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Abstract. This paper presents the role of vector relative degree in the formulation of stationarity
conditions of optimal control problems for affine control systems. After translating the dynamics into a
normal form, we study the Hamiltonian structure. Stationarity conditions are rewritten with a limited
number of variables. The approach is demonstrated on two and three inputs systems, then, we prove
a formal result in the general case. A mechanical system example serves as illustration.
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1. Introduction

Geometric tools of nonlinear control theory [22,32] have long been used for feedback linearization of control-
affine systems. The induced changes of variables readily solve the inverse problems of computing inputs corre-
sponding to a prescribed behavior of outputs. In the context of these inverse problems, trajectory optimization
is often important, especially in applications. For that purpose, two families of numerical techniques are com-
monly used (see [42]). The direct methods imply a discretization of the optimal control problem, yielding a
nonlinear program (NLP). On the other hand, indirect methods (a.k.a. adjoint methods) are based on the solu-
tion of necessary conditions for optimality, as derived by the calculus of variations. While direct methods have
been the workhorse of control engineers [6, 7, 20, 21], indirect methods are usually reported to produce higher
accuracy solutions, although being relatively instable. Both approaches can be cascaded to take advantages of
these properties (see [11,38,39,42]).

Inversion has lately been used in direct methods of numerical optimal control. The numerical impact of the
relative degree (as defined in [22]) of the output chosen to cast the optimal control problem into a NLP was
emphasized in [25, 34]. Given the system dynamics and an optimal cost, it was shown how to take advantage
of the geometric structure of the dynamics to reduce the dimensionality of a numerical collocation scheme. In
general collocation methods, coefficients are used to approximate with basis functions both states and inputs [21].
While it was known since [37] that it is numerically efficient to eliminate the control, it was emphasized in [25,34]
that it is possible to reduce the problem further. Choosing outputs with maximum relative degrees is the key to
efficient variable elimination that lowers the number of required coefficients (see for example [30]). In differential
equations, constraints, and cost functions, unnecessary variables are substituted with successive derivatives of
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the chosen outputs. For that reason, it is a smart choice to represent these outputs with basis functions that can
be easily differentiated. A prime example are B-splines functions as in the software package NTG [27]. Other
possibilities, such as Legendre pseudospectral differentiation, or Chebyshev approximations of the derivatives are
presented in [36] and [15,16] respectively. When combined to a NLP solver (such as NPSOL [20] for instance),
this can induce drastic speed-ups in numerical solving [2, 27, 29, 41]. The best-case scenario is full feedback
linearization (as implied by flatness [18, 19]) considered theoretically, numerically in [17, 31, 33, 35, 40], and in
practice in [26].

In this paper, we focus on indirect methods. In this framework, we show how to use the geometric structure of
the dynamics. In [14], we addressed the case of single-input single-output (SISO) systems with a n-dimensional
state. We emphasized that r the relative degree of the primal system also plays a role in the adjoint (dual)
dynamics. The two-point boundary value problem (TPBVP) can be rewritten by eliminating many variables.
Only n − r variables are required. In the case of full feedback linearisability, the primal and adjoint dynamics
take the form of a 2n-degree differential equation in a single variable: the linearizing output. The adjoint
variables are computed and eliminated. In this paper, we address the general case of multi-inputs multi-outputs
(MIMO) systems. We note n the dimension of the state, m the number of inputs, and r the total relative
degree (see Definition 1). The proposed results encompass the SISO case but, not surprisingly, requires more
in-depth investigations of stationarity conditions. The system under consideration may only be partly feedback
linearizable (i.e. may have a zero dynamics). The main contribution of the paper is the derivation of a 2n
dimensional necessary state space form equation for the primal and adjoint dynamics using a reduced number
of variables (m+ 2(n− r)). Adjoint states corresponding to the linearizable part of the dynamics are explicitly
computed and eliminated from stationarity conditions.

The article is organized as follows. In Section 2, we present an introductory example to stress main noticeable
points and motivate our approach. The classic forced van der Pol system is considered. Adjoint variables are
eliminated from the TPBVP. After a numerical resolution with a standard software package, the adjoint variables
are analytically recovered. This yields a straightforward computation of neighboring extremals (as defined in [9])
and provides answers to post optimal analysis. Interestingly, these results do not really depend on the numerical
method used to compute primal variables optimal trajectories: both direct and indirect methods can be used.
In any case, the adjoint variables can be derived through stationarity conditions. The main method of adjoint
variables recovery and elimination is illustrated by this simple example: the key is to iteratively differentiate
the stationarity relation of the Hamiltonian with respect to the control variables. Numerical experiments are
reported to illustrate the relevance of our approach. More generally, in Section 3, we define a Lagrange optimal
control problem for which we aim at proving a general result. Recalling the Weak Minimum Principle, we detail
stationarity conditions involving high derivative orders of linearizing outputs. We use a normal form obtained
by feedback linearization. Elimination of adjoint variables corresponding to the linear part of the normal form
is explained in Lemma 1. Substitutions in stationarity conditions of the Hamiltonian yield high order necessary
differential equations for the linearizing outputs. These give Theorem 2. Further, it is possible to lower orders of
this set of necessary differential equations by more in-depth investigations. Sequentially, elimination of variables
is performed in Section 4. Eventually, this procedure yields the desired 2n dimensional state space form system
in m+2(n−r) variables. To provide a direct reading of the proposed approach, two cases of practical interest are
detailed (two and three inputs systems respectively). We address the general case in Theorem 3. In Section 5,
we illustrate the proposed approach with a mechanical system example. Finally, we give conclusions and future
directions of our work in Section 6.

2. Introductory example and motivation

2.1. Three approaches to an example from the literature

In this section, we want to stress some noticeable points in optimal control problems that can be rewritten
under a normal form. We consider the classic forced van der Pol Problem that served as a benchmark problem
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in [15,27,35]. The dynamics of this single input cascade system is

ẋ1 = x2 (1)

ẋ2 = −x1 + (1− x2
1)x2 + u (2)

The optimal control problem we consider is the following

Problem 1. Minimize the quadratic cost function J = 1
2

∫ 5

0
(x2

1(s)+x
2
2(s)+u

2(s))ds subject to the dynamics (1,2)
and the endpoint constraints x1(0) = 1, x2(0) = 0, x2(5)− x1(5) = 1.

The dynamics is flat, and feedback linearizable by static feedback. Indeed, z1 = x1 is a linearizing output.
This means that the state variables and the control write in terms of x1 and its derivatives. Here, we have
x2 = ẋ1, and u = ẍ1 +x1− (1−x2

1)ẋ1. There is a one-to-one relationship between the trajectories of the system
t 7→ (x1, x2, u)(t) and the trajectories of t 7→ x1(t) through these last relations. A first possibility to solve
problem 1 by taking advantage of this trajectory correspondance is to follow the approach presented in [27]:
cast the optimal control problem into a high order problem in the x1 variable. This leads to the following
solution method.

Solution method 1 ( [27]). Use a collocation method to minimize the cost function J = 1
2

∫ 5

0
(x2

1(s)+(ẋ1)2(s)+
(ẍ1 +x1− (1−x2

1)ẋ1)2(s))ds subject to the endpoint constraints x1(0) = 1, ẋ1(0) = 0, ẋ1(5)−x1(5) = 1. Finally,
recover u = ẍ1 + x1 − (1− x2

1)ẋ1 once the optimal trajectory x1 is found.

This solution method can be implemented in a very efficient algorithm, because only a single variable is used.
The trajectories of x1 are chosen in a set of B-splines functions. The derivatives are analytically computed and
the cost function is approximated by quadrature formulas. This leads to a nonlinear programming problem that
can be solved by a NLP software package (such as NPSOL [20]).

We can also use an indirect approach and derive a two point boundary value problem (TPBVP). For that
purpose, we note the Hamiltonian

H =
1
2
(x2

1 + x2
2 + u2) + λ1x2 + λ2(−x1 + (1− x2

1)x2 + u)

and derive the adjoint equations

λ̇1 = − ∂H
∂x1

= − (x1 − λ2 − 2λ2x1x2) (3)

λ̇2 = − ∂H
∂x2

= −
(
x2 + λ1 + λ2(1− x2

1)
)

(4)

This approach yields the following solution

Solution method 2. Solve the four dimensional TPBVP (1, 2, 3, 4) with boundary conditions x1(0) = 1, x2(0) =
0, x2(5) − x1(5) = 1, λ1(5) + λ2(5) = 0. Recover u from the relation ∂H

∂u = 0, i.e. u = −λ2, once the optimal
trajectory is found.

Here, numerous numerical approaches can be used among which are collocation (as in the Matlab routine
bvp4c), and shooting techniques (see [10] for instance). In that solution method, we have 4 unknowns. Yet, it
is possible to derive another TPBVP involving only a single variable. Solving the two stationarity equations
∂H
∂u = 0 and d

dt
∂H
∂u = 0, we get analytic expressions for the adjoint variables in terms of x1 and its derivatives

λ1 = x
(3)
1 + 2x1ẋ

2
1 +

(
x1 − (1− x2

1)ẋ1

)
(1− x2

1) (5)

λ2 = −x(2)
1 − x1 + (1− x2

1)ẋ1 (6)
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Then, one can substitute the expression for λ1 and λ2 into the differential equation (3) to get a fourth order
differential equation to be satisfied by the linearizing output. Eventually, rewriting the boundary conditions of
problem 1 yields the following approach.

