Didier Henrion

Polynomial optimization and optimal control
CAS MINES ParisTech 2021

The
 Moment-SOS Hierarchy

Lectures in Probability, Statistics, Computational
Geometry, Control and Nonlinear PDEs

Polynomial Optimization, Efficiency
through Moments and Algebra
poema-network.eu

Moment-SOS aka Lasserre hierarchy

Nonlinear nonconvex problem reformulated as infinite-dimensional linear optimization problem

Solved approximately with a family of convex (semidefinite) relaxations of increasing size indexed by relaxation order $r \in \mathbb{N}$

Based on the duality between the cone of positive polynomials and moments and their sum of squares (SOS) and linear matrix inequality (LMI) approximations

Approximate solutions to the nonlinear nonconvex problem can be extracted from the solutions of the convex relaxations

1. Polynomial optimization

POP

Given multivariate real polynomials p, p_{1}, \ldots, p_{k}, solve globally

$$
\begin{aligned}
& v^{*}:= \min _{x} \\
& p(x) \\
& \text { s.t. } \\
& x \in X:=\left\{x \in \mathbb{R}^{n}: p_{k}(x) \geq 0, k=1, \ldots, m\right\}
\end{aligned}
$$

where X is bounded and $p \in \mathbb{R}[x]_{d}$ has degree d

Equivalently

$$
\begin{array}{ll}
v^{*}:=\max _{v \in \mathbb{R}} & v \\
\text { s.t. } & p-v \in P(X)
\end{array}
$$

where $P(X)$ is the convex cone of positive polynomials on X

However this cone is difficult to manipulate directly

Inner approximations

Since $X:=\left\{x \in \mathbb{R}^{n}: p_{k}(x) \geq 0, k=1, \ldots, m\right\}$ is bounded, we can assume that $p_{1}(x)=R^{2}-\sum_{i=1}^{n} x_{i}^{2}$ for R large enough

Let $p_{0}(x):=1$ and for $r \geq d$ define the convex cone

$$
Q(X)_{r}:=\{p \in \mathbb{R}[x]_{d}: p=\sum_{k=0} \underbrace{s_{k} p_{k}}_{\in \mathbb{R}[x]_{r}}, s_{k} \mathrm{SOS}\}
$$

Observe that $Q(X)_{r} \subset Q(X)_{r+1} \subset P(X)$
Theorem [Putinar 1993]: $\overline{Q(X)_{\infty}}=P(X)$

In words, every positive polynomial on a compact semialgebraic set can be approximated arbitrary well by SOS polynomials

Testing whether a polynomial is SOS reduces to semidefinite programming (SDP)

Semidefinite programs can be solved efficiently with primal-dual interior-point methods

SOS hierarchy

Since $Q(X)_{r} \subset Q(X)_{r+1} \subset P(X)$ we have a hierarchy of SDP problems of increasing size

$$
v_{r}^{*}:=\max _{v \in \mathbb{R}} \quad \begin{aligned}
& v \\
& \text { s.t. }
\end{aligned} \quad p-v \in Q(X)_{r}
$$

yielding a converging monotone sequence of lower bounds

$$
v_{r}^{*} \leq v_{r+1}^{*} \leq \cdots \leq v_{\infty}^{*}=v^{*}
$$

At a given r^{*} we want to detect if the bound is exact: $v_{r^{*}}^{*}=v^{*}$
For that convex duality is essential [Lasserre 2001]
Primal formulation on positive measures

$$
\begin{aligned}
v^{*}=\min _{\mu} & \int p(x) d \mu(x) \\
\text { s.t. } & \underbrace{\int d \mu(x)=1}_{\mu \in \operatorname{Prob}(X)}
\end{aligned}
$$

with dual on positive continuous functions

$$
v^{*}=\max _{v \in \mathbb{R}} \quad v .
$$

At a given r^{*} we want to detect if the bound is exact: $v_{r^{*}}^{*}=v^{*}$

For that convex duality is essential [Lasserre 2001]

Primal formulation on positive measures and moments

$$
\begin{aligned}
v^{*}=\min _{\mu} & \int p(x) d \mu(x) \\
\text { s.t. } & \underbrace{\int d \mu(x)=1}_{\mu \in \operatorname{Prob}(X)} \begin{aligned}
\int \in C(X)_{+}^{\prime}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{lll}
v^{*}=\min _{y} & \sum_{a} p_{a} y_{a} \\
\text { s.t. } & y_{0}=1 \\
& y \in P(X)^{\prime}
\end{array}
$$

with dual on positive continuous functions and polynomials

$$
\begin{array}{cl}
v^{*}=\max _{v \in \mathbb{R}} & v \\
\mathrm{s.t.} & p-v \in C(X)_{+}
\end{array} \quad v^{*}=\max _{v \in \mathbb{R}} \quad v
$$

