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Plan

Motivation: Chain rule of differentiation is widely used outside of its domain of validity.
Ex: algorithmic differentiation for deep learning with nonsmooth components.

Differential calculus rules applied to subgradients do not provide subgradients in general.

Contribution: Conservative set valued fields. Analytic, geometric and algorithmic
properties.
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Backpropagation

Algorithmic differentiation (AD, 70s):
Automatized numerical implementation of the chain rule:

H : Rp 7→ Rp, G : Rp 7→ Rp, f : Rp → R, (differentiable).

f ◦ G ◦ H : Rp 7→ R.

∇(f ◦ G ◦ H)T = ∇f T × JacG × JacH

Function = program: composition of smooth functions.

x 7→ (H(x),G(H(x)), f (G(H(x))))

Forward mode of AD: ∇f T × (JacG × JacH).
Backward mode of AD: (∇f T × JacG )× JacH .

Backpropagation: Backward AD for neural network training.

It computes gradient (provided that everybody is smooth).
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Neural network / compositional modeling

Input
x ∈ Rp z0 ∈ Rp z1 ∈ Rp1 . . . zL ∈ RpL

For i = 1, . . . , L:

zi ∈ Rpi “layer”.

zi = φi (Wizi−1 + bi )

φi : Rpi 7→ Rpi “activation functions”, nonlinear.

Wi ∈ Rpi×pi−1 , bi ∈ Rpi , θ = (W1, b1, . . . ,WL, bL), model parameters.

Fθ(x) = zL

= φL (WL φL−1 (WL−1 (. . . φ1 (W1x + b1) ) + bL−1) + bL)

Training set: {(xi , yi )}ni=1 in Rp × RpL , loss ` : RpL × RpL → R+.

min
θ

J(θ) :=
1

n

n∑
i=1

`(Fθ(xi ), yi ) =
1

n

n∑
i=1

Ji (θ).
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Backpropagation and learning

Stochastic (minibatch) gradient algorithm: Given (Ik)k∈N iid, uniform on {1, . . . , n},
(αk)k∈N positive, iterate,

θk+1 = θk − αk∇JIk (θk).

Backpropagation: Backward mode of algorithmic differentiation used to compute ∇Ji

Profusion of numerical tools: e.g. Tensorflow, Pytorch. Democratized the usage of
these models. Goes beyond neural nets (differentiable programming).
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Nonsmooth activations

Positive part: relu(t) = max{0, t},

Less straightforward examples:

Max pooling in convolutional networks.

knn grouping layers, farthest point subsampling layers.
Qi et. al. 2017. PointNet++: Deep Hierarchical Feature Learning on point Sets in a Metric Space.

Sorting layers.
Anil et. al. 2019. Sorting Out Lipschitz Function Approximation. ICML.
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Nonsmooth backpropagation

Set relu′(0) = 0 and implement the chain rule of smooth calculus.

(f ◦ g)′ = g ′ × f ′ ◦ g .

Tensorflow examples:
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AD acts on programs, not on functions

relu2(t) = relu(−t) + t = relu(t)

relu3(t) =
1

2
(relu(t) + relu2(t)) = relu(t).
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Known from AD litterature (e.g. Griewank 2008, Kakade & Lee 2018).

8 / 30



Derivative of zero at 0

zero(t) = relu2(t)− relu(t) = 0.
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AD acts on programs, not on functions

Derivative of sine at 0:

sin′ = cos.
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Consequences for optimization and learning

No convexity, no calculus:

∂(f + g) ⊂ ∂f + ∂g .

Minibatch + subgradient: locally Lipschitz, convex, no sum rule, algorithmic
differentiation.

J(θ) =
1

n

n∑
i=1

Ji (θ)

vi ∈ ∂backprop Ji (θ) 6= ∂Ji , i = 1, . . . n,

EI [vI ] 6∈∈ ∂J(θ), I uniform on {1, . . . , n} ,

Meaning of the chain rule?

Non uniqueness: Different programs may implement the same function.
No qualification / transverality condition: not a Jacobian of any known sort.
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A mathematical model for “nonsmooth algorithmic differentiation”

Smooth: Nonsmooth:

J (function) P (program)

∇J (function) D ⊂ P

∇: diff

F : surj

F : surj

A: autodiff

J (function) P (program)

∂J (set function) D ⊂ P

∂: sub-diff

F : surj

F : surj

6=

A: autodiff
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Outline

1. Conservative set valued field

2. Properties of conservative fields

3. Consequences for deep learning
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What is a derivative?

Linear operator:

derivative : C 1(R) 7→ C 0(R)

f 7→ f ′

Notions of subgradients inherited from calculus of variation follow the “operator” view.
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An impossibility result

Assume that ∂A is a subgradient on univariate Lipschitz functions satisfying

0 ∈ ∂Arelu(0).

sum rule, commutes with translations and multiplication by constants.