Solution method 3. Solve the fourth order TPBVP

x
(4)
1 = −2ẋ3

1 − 6x1ẋ1ẍ1 − (2x1ẋ
2
1 − (1− x2

1)ẍ1)(1− x2
1)− 2x1 − ẍ1

with boundary conditions

x1(0) = 1, ẋ1(0) = 0, (ẋ1 − x1) (5) = 1(
x

(3)
1 − x3

1 + 2x1ẋ
2
1 + (1− x2

1)x
2
1ẋ1 − ẍ1

)
(5) = 0

Then, recover u = ẍ1 + x1 − (1− x2
1)ẋ1 once the solution is found.

So far, we have reduced the number of unknown variables to 1. Instead of x1, x2, λ1, λ2 and u, only x1 needs
to be considered both in the differential equations to be satisfied by optimal trajectories, and in the boundary
conditions. Solving this last TPBVP can be done with many numerical solvers, e.g. the above mentioned
Matlab routine bvp4c. Results are comparable to those obtained with solution method 1 in [27] and [35]. The
obtained cost is 1.68568.

2.2. Post-optimal analysis

Now, it is interesting to notice that no matter which solution technique (1 or 2 or 3) is used to compute
optimal trajectories, we can recover the optimal adjoint variables histories through (5,6) without any kind of
integration or differential equation solving. The reason for this is that the adjoint states λ1 and λ2 write in
terms of the linearizing output through (5) and (6).

From here, post-optimal analysis and neighboring extremal computations can be performed by considering
the following time-varying matrices

fx =
(

0 1
−1− 2x1x2 1− x2

1

)
, fu = (0 1)T , Huu = 1, Hux = 0, Hxx =

(
1− 2λ2x2 −2x1λ2

−2x1λ2 1

)
,

A = fx, B = fuH
−1
uu f

T
u , C = Hxx

Consider a perturbation in the state δx and a revision in the terminal condition δψ. The perturbed TPBVP
dynamic is

δ̇x = A(t)δx−B(t)δλ

δ̇λ = −C(t)δx−AT (t)δλ

This can be readily solved by a backward sweep method (see [9]) for which we must consider

Ṡ = SBS − SA−ATS − C, Ṙ = −ATR+ SBR , Q̇ = RTBR

with boundary conditions S(5) =
(

0 0
0 0

)
, R(5) =

(
−1
1

)
, Q(5) = 0. Solving these equations backward

in time gives the perturbation feedback control law

δu = −Huu

(
Hux + fTu (S −RQ−1RT )

)
δx−H−1

uu f
T
u RQ

−1δψ
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Figure 1. Solution to an optimal control problem for the van der Pol system. Optimal state,
control and adjoint variables are computed from x1 and its derivatives.

For example, one can easily compute δu(0)/δx(0) = −0.4336, and the partial derivative of the optimal cost
value with respect to a change of initial condition is (2.377 0.388).

Of course, we derived the preceding results in a straightforward manner. This was for sake of motivation.
Our conclusion here is that the optimal history of the linearizing output x1 actually carries a lot of information:
histories of adjoint variables and, consequently, information about neighboring extremals, closed loop approxi-
mate optimal control, and post optimal analysis. One can wonder how general this property is. In the Section 3
and Section 4, we actually prove similar results in general multivariable cases.

2.3. Increase in accuracy

2.3.1. Theoretical aspects

We would like to mention that some significant impact on convergence of numerical solvers dedicated to
the approach we advocate can be expected. In [5, section 5.6] numerical schemes for solving boundary value
problems for high order differential equations are studied. A collocation scheme is proposed along with various
implementations. A first convergence result for linear boundary value problems is proven. We note p the
regularity of the coefficients of the linear differential system, and m its order. Approximate solutions are sought
after among piecewise polynomials of degree k +m. There are k collocation points, and h corresponds to the
mesh size. Under an orthogonality condition on the collocation points, the following error estimates are derived
in [5, theorem 5.140]. At the mesh points xi

|u(j)(xi)− u(j)
π (xi)| = O(hp), O ≤ j ≤ m− 1 (7)

where u is the exact solution of the BVP problem and uπ is the approximate solution obtained through the
collocation scheme for the high order system. Outside the mesh points, we have

|u(j)(x)− u(j)
π (x)| = O(hk+m−j) +O(hp), O ≤ j ≤ m− 1 (8)
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Interestingly, if we choose to use the proposed collocation method on an equivalent state space form, (7) remains
unchanged, but (8) is replaced by

|y(x)− yπ(x)| = O(hk+1) +O(hp) (9)
where y (resp. yπ) is the exact (resp. approximate collocation) solution of the equivalent state space form
BVP (y is the concatenation of the derivatives of u from order 0 to m − 1 see [5, pages 220-222]). In terms
of convergence, the upper bound of (8) is better than (9). If p is large enough, we see that the collocation
method for the high order system is more accurate than the collocation method for the state space form at
points outside the mesh.

These approaches are then extended to the nonlinear case using quasi-linearization and a Newton method to
solve the nonlinear problem. Roundoff errors depend on which functions basis is used for collocation. This is
beyond the scope of this remark; interested readers can refer to [5, section 5.6.4].

2.3.2. Numerical investigations

For sake of illustration, we present an optimal control example which possesses an analytical solution. In this
problem of optimal investment (see [24] for original problem formulation), it is desired to optimize the following
cost

J =
∫ T

0

exp(−βt)2
√
udt

under the dynamical constraint
ẋ = αx− u

with fixed boundary conditions

x(0) = S, x(T ) = 0 (10)

where T > 0, S > 0, α > β > α/2. The analytic solution to this problem is

x(t) = S exp (2(α− β)t)
1− exp ((α− 2β)(T − t))

1− exp ((α− 2β)T )

Following solution method 3, we determine the higher order differential equation to be satisfied by optimal
solutions

ẍ = αẋ− 2(β − α)(αx− ẋ) (11)

while the control and the adjoint state can be recovered as

u = αx− ẋ, λ =
exp (−βt)√
αx− ẋ

The two point boundary value problem (11), (10) can be numerically treated with the Scilab implementation
bvode of the Fortran package colnew (see [3, 5]) for the numerical solution of multi-point boundary value
problems for mixed order systems of ordinary differential equations. This routine has the possibility to directly
address higher order differential equation. It can also deal with a set of first order equations. To illustrate the
improvement in accuracy obtained when using higher order equations, we decide to solve (11), (10) under the
form of the derived second order equation (11), and, separately, under the form of two first order equations.
Results are reported in Figure 2. Mesh is automatically refined by the solver to satisfy contraints (including
collocation constraints) within a user-specified tolerance. The final mesh size is reported on the x-axis (log(h))
of Figure 2. Afterwards, we evaluate the difference between the analytic solution and the obtained result over
a very fine grid (much finer than the solver mesh). This error is reported on the y-axis (log(error)) of Figure 2.
The observed results are in great accordance with Equations (8) and (9). Here, α = 2, β = 4/3, S = 1, T = 1,
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Figure 2. Testing the accuracy of a first order method versus a higher order approach (optimal
investment problem).

k = 2, m = 2, p = ∞. Numerical fits of log(error) as an affine function of log(h) provide slopes of 2.9452 and
3.8305, for first order and second order methods respectively. Other values for k provide consistent results 1.
These are very close to the theoretical values of 3 and 4 that are given by Equations (9) and (8). In theory and
in practice on this example as well, accuracy is improved by using higher order equations instead of first order
equations.

2.4. Numerical comparisons with other approaches

Finally, we propose here to investigate the computational impact solving the two boundary value problem
under the proposed higher order form. For that purpose, we consider the above presented forced van der Pol
problem. Separately, we test solution technique 1 with the NTG software package [25], and solution technique 3
with the Scilab bvode routine (presented in Section 2.3.2). Two cases are considered. Successively, the bvode
routine uses a formulation of the two point boundary value problem (presented in solution method 3) under the
form of 4 first order differential equations or under the form of the single fourth order differential equation. In
summary, we use three different approaches to the same problem.

Results are reported in Table 1, Table 2, and Table 3, respectively. For each computed solution, a numerical
integration using a Runge-Kutta scheme is carried out using a control evaluated over a fine grid. The purpose
of this is to come with a fair (and method independent) comparison of obtained cost values and constraints
violations. The quality of a method is summarized by these recomputed values. Tests were conducted on a
2 GHz Pentium M computer.

While, roughly speaking, all the methods converge to similar solutions and comparable cost values, several
points should be noted. The higher order method outperforms the other two in terms of memory usage, CPU
time and accuracy.