Moments

Let $\left(b_{a}(x)\right)_{a \in \mathbb{N}_{d}^{n}}$ denote a basis of vector space $\mathbb{R}[x]_{d}$ indexed in $\mathbb{N}_{d}^{n}:=\left\{a \in \mathbb{N}^{n}: \sum_{k=1}^{n} a_{k} \leq d\right\}$ of cardinality $\binom{n+d}{n}$

The polynomial p can then be written as

$$
p(x)=\sum_{a \in \mathbb{N}_{d}^{n}} p_{a} b_{a}(x)
$$

and the objective function can be written as

$$
\int p(x) d \mu(x)=\sum_{a \in \mathbb{N}_{d}^{n}} p_{a} y_{a}
$$

which is a linear function of the moments of measure μ

$$
y_{a}=\int_{X} b_{a}(x) d \mu(x)
$$

Moment-SOS hierarchy

So we have a primal moment hierarchy

$$
\begin{array}{ll}
v_{r}^{*}=\min _{y} & \sum_{a} p_{a} y_{a} \\
\text { s.t. } & y_{0}=1 \\
& y \in Q(X)_{r}^{\prime}
\end{array}
$$

with explicit LMI relaxations of the cone of moments on X (called pseudo-moments, or pseudo-expectations) whose dual is the SOS hierarchy

$$
v_{r}^{*}:=\max _{v \in \mathbb{R}} \quad v .
$$

In the primal hierarchy, global optimality is ensured whenever y are moments of the Dirac measure at a global optimum x^{*}
\ldots or more generally, whenever y are moments of a measure concentrated on global optima $X^{*}:=\left\{x \in X: p(x)=v^{*}\right\}$

Extracting global optimizers

To certify exactness, we can post-process the solution of the primal SDP and check the rank of the so-called moment matrix

$$
M_{r}(y):=\left(\int b_{a_{r}}(x) b_{a_{c}}(x) d \mu(x)\right)_{a_{r}, a_{c} \in \mathbb{N}_{r}^{n}}
$$

If the rank of $M_{r}(y)$ does not increase when r increases, then the moment relaxation is exact [Curto \& Fialkow 1991]

Global solutions extracted by linear algebra, as implemented in our Matlab interface GloptiPoly [H \& Lasserre 2003]

Exactness at finite relaxation order is generic [Nie 2014]

Approximating global optimizers

Since the moment matrix is positive semidefinite, it holds

$$
M_{d}(y)=P E P^{\prime}
$$

where P is an orthonormal matrix whose columns are denoted p_{i} and E is a diagonal matrix of eigenvalues $e_{i+1} \geq e_{i} \geq 0$

Each column p_{i} is the vector of coefficients in basis $b(x)$ of a polynomial $p_{i}(x)$, so that

$$
p_{i}^{\prime} M_{d}(y) p_{i}=\int p_{i}^{2}(x) d \mu(x)=e_{i}
$$

Let $r \in \mathbb{N}$ and define the Christoffel-Darboux polynomial SOS

$$
p_{\mathrm{CD}}(x):=\sum_{i=1}^{r} p_{i}^{2}(x)
$$

Given $\beta>0$, let $\gamma:=\sum_{i=1}^{r} e_{i} / \beta$ so that $\mu\left(\left\{x: p_{\mathrm{CD}}(x) \leq \gamma\right\}\right) \geq 1-\beta$
Hence the measure is concentrated on small sublevel sets of the Christoffel-Darboux polynomial [Lasserre \& Pauwels 2019]

Moment matrix of order 4 and size 15 for the POP $\min _{x \in \mathbb{R}^{2}}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}-x_{1}^{2}+x_{2}^{2}$

2. Polynomial optimal control

POC

A polynomial optimal control (POC) problem is a time-varying extension of a POP

$$
\begin{aligned}
v^{*}\left(t_{0}, x_{0}\right):=\inf _{u} & \int_{t_{0}}^{T} l\left(x_{t}, u_{t}\right) d t+l_{T}\left(x_{T}\right) \\
& \text { s.t. } \\
& \dot{x}_{t}=f\left(x_{t}, u_{t}\right), x_{t_{0}}=x_{0} \\
& x_{t} \in X, u_{t} \in U, \forall t \in\left[t_{0}, T\right] \\
& x_{T} \in X_{T}
\end{aligned}
$$

All the given data f, l, l_{T} are polynomial and the given sets X, X_{T}, U are compact semi-algebraic