Then ∂Af (x) = R for any Lipschitz f and any x ∈ R.
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What is a derivative?

Linear operator:

derivative : C 1(R) 7→ C 0(R)

f 7→ f ′

Notions of subgradients inherited from calculus of variation follow the “operator” view.

Lebesgue differentiation theorem: If f : R 7→ R is integrable, then

F : x 7→
∫ x

−∞
f (t)dt

is differentiable for almost all x , with F ′(x) = f (x) (F is absolutely continuous).

Linear map versus relation / equivalence class in L1.
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Technical reminder

Absolutely continuous path (AC): γ : [0, 1] 7→ Rp is called absolutely continuous if

γ is differentiable almost everywhere with integrable derivative γ′ : [0, 1] 7→ Rp.

γ(t)− γ(0) =
∫ t

0
γ′(s)ds, for all t ∈ [0, 1].

Set valued field: D : Rp ⇒ Rq is a function from Rp to the set of subsets of Rq.

∂f , the subgradient of a convex function f .

∂c f , the Clarke subgradient of a locally Lipschitz function f

∂c f (x) = conv
{
v ∈ Rp, ∃yk →

k→∞
x with yk ∈ R, vk = ∇f (yk) →

k→∞
v
}
.

where R is the (full measure set) where f is differentiable.

Closed graph: a notion of continuity for D

graphD = {(x , z), x ∈ Rp, z ∈ D(x)} ⊂ Rp+q,

If vk ∈ D(xk) for all k ∈ N, limk→∞ vk ∈ D(limk→∞ xk) (provided limits exist).
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Conservative set valued fields

D : Rp ⇒ Rp, set valued, closed graph, non empty values, locally bounded.
Conservative field: For any AC loop γ : [0, 1] 7→ Rp, γ(0) = γ(1),∫ 1

0

max
v∈D(γ(t))

〈γ̇(t), v〉 dt =

∫ 1

0

min
v∈D(γ(t))

〈γ̇(t), v〉 dt = 0

Lebsegue integral.

Equivalent forms: set valued (Aumann) integral.

Continuous vector field: null circulation, Poincaré
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Locally Lipschitz potentials

Potential: D : Rp ⇒ Rp a conservative field. Define f : Rp 7→ R,

f (x) = f (0) +

∫ 1

0

max
v∈D(γ(t))

〈γ̇(t), v〉 dt

where γ : [0, 1] 7→ Rp is any AC path with γ(0) = 0, γ(1) = x .
f is well and uniquely defined up to a constant, Locally Lipschitz.

f is a potential for D.

D is a conservative field for f .

Equivalent forms: With min selection, any measurable selection or set valued integral.

f C 1: {∇f } is conservative for f (not unique).

f convex locally Lipschitz: ∂f is conservative for f .

Not all locally Lipschitz f admit a conservative field
(they generically don’t: Borwein, Moors, Xianfu).
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An operational chain rule

Lemma: The following are equivalent

D : Rp ⇒ Rp is conservative for f : Rp 7→ R.

For any AC γ : [0, 1] 7→ Rp

d

dt
f (γ(t)) = 〈v , γ̇(t)〉 ∀v ∈ D(γ(t)), a.e. t ∈ [0, 1].

Affine span of D(γ(t)) is “orthogonal” to γ̇ for almost all t and any γ.

Theorem: If f is locally Lipschitz and tame then ∂c f is conservative for f . [Davis et.
al. (2019)].

Central for Lyapunov analysis of stochastic approximation strategies (minibatch).
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Illustration
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Outline

1. Conservative set valued field

2. Properties of conservative fields

3. Consequences for deep learning
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Relation to gradients

Let D : Rp ⇒ Rp be a conservative field for f : Rp 7→ R (implicitely, f admits a
conservative field).

Gradient almost everywhere: D = {∇f } Lebesgue almost everywhere.

Consequence: ∂c f is conservative for f , and for all x ∈ Rp,

∂c f (x) ⊂ conv(D(x)).

Fermat rule: 0 ∈ conv(D) for local minima.

Remark: Conservativity is much stronger than “gradient almost everywhere”.

Take f = ‖ · ‖2 and set D = {∇f } and D = {∇f , 0} on a segment [x , y ],
D is compact valued with closed graph, gradient almost everywhere but not conservative.
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Conservative fields and calculus

Compatibility with calculus rules:
Linear combination of conservative fields is conservative
Composition of conservative Jacobian is conservative.

Sum rule: Let f1, . . . , fn be locally Lipschitz continuous functions and D1, . . . ,Dn re-
spective conservative fields. Then D =

∑n
i=1 Di is conservative for f =

∑n
i=1 fi .