1It shall be noted that at very high values, such as k = 7, round off errors become dominant for mesh size under 1/4.
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Found optimal cost 1.6857621 1.6857371
Re-computed cost value 1.6857452 1.6857107
CPU time (ms) 9.1 120
Memory usage (floats) 137000 310000
Number of intervals 10 30
Re-computed constraints violation 2.70E-06 2.89E-07

Table 1. Numerical results obtained with solution technique 1.

Found optimal cost 1.6856685 1.6856832 1.6856832 1.6856832
Re-computed cost value 1.6856825 1.6856834 1.6856829 1.6856832
CPU time (ms) 15.9 19.7 27.1 41.7
Memory usage (floats) 3465 5775 10395 19635
Number of intervals 2 4 8 16
Requested tolerance 1.00E-04 1.00E-05 1.00E-07 1.00E-09
Re-computed constraints violation -1.86E-06 -2.53E-07 -2.78E-07 -2.02E-07

Table 2. Numerical results obtained with solution technique 3 using 4 first order differential equations.

Found optimal cost 1.6856842 1.6856841 1.6856841 1.6856841
Re-computed cost value 1.6856834 1.6856829 1.6856832 1.6856832
CPU time (ms) 6.2 9.0 16.6 26.8
Memory usage (floats) 630 1050 1890 3570
Number of intervals 2 4 8 16
Requested tolerance 1.00E-03 1.00E-04 1.00E-06 1.00E-07
Re-computed constraints violation -9.54E-08 -6.37E-07 -7.00E-08 -2.15E-07

Table 3. Numerical results obtained with solution technique 3 using the single 4th order
differential equation.

With similar or better values for the obtained cost and the constraints violation, the reduction in memory
usage is due to the fact that only a single variable need to be considered in the higher order approach. The
relatively high memory space required by the NTG software package is due to the call to the external NPSOL
solver used for solving the SQP problem which is comparatively more memory demanding.

The reduction in CPU time is important. The method using the high order TPBVP can provide accurate
solutions faster than NTG2. Besides, the higher order method is constantly faster than the corresponding first
order method as accuracy requirements become more stringent.

Finally, the higher order method appears as the most accurate of the three methods. Comparisons is par-
ticularly relevant with the first order method. Constraints violations is lower while requested tolerance can be
relaxed.

2It must be noticed that this method (as-is) can not address interval state constraints, while NTG can.
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3. Normal form and high order stationarity conditions

3.1. Problem statement and feedback linearization

Consider a multivariable control-affine system

ẋ = f(x) +
m∑
i=1

gi(x)ui (12)

where f(x), g1(x), ..., gm(x) are smooth vector fields Rn → Rn, m ≤ n. We note g(x) = [g1(x)...gm(x)]. First,
we are interested in putting it into a normal form. For that reason, we consider m smooth functions Rn → R

ξ1 = h1(x), ..., ξm = hm(x) (13)

and investigate the vector relative degree defined as follows (where L is the Lie derivative)

Definition 1 ( [13]). A system of the form (12, 13) is said to have vector relative degree {r1, r2, ..., rm} at x0 if

Lgjhi(x) = ... = LgjL
ri−2
f hi(x) = 0

for all 1 ≤ i, j ≤ m and all x in a neighborhood of x0, and the matrix

A(x) = {aij(x)} = {Lgj
Lri−1
f hi(x)}

is nonsingular at x = x0.
Further, this system is said to have uniform relative degree {r1, r2, ..., rm} if it has vector relative degree

{r1, r2, ..., rm} at all x ∈ Rn. The sum r = r1 + ...+ rm is called total relative degree.

We assume having such uniform relative degree. We note, for all 1 ≤ j ≤ ri, 1 ≤ i ≤ m

ξji (x) = Lj−1
f hi(x)

and the mapping H : Rn → Rr defined by

H(x) = col
(
ξ11(x)...ξr11 (x)...ξ1m(x)...ξrm

m (x)
)

(14)

Set

f̃ = f − gA−1(x)

 Lr1f h1(x)
...

Lrm

f hm(x)


g̃ = gA−1(x) , [g̃1(x)...g̃m(x)]

The following result directly arises from [23][pp 109–118]

Theorem 1. Suppose system (12, 13) has uniform relative degree {r1, ..., rm} and set r = r1 + ...+ rm. Suppose
Z∗ = H−1(0) is non empty (where H is defined by (14)). Suppose the vector fields

Y kj (x) = adk−1

f̃
g̃j , 1 ≤ j ≤ m, 1 ≤ k ≤ rj

are complete. Then Z∗ is connected and there is a globally defined diffeomorphism Υ : Rn → Z∗ × Rr which
changes (12) into the following normal form (15, 16), with X , (ξ11 , ...ξ

r1
1 , ξ

1
2 , ...ξ

r2
2 , ..., ξ

1
m, ...ξ

rm
m , η)T ∈ Rn,
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η , (η1, ..., ηq)T ∈ Rq with q = n− r, and v , (v1, ..., vm) ∈ Rm

dξ1i
dt

= ξ2i , ...,
dξri
i

dt
= Lri

f hi +
m∑
j=1

aijuj , vi (15)

dηj
dt

= αj(X) +
m∑
i=1

βji (X)vi = Bj(X, v) (16)

where αj and βji are smooth Rn → R mappings, for all j = 1, ..., q, and i = 1, ...,m.

In the previous normal form, we performed a feedback linearization vi = Lri

f hi+
∑m
j=1 aijuj . This substitution

is invertible since A is nonsingular by assumption.
It is now assumed we want to solve a Lagrange optimal control problem, originally of the form∫ T

0

L(x(t), u(t))dt

where x and u satisfy (12). In this expression, [0, T ] is a fixed time interval and L is a smooth real valued function
whose Hessian with respect to u is definite positive. Without loss of generality, infinite horizon, terminal cost,
initial or final general constraints could be considered as well but remain out of the scope of the paper.

We now cast this problem into the newly defined variables X, and v (see Theorem 1). The following
proposition details a set of necessary conditions to be satisfied by optimal controls. We use them in the rest of
the paper.

Proposition 1 (Weak Minimum Principle [8]). Consider the system Ẋ = f0(X(t), v(t)) (f0 being a C∞

mapping) where v(.) ∈ V = L∞([0, T ]) and the minimisation problem: minv(.)∈V
∫ T
0
L(X(t), v(t))dt where T

and the extremities X0, X1 are fixed (L being C1). If v∗ and its corresponding trajectory X∗ are optimal and
correspond to a normal case in the calculus of variations (i.e. v(.) is regular for the system Ẋ(t) = f0(X(t), v(t)),
see [8][p 43] for details3), then there exists p∗(t) ∈ Rn such that (X∗, p∗, v∗) satisfies

Ẋ∗(t) =
∂H

∂p
(X∗(t), p∗(t), v∗(t)) (17)

ṗ∗(t) = −∂H
∂X

(X∗(t), p∗(t), v∗(t)) (18)

∂H

∂v
(X∗(t), p∗(t), v∗(t)) = 0 (19)

where H = L(X, v) + pT f0(X, v).

These results and their included hypothesis lead us to consider the following optimal control problem used
throughout the rest of the paper

Definition 2. [Optimal control problem definition] Let the multivariable control system under normal form
(15, 16) Ẋ = f0(X(t), v(t)) (f0 being a C∞ mapping) where v(.) ∈ V = L∞([0, T ]). It is desired to solve
the optimal control problem: minv(.)∈V

∫ T
0
L(X(t), v(t))dt where T and the extremities X0, X1 are fixed, and

3We restrict ourselves to these normal extremals. Computations of abnormal extremals is known to be a very difficult task and

those may even be not optimal. One can refer to [1, 28] for further details and discussions.
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L : Rn+m → R is a C2 mapping whose Hessian is assumed to be positive definite 4 with respect to v:(
∂2L
∂v2

)
> 0 (20)

Because the control system is in normal form, the Hamiltonian H has a very particular expression

H = L(X, v) +
m∑
i=1

ri−1∑
j=1

λji ξ
j+1
i +

m∑
i=1

λri
i vi +

q∑
j=1

µjBj(X, v)

where λ , (λ1
1, ..., λ

r1
1 , ..., λ

1
m, ..., λ

rm
m )T represents the adjoint states related to the cascade dynamics (15) and

µ , (µ1, ..., µq)T corresponds to the zero dynamics (16). Thus, the stationarity adjoint equations (18) write

dλ1
i

dt
= − ∂L

∂ξ1i
−

q∑
j=1

µj
∂Bj
∂ξ1i

, i = 1 . . . p (21)

dλji
dt

= −λj−1
i − ∂L

∂ξji
−

q∑
k=1

µk
∂Bk
∂ξji

, i = 1 . . . p , j = 2 . . . ri (22)

dµj
dt

= − ∂L
∂ηj

−
q∑

k=1

µk
∂Bk
∂ηj

, j = 1 . . . q (23)

Stationarity of the Hamiltonian. Using (16), stationarity equations (19) of the Hamiltonian with respect
to the control variables yield, for i = 1...m

∂H

∂vi
=
∂L
∂vi

+ λri
i +

q∑
j=1

µjβ
j
i (X) = 0 (24)

This equation can be differentiated to get a high order system of differential equations implying only the variables
ξ1i , i = 1 . . .m, η, and µ. For sake of simplicity, we now note ξi , ξ1i . In particular, we have ξ(j−1)

i = ξji and
ξ
(ri)
i = vi.