Terminal time T can be either given or free

The function v^{*} of the initial data t_{0}, x_{0} is the value function

From value function to optimal control

From the value function v^{*} we can derive an optimal control

$$
u_{t}^{*} \in \arg \min _{u}\left\{l\left(x_{t}, u\right)+\operatorname{grad} v^{*}\left(t, x_{t}\right) \cdot f\left(x_{t}, u\right)\right\}
$$

by solving an optimization problem

Then we can verify optimality

$$
l\left(x_{t}, u_{t}^{*}\right)+\frac{\partial v^{*}\left(t, x_{t}\right)}{\partial t}+\operatorname{grad} v^{*}\left(t, x_{t}\right) \cdot f\left(x_{t}, u_{t}^{*}\right)=0
$$

HJB PDE

The value function solves the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear first-order partial differential equation (PDE)

$$
\begin{array}{r}
\frac{\partial v(t, x)}{\partial t}+h(t, \operatorname{grad} v(t, x))=0 \\
v(T, .)=l_{T}
\end{array}
$$

with Hamiltonian conjugate to the Lagrangian

$$
h(t, p):=\inf _{u}\{l(x, u)+p \cdot f(x, u)\}
$$

In general this PDE does not have a regular solution, and a notion of weak solution (viscosity solution) must be defined

The value function can be discontinuous and complicated
And there are additional difficulties...

No optimal control

Bolza problem

$$
\begin{aligned}
& v^{*}(0,0)=\inf _{u} \int_{0}^{1}\left(x_{t}^{2}+\left(u_{t}^{2}-1\right)^{2}\right) d t \\
& \text { s.t. } \dot{x}_{t}=u_{t}, x_{0}=0 \\
& x_{t} \in X:=[-1,1], u_{t} \in U:=[-1,1] \forall t \in[0,1]
\end{aligned}
$$

Note that the cost is nonconvex in the control

Let us construct a minimizing sequence...

The infimum $v^{*}(0,0)=0$ is not attained in the space of measurable functions of time

$$
t \mapsto u_{t} \in U
$$

so let us enlarge the space of allowable controls

Instead of classical controls let us consider relaxed controls

$$
t \mapsto \omega_{t}(d u)=\omega(d u \mid t) \in \operatorname{Prob}(U)
$$

as time-dependent probability measures on U

The controlled ordinary differential equation (ODE)

$$
\dot{x}_{t}=f\left(x_{t}, u_{t}\right), \quad u_{t} \in U
$$

becomes a relaxed controlled ODE

$$
\dot{x}_{t}=\int_{U} f\left(x_{t}, u\right) \omega_{t}(d u), \quad \omega_{t} \in \operatorname{Prob}(U)
$$

or equivalently a convex differential inclusion

$$
\dot{x}_{t} \in \operatorname{Conv}\left\{f\left(x_{t}, u\right): u \in U\right\}
$$

Classical controls correspond to $\omega_{t}(d u)=\delta_{u_{t}}(d u)$
Relaxed controls capture limit behavior such as e.g. oscillations

The classical Bolza problem

$$
\begin{aligned}
v^{*}(0,0)= & \inf _{u}
\end{aligned} \begin{aligned}
& \int_{0}^{1}\left(x_{t}^{2}+\left(u_{t}^{2}-1\right)^{2}\right) d t \\
& \\
& \text { s.t. } \\
& \\
& \\
& \\
& \\
& \dot{x}_{t}=u_{t} \in[-1,1], u_{0} \in[-1,1] \forall t \in[0,1]
\end{aligned}
$$

becomes the relaxed Bolza problem

$$
\begin{aligned}
v_{R}^{*}(0,0)=\inf _{\omega_{t}} & \int_{0}^{1} \int_{U}\left(x_{t}^{2}+\left(u^{2}-1\right)^{2}\right) \omega_{t}(d u) d t \\
& \text { s.t. } \\
& \dot{x}_{t}=\int_{U} u \omega_{t}(d u), x_{0}=0 \\
& x_{t} \in[-1,1], \omega_{t} \in \operatorname{Prob}([-1,1]) \forall t \in[0,1]
\end{aligned}
$$

There is no relaxation gap: $v^{*}(0,0)=v_{R}^{*}(0,0)=0$ and the relaxed infimum is attained at $\omega_{t}^{*}=\frac{1}{2}\left(\delta_{-1}+\delta_{+1}\right)$

