominance
signal.

After looking at the implementation of the wavelet transform, you will ap-
proximate (and later compress) color images the following way

• convert the image from RGB to YCbCr

• JPEG compress the Y channel by quantizing its DCT as explained before

• for each of the two Cb and Cr channel, perform a Haar decomposition
of the channels at 2 scales. The Haar filters are obtained by loading the
Daub2.mat file, and using two scales means that you are working on blocks
of 4 × 4 pixels.

• depending on a number n that you decide, you only keep the n largest

7



50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 4: The compressed Lena grayscale image with r = 1. The sparse matrix
file is 34405 bytes on disk.

wavelet coefficients. In the Haar basis, this means you keep only the
largest variations in chrominance, either from pixel to pixel, or from one
2 × 2 block of pixels to another.

• reconstruct the Cb and Cr channels from their wavelet transform

• combine the three channels to obtain an RGB image

This is very similar to the scheme in figure 6 that you will find on Wikipedia.
In figure 7 you will fing a color JPEG approximation of the Mandrill image.
Figure 8 shows the approximation of the Lena image with r = 2 and the others
parameters being the same as for the Mandrill image.

8



50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 5: The compressed Lena grayscale image with r = 4. The sparse matrix
file is 12855 bytes on disk.

Figure 6: The JPEG algorithm averages the chrominance of neighboring pixels
if the deviation is not too large. This is similar to a nonlinear approximation in
the Haar basis.

9



JPEG color approximation

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 7: A color approximation of the Mandrill image. The grayscale r pa-
rameter has been set to 4. On the color channels, only 1 out of 20 Haar wavelet
coefficients have been kept (meaning the other have been set to zero). Setting a
wavelet coefficient to zero means that you neglect the variations between neigh-
boring blocks of pixels. In practice, this means that the size of the color channel
images has (potentially) been divided by 20.

10



JPEG color approximation

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 8: A color approximation of the Lena image. The grayscale r param-
eter has been set to 2. On the color channels, only 1 out of 20 Haar wavelet
coefficients have been kept (meaning the other have been set to zero).

11


	1 DCT transform in 2-D
	1.1 Theoretical result
	1.2 Matlab exercise

	2 Getting images on the internet
	2.1 Importing into Matlab
	2.2 Color conversion
	2.2.1 Matlab exercise


	3 JPEG encoding
	3.1 Block divide
	3.1.1 Matlab exercise

	3.2 Matlab exercise: Block DCT
	3.3 Quantization
	3.3.1 Matlab exercise

	3.4 Compression
	3.4.1 Matlab exercise


	4 JPEG decoding
	4.1 Rescaling the data blocks
	4.1.1 Matlab exercise

	4.2 Inverse DCT
	4.2.1 Matlab exercise

	4.3 Merging the blocks

	5 Collecting the work
	5.1 Grayscale JPEG
	5.2 ColorJPEG