3.2. Obtaining a higher order differential system

Lemma 1. Let i ∈ {1 . . .m} such that ri ≥ 2. For j = 1 . . . ri − 1, there exists a function Gji from R2n−r+mj

to R such that

dj

dtj
∂H

∂vi
=

m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+j)
k + (−1)jλri−j

i +Gji (η, µ, . . . , ξl . . . ξ
(rl+j−1)
l , . . .) (25)

where l is a running index ranging from 1 to m.

Proof. We start the proof with j = 1. To that end, we differentiate (24). First, we have

d

dt

∂L
∂vi

=
m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+1)
k +

m∑
k=1

rk∑
j=1

∂2L
∂vi∂ξ

j
k

ξ
(j)
k +

q∑
l=1

∂2L
∂vi∂ηl

Bl(X, . . . ξrk

k . . .)

4Interestingly, the reader may notice that this assumption holds if in the coordinates (x, u) the cost to be minimized isR T
0 L(x, u)dt with L having a positive definite Hessian with respect to u. Indeed, the linearizing affine change of coordinates

vi = L
ri
f hi +

Pm
j=1 aijuj yields the matrix equality

“
∂2L
∂v2

”
= (A−1)T

“
∂2L
∂u2

”
A−1 > 0.
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which is of the form
d

dt

∂L
∂vi

=
m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+1)
k + γ1

i (η, . . . , ξl . . . ξ
(rl)
l , . . .) (26)

where γ1
i is a function from Rn+m to R. From (22) with j = ri, we get

dλri
i

dt
= −λri−1

i − ∂L
∂ξri
i

−
q∑

k=1

µk
∂Bk
∂ξri
i

which, with k a running index ranging from 1 to m, writes under the form

dλri
i

dt
= −λri−1

i + γ̄1
i (η, µ, . . . , ξk . . . ξ

(rk)
k , . . .) (27)

where γ̄1
i is a function from R2n−r+m to R. The right hand side of (23) involves only µ, X and v. In other

words, it is some function of the variables (η, µ, . . . , ξk . . . ξ
(rk)
k , . . .). Similarly, the total derivative of βji (X)

expresses in terms of X, and v. Finally, d
dt

∑j=q
j=1 µjβ

j
i (X) is of the form

d

dt

q∑
j=1

µjβ
j
i (X) = ¯̄γi1(η, µ, . . . , ξk . . . ξ

(rk)
k , . . .) (28)

where ¯̄γi1 is a function from R2n−r+m to R. According to (24), summing up (26), (27), and (28) provides us
with an expression of d

dt
∂H
∂vi

and defines the sought after Gji . This proves (25) for j = 1. The induction goes
pretty much along the same lines. Assume that (25) holds for some j < ri − 1. The differentiation involves
three terms. The derivative of the first term is of the form

d

dt

m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+j)
k =

m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+j+1)
k + γj+1

i (η, . . . , ξl . . . ξ
(rl+j)
l , . . .) (29)

where γj+1
i is a function from Rn+m(j+1) to R. The second term is given by the adjoint equation (22) which,

since ri − j ≥ 2, is
d

dt
λri−j
i = −λri−j−1

i − ∂L
∂ξri−j
i

−
q∑

k=1

µk
∂Bk
∂ξri−j
i

This term is of the form

d

dt
λri−j
i = −λri−(j+1)

i + γ̄j+1
i (η, µ, . . . , ξk . . . ξ

(rk+j)
k , . . .) (30)

where γ̄j+1
i is a function from R2n−r+m(j+1) to R. Finally, the last term d

dtG
j
i is trivially of the form

d

dt
Gji (η, µ, . . . , ξk . . . ξ

(rk+j−1)
k , . . .) = ¯̄γj+1

i (η, µ, . . . , ξk . . . ξ
(rk+j)
k , . . .) (31)

where ¯̄γj+1
i is a function from R2n−r+m(j+1) to R. Putting together (29), (30), and (31) gives the expression of

Gj+1
i . This proves the induction and concludes the proof. �

We now prove that ξ1 . . . ξm satisfy a set of differential equations in which none of the components of λ
appears.
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Theorem 2. For i = 1 . . .m, there exists a function Gi from R2n−r+mri to R

Gi(η, µ, . . . , ξl . . . ξ
(rl+ri−1)
l , . . .)

where l is a running index ranging from 1 to m, such that

m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+ri)
k +Gi(η, µ, . . . , ξl . . . ξ

(rl+ri−1)
l , . . .) = 0 (32)

Together with (16) and (23), these equations are a set of differential equations on ξi, i = 1, ...,m, η and µ from
which the λji , i = 1, ...,m, j = 1, ..., rm, have been eliminated.

Proof. We start with the particular case ri = 1. Stationarity of the Hamiltonian reads

∂H

∂vi
=
∂L
∂vi

+ λ1
i +

q∑
j=1

µjβ
j
i (X) = 0 (33)

Differentiating this expression with respect to time gives rise to three groups of terms. The first term is

d

dt

∂L
∂vi

=
m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+1)
k +

∂2L
∂vi∂X

dX

dt
(X, v)

which is of the form
m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+ri)
k + γi(η, µ, . . . , ξl . . . ξ

(rl+ri−1)
l , . . .) (34)

where γi is from R2n−r+mri to R. The second term is

dλ1
i

dt
= − ∂L

∂ξ1i
−

q∑
j=1

µj
∂Bj
∂ξ1i

which comes from the adjoint equation (21) and is of the form

γ̄i(η, µ, . . . , ξk . . . ξ
(rk)
k , . . .) (35)

where γ̄i is from R2n−r+m to R. Finally, differentiation of µjβ
j
i (X) yields a term of the form

¯̄γi(η, µ, . . . , ξk . . . ξ
(rk+ri−1)
k , . . .) (36)

where ¯̄γi is from R2n−r+mri to R. Summing up expressions (34), (35) and (36) defines Gi and gives the desired
expression (32).

Now, let us turn to the case ri ≥ 2. From Lemma 1 with j = ri− 1, we know that there exists a function Gji
from R2n−r+m(ri−1) to R such that

k=m∑
k=1

∂2L
∂vi∂vk

ξ
(rk+ri−1)
k + (−1)jλ1

i +Gji (η, µ, . . . , ξk . . . ξ
(rk+ri−2)
k , . . .) = 0

Following the computations presented for the case ri = 1, we can easily figure out that the differentiation of λi1
makes the adjoint state λ disappear. Eventually, we get equation (32). �
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4. High order stationarity conditions under state space form

Obtaining a differential system where the highest order derivatives of the variables are explicit functions
of their lower derivatives, i.e. a state space form, is important for two reasons. First (and obviously), state
space methods can be used to solve the boundary value problem. Moreover, the methods used to solve higher
order differential systems (such as those presented in [4,5]) require such an explicit formulation. In this section,
we prove that the differential equations (32,16,23) of Theorem 2 can be used to define a state space form set
of differential equations involving a reduced number of variables, namely (ξ1, ...ξm), η and µ. This result is
demonstrated on two cases of particular interest (m = 2 and m = 3), and, eventually, proven in the general
case m > 1. In the case m=1, (32) already has a state space form. Specific comments can be found in [14].

4.1. Two inputs systems

If r1 = r2 = r, noting that the Hessian (20) is invertible, we obtain a state space form by solving system (32)
which is linear with respect to ξ(2r)1 and ξ(2r)2 . More generally, we now assume r1 > r2. Under this assumption,
system (32) is not under state space form. Indeed, from Theorem 2, we have

∂2L
∂v2

1

ξ
(2r1)
1 +

∂2L
∂v1∂v2

ξ
(r1+r2)
2 +G1(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(r1+r2−1)
2 ) = 0 (37)

∂2L
∂v1∂v2

ξ
(r1+r2)
1 +

∂2L
∂v2

2

ξ
(2r2)
2 +G2(η, µ, ξ1 . . . ξ

(r1+r2−1)
1 , ξ2 . . . ξ

(2r2−1)
2 ) = 0 (38)

where G1 is from R2n−r+2r1 to R and G2 is from R2n−r+2r2 to R. In the previous equations, the highest orders
of differentiation of ξ1 and ξ2 appear only in equation (37), because r1 > r2. This does not provide a direct
extraction of these highest orders of differentiation terms from (37) and (38). In fact, the highest order of
differentiation in ξ2 in equation (37) can be eliminated thanks to (38) and its time derivatives. As a result (see
following proof and its development which leads to Proposition 2), one can obtain a state space form of order
2r1 with respect to ξ1 and 2r2 with respect to ξ2.