Consequence for AD (informal): A program is a composition of Locally Lipschitz
maps.
AD with conservative fields in place of gradients, output a conservative field for the
implemented function.
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Outline

1. Conservative set valued field

2. Properties of conservative fields

3. Consequences for deep learning
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Deep networks and tamness

Training: Given {(xi , yi )}ni=1 in Rp × RpL and a loss ` : RpL × RpL → R+.

min
θ

J(θ) :=
1

n

n∑
i=1

`(Fθ(xi ), yi ) =
1

n

n∑
i=1

Ji (θ).

Assumption: Activation functions defining Fθ and ` (all nonlinearities) are

Locally Lipschitz.

Defined piecewise (finitely many pieces).

Expressed with, polynomials, quotients, exponential, logarithms.

Tameness: Then J is locally Lipschitz and “tame”, i.e. definable in an o-minimal
structure [Dries-Miller 1996].
This structure contains all semi-algebraic sets and the graph of the exponential function
[Wilkie (1996)].
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Nonsmooth algorithmic differentiation for deep networks

Nonsmooth backpropagation:

Consider J : Rp 7→ R the empirical loss.

First order mapping,
backprop Ji with subgradients in place of derivatives (relu′(0) = 0).

Set D = 1
n

∑n
i=1 backprop Ji .

Set critJ = {θ ∈ Rp, 0 ∈ conv(D(θ))}.

Then:

Conservativity: D is conservative for J.

{J(θ2)− J(θ1)} =

∫ 1

0

〈D((1− t)θ1 + tθ2), θ2 − θ1〉 dt,

Gradient: D = {∇J} except on a finite union of smooth manifolds of dimension < p.

Morse-Sard: The set of critical values is finite.

J(critJ) = {J(θ), 0 ∈ conv(D(θ))}

KL inequality: There is a Kurdyka- Lojasiewicz inequality for D and J.
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Tame characterization: stratification, variational projection

[Bolte-Daniilidis-Lewis (2007)]
Example: Projection formula f (x1, x2) = |x1|+ |x2|.
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Minibatch strategies

Minibatch stochastic approximation: Given (Ik)k∈N iid, uniform on {1, . . . , n}, (αk)k∈N
positive, iterate,

θk+1 ∈ θk − αkbackprop JIk (θk)

Convergence: Assume∑
k αk = +∞ and αk = o(1/ log(k)).

supk∈N ‖θk‖ < +∞ with positive probability (call this event E).

Set, Θ ⊂ Rp, the set of accumulation points of (θk)k∈N.
Then, almost surely on E , ∅ 6= Θ ⊂ critJ and J is constant on Θ.
Spurious critical points:
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With proper randomization of the initialization, elements of Θ are Clarke critical.

Lyapunov analysis, differential inclusion approach [Benaim-Hofbauer-Sorin (2005)].

Conservativity: chain rule along AC curves.

Tameness: Morse-Sard theorem.
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Summary and conclusion: functions, programs and numerics

Smooth: Nonsmooth:

J (function) P (program)

∇J (function) D ⊂ P

∇: diff

F : surj

F : surj

A: autodiff

J (function) P (program)

∂J (set function) D ⊂ P

∂: sub-diff

F : surj

F : surj

6=

A: autodiff

A mathematical model for nonsmooth algorithmic differentiation.

Algorithms: Nonsmooth AD + minibatching deep nets ∼ smooth case.
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Subgradients: F : Rp 7→ R Lipschitz continuous

F convex: global lower affine tangent

F (y) ≥ F (x) +∇F (x)T (y − x), ∀y ∈ Rp if F is differentiable at x

∂convF (x) =
{
v ∈ Rp, F (y) ≥ F (x) + vT (y − x), ∀y ∈ Rp

}
.

1: smooth 2: nonsmooth
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Example: F : x 7→ |x |.

∂convF (0) =


−1 if x < 0

1 if x > 0

[−1, 1] if x = 0

.
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Subgradients: F : Rp 7→ R Lipschitz continuous

F general: Rademacher, the set R ⊂ Rp where F is differentiable has full measure.

Sequential closure: limits of neighboring gadients.

∂clF (x) =
{
v ∈ Rp, ∃ (yk , vk)k∈N , yk →k→∞

x , vk →
k→∞

v , yk ∈ R, vk = ∇F (yk), k ∈ N
}
.

Clarke subgradient: convex closure.

∂ClarkeF (x) = conv(∂clF (x)).

Example: F : x 7→ |x |.

∂convF (0) =


−1 if x < 0

1 if x > 0

[−1, 1] if x = 0

.
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Subgradient calculus

No convexity, no calculus:

∂(f + g) ⊂ ∂f + ∂g .

holds with equality if f and g are continuously differentiable.

holds with equality if f and g are convex (full domain).

does not hold in general: f : x 7→ |x |

∂(f − f ) = ∂(x 7→ 0) = {0}
⊂ ∂(f ) + ∂(−f )

=


0 if x < 0

0 if x > 0

[−2, 2] if x = 0

.
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