Lemma 2. For 0 ≤ i ≤ r1 − r2, there exists Ḡi2

Ḡi2(η, µ, ξ1 . . . ξ
(r1+r2+i−1)
1 , ξ2 . . . ξ

(2r2−1)
2 )

from R2n−r+2r2+i to R, such that

∂2L
∂v1∂v2

ξ
(r1+r2+i)
1 +

∂2L
∂v2

2

ξ
(2r2+i)
2 + Ḡi2(η, µ, ξ1 . . . ξ

(r1+r2+i−1)
1 , ξ2 . . . ξ

(2r2−1)
2 ) = 0 (39)

Proof. The equation holds for i = 0. Let us proceed by induction. We assume that (39) holds for i and
differentiate it. We get an equation of the form

∂2L
∂v1∂v2

ξ
(r1+r2+i+1)
1 + g1(X, ξ

(r1)
1 , ξ

(r2)
2 )ξ(r1+r2+i)1 +

∂2L
∂v2

2

ξ
(2r2+i+1)
2 +

g2(X, ξ
(r1)
1 , ξ

(r2)
2 )ξ(2r2+i)2 + G̃i2(η, µ, ξ1 . . . ξ

(r1+r2+i)
1 , ξ2 . . . ξ

(2r2)
2 ) = 0

We use (39) to replace ξ(2r2+i)2 by a function of η, µ, ξ1 . . . ξ
(r1+r2+i)
1 , ξ2 . . . ξ

(2r2−1)
2 . We also use (38) to replace

ξ2r22 by a function of η, µ, ξ1 . . . ξr1+r21 , ξ2 . . . ξ
(2r2−1)
2 . We thus obtain an equation of the form

∂2L
∂v1∂v2

ξ
(r1+r2+i+1)
1 +

∂2L
∂v2

2

ξ
(2r2+i+1)
2 + G̃i2(η, µ, ξ1 . . . ξ

(r1+r2+i)
1 , ξ2 . . . ξ

(2r2−1)
2 ) = 0
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with G̃i2 from R2n−r+2r2+i+1 to R, which proves the induction and concludes the proof. �

For i = r1 − r2, equation (39) writes

∂2L
∂v1∂v2

ξ
(2r1)
1 +

∂2L
∂v2

2

ξ
(r1+r2)
2 + Ḡr1−r22 (η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(2r2−1)
2 ) = 0

where Ḡr1−r22 is from R2n to R. Together with equation (37), and because the Hessian (20) is invertible, solving
this system of two equations with respect to the highest derivatives of ξ1 and ξ2 leads to an expression of ξ(2r1)1 as
a function of η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(r1+r2−1)
2 . From equation (39), and noticing that the positive definiteness

of the Hessian (20) implies
(
∂2L
∂v22

)
> 0, we see that ξ(2r2)2 is a function of η, µ, ξ1, . . . , ξ

(r1+r2)
1 , ξ2, . . . , ξ

(2r2−1)
2 .

Differentiating this equation further shows that that ξ(2r2+i)2 is a function of η, µ, ξ1, . . . , ξ
(r1+r2+i)
1 , ξ2 . . . ξ

(2r2−1)
2 .

Hence, there exists a function G3 from R2n to R such that

ξ
(2r1)
1 = G3(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(2r2−1)
2 ) (40)

which, together with equation (38) gives the following partial state space model

dξ
(2r1−1)
1

dt
= G3(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , t) (41)

dξ
(2r2−1)
2

dt
=
(
∂2L
∂v2

2

)−1(
∂2L

∂v1∂v2
ξ
(r1+r2)
1 +G2(η, µ, ξ1 . . . ξ

(r1+r2−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , t)

)
(42)

Observe that ξ(r1+r2−1)
1 is a derivative of ξ1 which is of an order lower than 2r1−1 because r2 < r1 and that, as

a vector, the right hand side of equations (41,42) is a function from R2n to R2. Thus, the following proposition
holds.

Proposition 2. Equations (16), (23), (41) and (42) are a 2n dimensional state space form set of equations to
be satisfied by optimal solutions.

4.2. Three inputs systems

Here, we consider systems with three control variables. This gives rise to three chains of integrators in the
normal form. The associated lengths are sorted (without loss of generality) and noted r1 > r2 > r3. This
assumption is made because, when two or three chains have equal lengths, a state space form can be derived
using the same method as in the case of two or one input systems respectively. These particular cases are also
addressed by the general result presented in Section 4.3. We detail them to introduce and demonstrate this last
result.

From Theorem 2, we have to consider three differential equations

∂2L
∂v2

1

ξ
(2r1)
1 +

∂2L
∂v1∂v2

ξ
(r1+r2)
2 +

∂2L
∂v1∂v3

ξ
(r1+r3)
3 +G1(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(r1+r2−1)
2 , ξ3 . . . ξ

(r1+r3−1)
3 ) = 0

(43)

∂2L
∂v1∂v2

ξ
(r1+r2)
1 +

∂2L
∂v2

2

ξ
(2r2)
2 +

∂2L
∂v2∂v3

ξ
(r2+r3)
3 +G2(η, µ, ξ1 . . . ξ

(r1+r2−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(r2+r3−1)
3 ) = 0

(44)

∂2L
∂v1∂v3

ξ
(r1+r3)
1 +

∂2L
∂v2∂v3

ξ
(r2+r3)
2 +

∂2L
∂v2

3

ξ
(2r3)
3 +G3(η, µ, ξ1 . . . ξ

(r1+r3−1)
1 , ξ2 . . . ξ

(r2+r3−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0

(45)
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As noted in Section 4.1, equations (43), (44), and (45) are not in a state space form. The simple elimination
method used for two chains in the previous section fails here because we have to eliminate a larger number of
higher orders in equations (43,44,45). However, the same technique of orders of differentiation raising can be
considered, provided it is improved upon. First, we differentiate (45) r2 − r3 times as in the case m = 2 to get

∂2L
∂v1∂v3

ξ
(r1+r2)
1 +

∂2L
∂v2∂v3

ξ
(2r2)
2 +

∂2L
∂v2

3

ξ
(r2+r3)
3 +G4(η, µ, ξ1 . . . ξ

(r1+r2−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0

(46)

where G4 is from R2n+r2−r1 to R. As before, we know that, for i < r2 − r3, ξ2r3+i3 as a function of
η, µ, ξ1 . . . ξ

(r1+r3+i)
1 , ξ2 . . . ξ

(r2+r3+i)
2 , ξ3 . . . ξ

(2r3−1)
3 . Hence, we can replace (44) by

∂2L
∂v1∂v2

ξ
(r1+r2)
1 +

∂2L
∂v2

2

ξ
(2r2)
2 +

∂2L
∂v2∂v3

ξ
(r2+r3)
3 + G̃2(η, µ, ξ1 . . . ξ

(r1+r2−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0

(47)

where G̃2 is from R2n+r2−r1 to R. The matrix[
∂2L
∂v22

∂2L
∂v2∂v3

∂2L
∂v2∂v3

∂2L
∂v23

]

is invertible because it is diagonally extracted from the Hessian (20) which is positive definite. Therefore, we
can draw ξ

(2r2)
2 and ξ(r2+r3)3 from (46) and (47) as a function of η, µ, ξ1 . . . ξ

(r1+r2)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 .

Now, let us show recursively that there exist G̃i from Rn+r2−r1+i to R and Ǧi from Rn+r2−r1+i to R such that

∂2L
∂v1∂v3

ξ
(r1+r2+i)
1 +

∂2L
∂v2∂v3

ξ
(2r2+i)
2 +

∂2L
∂v2

3

ξ
(r2+r3+i)
3

+ G̃i(η, µ, ξ1 . . . ξ
(r1+r2+i−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0 (48)

∂2L
∂v1∂v2

ξ
(r1+r2+i)
1 +

∂2L
∂v2

2

ξ
(2r2+i)
2 +

∂2L
∂v2∂v3

ξ
(r2+r3+i)
3

+ Ǧi(η, µ, ξ1 . . . ξ
(r1+r2+i−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0 (49)

and that ξ(2r2+i)2 and ξ
(r2+r3+i)
3 is a function of η, µ, ξ1 . . . ξ

(r1+r2+i)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 . From (46)

and (47), this holds for i = 0. Differentiating (48) and (49) gives

∂2L
∂v1∂v3

ξ
(r1+r2+i+1)
1 +

∂2L
∂v2∂v3

ξ
(2r2+i+1)
2 +

∂2L
∂v2

3

ξ
(r2+r3+i+1)
3

+ G̃i(η, µ, ξ1 . . . ξ
(r1+r2+i)
1 , ξ2 . . . ξ

(2r2)
2 , ξ3 . . . ξ

(2r3)
3 ) = 0

∂2L
∂v1∂v2

ξ
(r1+r2+i+1)
1 +

∂2L
∂v2

2

ξ
(2r2+i+1)
2 +

∂2L
∂v2∂v3

ξ
(r2+r3+i+1)
3

+ Ǧi(η, µ, ξ1 . . . ξ
(r1+r2+i)
1 , ξ2 . . . ξ

(2r2)
2 , ξ3 . . . ξ

(2r3)
3 ) = 0

But, we already know, from the resolution of (46) and (47), that ξ(2r2)2 is a function of η, µ, ξ1 . . . ξ
(r1+r2)
1 , ξ2 . . .

ξ
(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 , and, from (45), that ξ(2r3)3 is a function of η, µ, ξ1 . . . ξ

(r1+r3)
1 , ξ2 . . . ξ

(r2+r3)
2 , ξ3 . . .

ξ
(2r3−1)
3 . This proves the induction for equation (48), and (49). Solving (48), and (49) at i+ 1 with respect to
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ξ
(2r2+i+1)
2 and ξ

(r2+r3+i+1)
3 recursively proves that these are functions of η, µ, ξ1 . . . ξ

(r1+r2+i+1)
1 , ξ2 . . . ξ

(2r2−1)
2 ,

ξ3 . . . ξ
(2r3−1)
3 . Now, let us take i = r1 − r2. Equations (48) and (49) becomes

∂2L
∂v1∂v3

ξ
(2r1)
1 +

∂2L
∂v2∂v3

ξ
(r1+r2)
2 +

∂2L
∂v2

3

ξ
(r1+r3)
3 + G̃i(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0 (50)

∂2L
∂v1∂v2

ξ
(2r1)
1 +

∂2L
∂v2

2

ξ
(r1+r2)
2 +

∂2L
∂v2∂v3

ξ
(r1+r3)
3 + Ǧi(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0 (51)

where G̃i and Ǧi are from R2n to R. In (43), we can replace ξ(2r2+i)2 by a function of η, µ, ξ1 . . . ξ
(r1+r2+i)
1 ,

ξ2 . . . ξ
(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 , while ξ

(2r3+i)
3 can be replaced, for 0 ≤ i < r2 − r3, by a function of η,µ,ξ1

. . . ξ
(r1+r3+i)
1 , ξ2 . . . ξ

(r2+r3+i)
2 ,ξ3 . . . ξ

(2r3−1)
3 , and, for i ≥ 0, ξ(r2+r3+i)3 can be substituted with a function of

η,µ,ξ1 . . . ξ
(r1+r2+i)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 . Thus, (43) yields

∂2L
∂v2

1

ξ
(2r1)
1 +

∂2L
∂v1∂v2

ξ
(r1+r2)
2 +

∂2L
∂v1∂v3

ξ
(r1+r3)
3 +G5(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) = 0 (52)

where G5 is also from R2n to R. Solving (50), (51), and (52) with respect to ξ(2r1)1 , ξ(r1+r2)2 and ξ(r1+r3)3 (a linear
system whose matrix is the Hessian (20) which is non singular) gives ξ(2r1)1 as a function of η,µ,ξ1 . . . ξ

(2r1−1)
1 ,ξ2

. . . ξ
(2r2−1)
2 ,ξ3 . . . ξ

(2r3−1)
3 , t. This, together with ξ

(2r2)
2 being a function of η, µ, ξ1 . . . ξ

(r1+r2)
1 , ξ2 . . . ξ

(2r2−1)
2 ,

ξ3 . . . ξ
(2r3−1)
3 , and with (45) yields a state space form for equations (43), (44), and (45) of the following form

dξ
(2r1−1)
1

dt
= G6(η, µ, ξ1 . . . ξ

(2r1−1)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) (53)

dξ
(2r2−1)
2

dt
= G7(η, µ, ξ1 . . . ξ

(r1+r2)
1 , ξ2 . . . ξ

(2r2−1)
2 , ξ3 . . . ξ

(2r3−1)
3 ) (54)

dξ
(2r3−1)
3

dt
= G8(η, µ, ξ1 . . . ξ

(r1+r3)
1 , ξ2 . . . ξ

(r2+r3)
2 , ξ3 . . . ξ

(2r3−1)
3 ) (55)

Observe that r2 + r3 ≤ 2r2 − 1, and that both r1 + r2 and r1 + r3 are smaller than 2r1 − 1. As a vector right
hand side, G6, G7 and G8 are globally from R2n to R.

Proposition 3. Equations (16), (23), (53), (54) and (55) are a 2n dimensional state space form set of equations
to be satisfied by optimal solutions.

4.3. General case

Among the m integrators chains (15), several may share the same length. Thus, we note p the number of
distincts chain lengths. For 1 ≤ i ≤ p, there are ni chains of length ri, and we have

p∑
i=1

niri ≤ n,

p∑
i=1

ni = m

The chain lengths ri are sorted in decreasing order. For 1 ≤ i ≤ p, 1 ≤ k ≤ ni, ξi,k denotes the primal
state which starts the kth chain of differentiation of length ri. We note ξ[l]i,k the concatenation of the variables

ξi,k . . . ξ
(n)
i,k . . . ξ

(l)
i,k. Similarly, vi,k denotes the control variable associated to this same chain. This reordering

gives a rewriting of equations (32) in Theorem 2 as follows: for 1 ≤ i ≤ p, and 1 ≤ j ≤ ni

p∑
k=1

nk∑
l=1

∂2L
∂vi,j∂vk,l

ξ
(ri+rk)
k,l +Gi,j(η, µ, . . . ξ[ri+rq−1]

q,r . . .) = 0 (56)
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where q ranges from 1 to p and r ranges from 1 to nq. As in the cases m = 2 or m = 3 addressed in Sections 4.1
and 4.2 respectively, the highest differentiation order of ξi,k (for any i, k) appears only in the first group of
equations (i.e. with i = r1 in (56)). This prevents us from solving a system of equations with respect to
these high order derivatives to obtain a state space form. In fact, many of these high order derivatives can be
expressed as functions of lower order derivatives. In this section, we obtain a state space form with derivatives
of order 2ri for ξi,k. The total dimension of this state space form is 2n.

We proceed along the following constructive proof. Sequentially, we differentiate the equations in (56)
with respect to time. We start with the equations for i = p until the order rp−1 + rp (in the factor of
the second derivative of L) is replaced by 2rp−1. Together with the equations for i = p − 1, we solve the
obtained system with respect to ξ(2rp−1)

p−1,l and ξ
(2rp)
p,l , l ranging from 1 to np−1, and from 1 to np, respectively.

This stresses that these are functions of the lower derivatives of ξp−1,l and ξp,l. Then, by induction, we
differentiate sets of equations combining contiguous i (these sets are of increasing size) to obtain a system
in the ξ2ri

i,l . At each step, the linear system has a matrix diagonally extracted from the Hessian (20) (modified
by the presented reordering). We solve this system and, recursively, show that ξ2ri

i,j is a function Gi,j of

(η, µ, . . . , ξ[ri+rk−1]
k,l , . . . , ξ

[2ri−1]
i,1 , . . . , ξ

[2ri−1]
i,ni

, . . . , ξ
[2rp−1]
p,np ). This gives us the desired state space form as detailed

in Theorem 3.

Theorem 3. For 1 ≤ i ≤ p the following proposition (H1) holds:
(H1) for 1 ≤ j ≤ ni, ξ2ri

i,j is a function Gi,j of (η, µ, . . . ξ[ri+rk−1]
k,q . . . ξ

[2ri−1]
i,1 . . . ξ

[2ri−1]
i,ni

. . . ξ
[2rp−1]
p,np ), k and q

being running indexes with 1 ≤ k ≤ i− 1 and 1 ≤ q ≤ nk.
Together with (16) and (23), this proposition, for 1 ≤ i ≤ p (and 1 ≤ j ≤ ni), gives the following state form

which is satisfied by the ξi,j, η and µ

dξi,j
dt

=ξ1i,j

...

dξ2ri−2
i,j

dt
=ξ2ri−1

i,j

dξ2ri−1
i,j

dt
=Gi,j(η, µ, . . . ξk,q . . . ξri+rk−1

k,q . . . ξi,1 . . . ξ
2ri−1
i,1 . . . ξi,ni . . . ξ

2ri−1
i,ni

. . . ξp,np . . . ξ
2rp−1
p,np

)

Observing that, for k ≤ i we have ri + rk − 1 ≤ 2rk − 1, the previous differential system is a state space form
of dimension 2n = 2n− 2r + 2

∑
ri.

Proof. (H1) is verified for i = p (this is (56) with i = p, 1 ≤ j ≤ np, solved with respect to ξ2rp

p,l , observing that,
for k < p, rp + rk ≤ 2rk − 1). We now assume that (H1) holds for i ≤ ĩ ≤ p, ĩ being the running index labelled
by i in (H1).

To prove the induction on (H1), we show the more general inductions on (H2) and (H3) on i and s: for
1 ≤ i ≤ p and ri ≤ s < ri−1 we note

(H2): for j ≥ i, 1 ≤ l ≤ nj , ξ
(rj+s)
j,l is a function of η, µ, . . ., ξ[rq+s−1]

q,r . . . ξ
[2ri−1]
i,1 . . ., ξ[2ri−1]

i,ni
. . . ξ

[2rp−1]
p,np , q

being a running index with 1 ≤ q < i.
Observe that (H1) is verified if (H2) holds for j = i and s = ri. We start the induction by observing that

(H2) holds for i = p and s = rp.
For 1 ≤ i ≤ p and ri ≤ s < ri−1 we note
(H3): for j ≥ i, 1 ≤ h ≤ nj , there exists a function G̃j,h,s such that

p∑
k=1

nk∑
l=1

∂2L
∂vj,h∂vk,l

ξ
(rk+s)
k,l + G̃j,h,s(η, µ, . . . ξ[rq+s−1]

q,r . . . ξ
[2ri−1]
i,1 . . . ξ

[2ri−1]
i,ni

. . . ξ[2rp−1]
p,np

) = 0 (57)
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(H3) holds for i = p and s = rp. We now assume that it is verified for the same i as the index used in the
induction assumption on (H1). We make the same assumption on (H2). The induction proceed as follows: we
prove that if (H3) holds for s, it is also valid for s + 1; by solving the system with respect to the appropriate
ξ
(rk+s+1)
k,l , we prove that (H2) holds for s + 1, and hence (H2) and (H3) hold for ri ≤ s < ri−1. To show that

they are valid for the next i, i.e. i− 1 and s = ri−1, we increment s in (57) and add an extra set of equations.
This augmented set is solved with respect to the appropriate ξ(ri−1+rk)

k,l to prove that (H1) holds for i− 1. By
carefully observing that the orders of differentiation in the ξĩ,l for ĩ ≥ i, we prove that (H2) and (H3) hold for
i− 1 and s = ri−1.

Now let us proceed. Differentiating (57) together with assumption (H1) for i ≤ ĩ ≤ p (which allows us to
eliminate ξ[2rĩ]

ĩ,l
) yields

p∑
k=1

nk∑
l=1

∂2L
∂vj,h∂vk,l

ξ
(rk+s+1)
k,l + G̃j,h,s+1(η, µ, . . . ξ[rq+s]

q,r . . . ξ
[2ri−1]
i,1 . . . ξ

[2ri−1]
i,ni

. . . ξ[2rp−1]
p,np

) = 0 (58)

which gives the induction on (H3) with respect to s. This system of ni + ni+1 . . .+ np equations is solved with

respect to ξ(rk+s+1)
k,l for p ≥ k ≥ i and 1 ≤ l ≤ nk using the matrix

[
∂2L

∂vj,h∂vk,l

]
for j ≥ i, 1 ≤ h ≤ nj , p ≥ k ≥ i

and 1 ≤ l ≤ nk, which is diagonally extracted from the Hessian (20) (modified by the presented reordering).
This shows that, for p ≥ k ≥ i, ξ(rk+s+1)

k,l is a function of η, µ, . . . ξ[rq+s]
q,r . . ., ξ[2ri−1]

i,1 . . . ξ
[2ri−1]
i,ni

. . . ξ
[2rp−1]
p,np which

proves the induction of (H2) with respect to s. Hence, (H2) and (H3) hold for ri ≤ s < ri−1. We now proceed
by induction on the index i by adding an extra block of equations. We prove for j ≥ i that both (H2) and (H3)
hold for i− 1 and s = ri−1. To do so, we differentiate (57) once again to obtain s = ri−1. This gives

p∑
k=1

nk∑
l=1

∂2L
∂vj,h∂vk,l

ξ
(rk+ri−1)
k,l + G̃j,h,s(η, µ, . . . ξ[rq+ri−1−1]

q,r . . . ξ
[2ri−1]
i,1 . . . ξ

[2ri−1]
i,ni

. . . ξ[2rp−1]
p,np

) = 0 (59)

For q = i− 1, ξ[rq+ri−1−1]
q,r = ξ

[2ri−1−1]
i−1,r . Hence, (59) can be written under the form

p∑
k=1

nk∑
l=1

∂2L
∂vj,h∂vk,l

ξ
(rk+ri−1)
k,l + G̃j,h,s(η, µ, . . . ξ[rq+ri−1−1]

q,r . . . ξ
[2ri−1−1]
i−1,1 . . . ξ

[2ri−1−1]
i−1,ni−1

. . . ξ[2rp−1]
p,np

) = 0 (60)

where q is a running index with 1 ≤ q < i − 1. On the other hand, let us consider (56) for i set to i − 1 and
1 ≤ j ≤ ni−1. Renaming j as h to be consistent with (59) yields

p∑
k=1

nk∑
l=1

∂2L
∂vi−1,h∂vk,l

ξ
(ri−1+rk)
k,l +Gi−1,h(η, µ, . . . ξ[ri−1+rq−1]

q,r . . .) = 0 (61)

For q = i− 1, we have ξ[ri−1+rq−1]
q,r = ξ

[2ri−1−1]
i−1,r . For q ≥ i, ri−1 + rq − 1 = rq + s with s = ri−1 − 1. But (H2)

assumes that for i ≤ q ≤ p and ri ≤ s ≤ ri−1 − 1, ξ(rq+s)
q,r is a function of

(η, µ, . . . ξ[rk+s−1]
k,l . . . ξ

[2ri−1]
i,1 , . . . , ξ

[2ri−1]
i,ni

, . . . , ξ
[2rp−1]
p,np ). In particular, for s = ri−1 − 1, we see that ξ[ri−1+rq−1]

q,r

is a function of (η, µ, . . . ξ[rk+ri−1−2]
k,l . . . ξ

[2ri−1]
i,1 , . . . , ξ

[2ri−1]
i,ni

, . . . , ξ
[2rp−1]
p,np ) as long as q ≥ i. Hence, (61) can be

rewritten under the form

p∑
k=1

nk∑
l=1

∂2L
∂vi−1,h∂vk,l

ξ
(ri−1+rk)
k,l + G̃i−1,h(η, µ, . . . ξ

[rk+ri−1−1]
k,l . . . ξ

[2ri−1−1]
i−1,1 . . . ξ

[2ri−1−1]
i−1,ni−1

. . . ξ[2rp−1]
p,np

) = 0 (62)
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Gathering (60) and (62) is equivalent to having (59) with i−1 ≤ j ≤ p (a set of ni−1+ni . . .+np equations with
coefficients diagonally extracted from the Hessian). We solve this system with respect to the ni−1 + ni . . .+ np

unknowns ξ(rk+ri−1)
k,l , i−1 ≤ k ≤ p and 1 ≤ l ≤ nk. In particular, for k = i−1, we see that ξ(2ri−1)

i−1,l is a function

of (η, µ, . . . ξ[rq+ri−1−1]
q,r , . . . ξ

[2ri−1−1]
i−1,1 . . . ξ

[2ri−1−1]
i−1,ni−1

. . . ξ
[2rp−1]
p,np ), with 1 ≤ q < i − 1, and 1 ≤ r ≤ nq. This proves

the induction for (H1) from index i to i− 1. Furthermore, we can initialize the inductions on (H2) and (H3) at
i− 1 and s = ri−1. To do so, we need to extend (H2) and (H3) to i ≤ j ≤ p, with the index i now set to i− 1.

We observe that, for i0 ≤ j with i ≤ i0, and, for ri0 ≤ s ≤ ri0−1, ξ
(rj+s)
j,l is a function of η,µ,. . .

ξ
[rq+s−1]
q,r . . . ξ

[2ri0−1]
i0,1

. . . ξ
[2ri0−1]
i0,ni0

. . . ξ
[2rp−1]
p,np . Since i ≤ i0, it is also a function of η, µ, . . . ξ[rq+s−1]

q,r . . . ξ
[2ri−1]
i,1

. . . ξ
[2ri−1]
i,ni

. . . ξ
[2rp−1]
p,np , because, for i1 ≤ i0, the order 2ri1 − 1 is greater than ri0 + ri1 − 1. Hence, all deriva-

tives of ξj,l (with j ≥ i) from order 2rj up to rj + ri−1 − 1 are functions of η, µ, . . . ξ[rm+ri−1−1]
m,n . . . ξ

[2ri−1]
i,1 . . .

ξ
[2ri−1]
i,ni

. . . ξ
[2rp−1]
p,np . Therefore, equation (58) can be rewritten under the form

p∑
k=1

nk∑
l=1

∂2L
∂vi−1,h∂vk,l

ξ
(rk+ri−1)
k,l + G̃i−1,h,s(η, µ, . . . ξ[rq+ri−1−1]

q,r . . . ξ
[2ri−1−1]
i,1 . . . ξ

[2ri−1−1]
i,ni−1

. . . ξ[2rp−1]
p,np

, t) = 0

Together with system (57), it yields a system as required by (H3) but with i set to i− 1 and s = ri−1. Solving
it with respect to the variables ξ(rk+ri−1)

k,l , for k ≥ i − 1 and 1 ≤ l ≤ nk, we prove that (H2) holds for i − 1
and s = ri−1. This proves the inductions on (H1), (H2) and (H3). Observing that (H1) holds for 1 ≤ i ≤ p we
deduce the desired state space form which concludes the proof. �

As a final remark, we now show that the adjoint states are functions of the states reported in Theorem 3.
First, we rewrite equation (25) by grouping equations of equal length ri. We rewrite λri−j

i as λri−j
i,l , where ri is

a unique length of chain, and l indexes which chain is considered. We also group the ξk as ξk,l. These notations
are similar to those used in Theorem 3. Equation (25) involves derivatives of ξk,l at the order rk + j, with j

ranging from 1 to ri − 1. In particular, ξ(rk+ri−1)
k,l may be a derivative with a rank which is greater than the

order 2rk − 1, which is the maximum order of differentiation of ξk,l making it a state variable in Theorem 3.
Yet, Theorem 3 provides us with a state space form. Starting with the longest chain (i.e. the ξk,l with the
highest order derivative in the state space form), this shows that, for a given ξk,l, the derivatives with an order
greater than the order of the state space can be expressed as a function of the state variables. This implies that

Corollary 1. For 1 ≤ i ≤ p, 0 ≤ j ≤ ri − 1, 1 ≤ l ≤ np, λ
ri−j
i,l is a function of the state variables used in the

differential system of Theorem 3.

Proof. For j = 1 . . . ri − 1, λri−j
i,l , one uses equation (25) and the fact that derivatives of ξq,r of order greater

or equal to 2rq are actually functions of the state variable. This is obtained by differentiating enough times the
last equation of Theorem 3, starting with the longest chain of integrators, i.e., the smallest i. For j = 0, one
uses equation (24), and the fact that X is a function of the state of Theorem 3. �

Remark. As pointed out in [4, 5], there exist collocation methods for high order differential systems that are
more accurate than collocation methods for first order systems (see discussion in Section 2). If we use the
functions mentioned in Corollary 1 and compute numerical estimates of the adjoint variables from the obtained
solutions, and if, additionally, these functions satisfy Lipschitz inequalities, then it is reasonable to expect that
the numerical estimates for the adjoint variables obtained from such high order collocation methods will be more
accurate than the estimates obtained from the equivalent state space collocation method. As a consequence,
the numerical accuracy of adjoint-based methods for solving optimal control problems could benefit from this
improved accuracy. This is a challenging point for further studies.
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5. Example: robotic leg problem

We now propose an example to illustrate the proposed approach. The dynamics we consider corresponds to
a mechanical system with second order dynamics studied in [12]. It is defined by the following under-actuated
dynamics

mr̈ −mrψ̇2 = u1 (63)

Jθ̈ = u2 (64)

mr2ψ̈ + 2mrṙψ̇ = −u2 (65)

In the following, we note X = (r, ṙ, θ, θ̇, ψ, ψ̇)T , u = (u1, u2)T , ẋ = f(x, u). The cost function we consider is

1
2

∫ T

0

(
XTX + uTu

)
dt

Using r̈ = v1 and θ̈ = v2, the Hamiltonian is given as

H =
1
2

(
XTX +m2(v1 − rψ̇2)2 + J2v2

2

)
+ λ1ṙ + λ2v1 + λ3θ̇ + λ4v2 + µ1ψ̇ − µ2

(
Jv2
mr2

+ 2
ṙ

r
ψ̇

)
The adjoint dynamics is

λ̇1 = −Hr = −r +
(
m2r̈ −m2rψ̇2

)
ψ̇2 − 2µ2

(
ṙ

r2
ψ̇ +

Jv2
mr3

)
(66)

λ̇2 = −Hṙ = −ṙ − λ1 + µ2
2
r
ψ̇ (67)

λ̇3 = −Hθ = −θ (68)

λ̇4 = −Hθ̇ = −θ̇ − λ3 (69)

µ̇1 = −Hψ = −ψ (70)

µ̇2 = −Hψ̇ = −ψ̇ − µ1 + 2
(
m2r̈ −m2rψ̇2

)
ψ̇r + 2µ2

ṙ

r
(71)

Our claim, according to Theorem 3 (with p = 1, n1 = 2 and r1 = 2) and Corollary 1, is twofold. First, all the
original 12 variables from the stationarity conditions (6 primal and 6 adjoint variables) can be rewritten using
only 6 variables. Further, the 12 first order optimality conditions can be rewritten as 2 fourth order equations
and 4 first order equations (as in Proposition 2 for the case where the two chain lengths are equal).

In a first step, we recover the λ2 and λ4 adjoint states from the Hv1 = 0 and Hv2 = 0 equations. These give

λ2 = −m2r̈ +m2rψ̇2 (72)

λ4 = −J2θ̈ + J
µ2

mr2
(73)

which corresponds to equation (24). Next, the first time derivatives of Hv1 = 0 and Hv2 = 0 give

λ̇2 = −m2r(3) + 2m2rψ̇ψ̈ +m2ṙψ̇2

λ̇4 = −J2θ(3) + J
µ̇2

mr2
− 2

J

mr3
µ2
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After substitution in (67) and (69) respectively, one directly gets

λ1 = −ṙ + µ2
2
r
ψ̇ +m2r(3) − 2m2rψ̇ψ̈ −m2ṙψ̇2 (74)

λ3 = −θ̇ + J2θ(3) − J
µ̇2

mr2
+ 2J

µ2ṙ

mr3
= −θ̇ + J2θ(3) +

J

mr2

(
ψ̇ + µ1 + 2λ2ψ̇r

)
(75)

which corresponds to equation (25). The linearizable part of the dynamics and its adjoint have been fully
explored through the previous equations. One can readily get the two fourth order equations corresponding to
these last necessary conditions by differentiating (74) and (75) with respect to time. This gives

r(4) = 4 ψ̈ ψ̇ ṙ + 2 rψ̈2 − 2 r̈ ψ̇2 +
r̈ − r
m2

+ 3 rψ̇4 + 2
ψ̇2 + ψ̇µ1

m2r
+ 2 rψ̇ ψ(3) (76)

θ(4) = 2
ṙ ψ̇ + ṙµ1

mr3J
− 2

mψ̇ ṙ r̈
r2J

+
θ̈ − θ

J2
+
ψ − ψ̈

mr2J
+ 2

mψ̈ r̈ + mψ̇r (3)

rJ
− 6

mψ̇2ψ̈

J
(77)

Yet, it is possible to simplify these expressions further to obtain an equation which is similar to (32). The ψ̈
and ψ(3) terms are not needed. As in the proofs of Lemma 1 and Theorem 2, they can be derived from the
following equation and its time derivative (arising from (64) and (65))

ψ̈ = − Jθ̈

mr2
− 2

ṙ

r
ψ̇ (78)

which gives an expression ψ(3) = p(r, ṙ, r̈, θ̈, θ(3), ψ̇). After substitution in (76) and (77), we can gather the
following necessary conditions

r(4) = g1(r, ṙ, r̈, θ̈, θ(3), ψ̇, µ1)

θ(4) = g2(r, ṙ, r̈, r(3), θ, θ̈, ψ̇, µ1)

ψ̈ = − Jθ̈

mr2
− 2

ṙ

r
ψ̇

µ̇1 = −ψ

µ̇2 = −ψ̇ − µ1 + 2
(
m2r̈ −m2rψ̇2

)
ψ̇r + 2µ2

ṙ

r


(79)

where g1 and g2 are given by the following

r(4) = −4

(
Jθ̈ + 2 ṙ ψ̇ mr

)
ψ̇ ṙ

mr2
+ 2

(
Jθ̈ + 2 ṙ ψ̇ mr

)2

r3m2
− 2 r̈ ψ̇2 +

r̈ − r
m2

+ 3 rψ̇4 + 2
ψ̇2 + ψ̇µ1

m2r
+ 2rψ̇

(
−Jθ(3) r + 4 ṙ Jθ̈ + 6 ṙ2ψ̇ mr − 2 ψ̇ mr̈ r2

mr3

)

θ(4) =
2ṙ (2 ψ̇ + µ1 )

Jmr3
− 6

mṙ ψ̇ r̈
Jr2

+
2mψ̇(r(3) + 6ṙψ̇2)

Jr
+
θ̈ − θ

J2
+

θ̈

m2r4
− 2

r̈ θ̈
r3

+ 6
ψ̇2θ̈

r2
+

ψ

Jmr2

System (79) is a set of necessary conditions for the primal and adjoint equations corresponding to the original
stationarity conditions. This corresponds to Theorem 2, or Theorem 3 with p = 1. As a remark, one can notice
that we do not have to differentiate further r or θ to eliminate derivatives of order greater than 4 (as in the
proof of Theorem 3) because we have only one length of chain(p = 1).
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6. Conclusions and perspectives

In this paper, we give explicit ways to derive a state space form set of stationarity conditions that involve a
reduced number of variables. We stress that numerous adjoint variables can be computed using zero dynamics
states, corresponding adjoints, and, most importantly, successive derivatives of the linearizing outputs. Thus,
in many optimal control problems, numerous variables (primal and adjoint variables) can be recovered through
such relations and need not be considered. Without loss of generality, constraints (e. g. endpoints constraints)
can be addressed similarly but, in their general formulation, are out of the scope of the work presented here.
This is a direction for further developments. On the numerical side, this number of variables reduction proved
efficient in direct methods of trajectory optimization. Future directions of this research should imply devel-
opment of specific numerical tools, e. g. collocation methods for higher order systems. As suggested in [4, 5]
and demonstrated in Section 2, efficiency can be gained by applying those directly to higher order differential
equations rather than corresponding first-order systems.
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