Let's relax

The classical POC problem

$$
\begin{aligned}
v^{*}\left(t_{0}, x_{0}\right):=\inf _{u} & \int_{t_{0}}^{T} l\left(x_{t}, u_{t}\right) d t+l_{T}\left(x_{T}\right) \\
& \text { s.t. } \quad \dot{x}_{t}=f\left(x_{t}, u_{t}\right), x_{t_{0}}=x_{0} \\
& x_{t} \in X, u_{t} \in U, \forall t \in\left[t_{0}, T\right] \\
& x_{T} \in X_{T}
\end{aligned}
$$

becomes a relaxed POC problem

$$
\begin{aligned}
v_{R}^{*}\left(t_{0}, x_{0}\right):=\min _{\omega_{t}} & \int_{t_{0}}^{T} \int_{U} l\left(x_{t}, u\right) \omega_{t}(d u) d t+l_{T}\left(x_{T}\right) \\
& \text { s.t. } \quad \\
& \dot{x}_{t}=\int_{U} f\left(x_{t}, u\right) \omega_{t}(d u), x_{t_{0}}=x_{0} \\
& x_{t} \in X, \omega_{t} \in \operatorname{Prob}(U), \forall t \in\left[t_{0}, T\right] \\
& x_{T} \in X_{T}
\end{aligned}
$$

and under reasonable assumptions, it can be shown that there is no relaxation gap: $v_{R}^{*}=v^{*}$

Not relaxed enough

The POC problem is now linear in the relaxed control ω_{t} but it remains nonlinear in the state x

For a given initial state x_{0} and a given relaxed control ω_{t}, let us introduce the occupation measure

$$
d \mu\left(t, x, u \mid x_{0}\right):=d t \omega_{t}(d u) \delta_{x_{t}}\left(d x \mid x_{0}, u\right)
$$

corresponding to the trajectory x_{t}

The occupation measure $\mu:=d t \omega_{t} \delta_{x_{t}}$ and the terminal measure $\mu_{T}:=\delta_{\left(T, x_{T}\right)}$ solve the Liouville equation

$$
\frac{\partial \mu}{\partial t}+\operatorname{div}(f \mu)+\mu_{T}=\delta_{\left(t_{0}, x_{0}\right)}
$$

which should be understood in the weak sense, i.e.

$$
\int v \mu_{T}=v\left(t_{0}, x_{0}\right)+\int\left(\frac{\partial v}{\partial t}+\operatorname{grad} v \cdot f\right) \mu
$$

for all $v \in C^{1}\left(\left[t_{0}, T\right] \times X\right)$
The non-linear ODE $\dot{x}=f(x, u)$ has been relaxed to a linear transport PDE on measures

The original POC problem

$$
\begin{aligned}
v^{*}\left(t_{0}, x_{0}\right):=\inf _{u} & \int_{t_{0}}^{T} l\left(x_{t}, u_{t}\right) d t+l_{T}\left(x_{T}\right) \\
& \text { s.t. } \\
& \dot{x}_{t}=f\left(x_{t}, u_{t}\right), x_{t_{0}}=x_{0} \\
& x_{t} \in X, u_{t} \in U, \forall t \in\left[t_{0}, T\right] \\
& x_{T} \in X_{T}
\end{aligned}
$$

becomes a linear problem (LP)

$$
\begin{aligned}
p^{*}\left(t_{0}, x_{0}\right):= & \min _{\mu, \mu_{T}} \int l \mu+\int l_{T} \mu_{T} \\
& \text { s.t. } \quad \frac{\partial \mu}{\partial t}+\operatorname{div}(f \mu)+\mu_{T}=\delta_{\left(t_{0}, x_{0}\right)}
\end{aligned}
$$

on measures $\mu \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+}^{\prime}, \mu_{T} \in C\left(\{T\} \times X_{T}\right)_{+}^{\prime}$
It can be shown that there is no relaxation gap: $p^{*}=v^{*}$

The primal measure LP

$$
\begin{aligned}
p^{*}\left(t_{0}, x_{0}\right):= & \min _{\mu, \mu_{T}} \\
& \int l \mu+\int l_{T} \mu_{T} \\
& \text { s.t. } \quad \frac{\partial \mu}{\partial t}+\operatorname{div}(f \mu)+\mu_{T}=\delta\left(t_{0}, x_{0}\right) \\
& \mu \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+}^{\prime}, \mu_{T} \in C\left(\{T\} \times X_{T}\right)_{+}^{\prime}
\end{aligned}
$$

has a dual LP

$$
\begin{aligned}
& d^{*}\left(t_{0}, x_{0}\right):= \sup _{v} \\
& v\left(t_{0}, x_{0}\right) \\
& \text { s.t. } \\
& l+\frac{\partial v}{\partial t}+\operatorname{grad} v \cdot f \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+} \\
& l_{T}-v(T, .) \in C\left(\{T\} \times X_{T}\right)_{+}
\end{aligned}
$$

on functions $v \in C^{1}\left(\left[t_{0}, T\right] \times X\right)$
It can be shown that there is no duality gap: $p^{*}=d^{*}$

Convergence guarantees

Dual LP

$$
\begin{aligned}
d^{*}\left(t_{0}, x_{0}\right):= & \sup _{v} \\
& v\left(t_{0}, x_{0}\right) \\
& \text { s.t. } \\
& l+\frac{\partial v}{\partial t}+\operatorname{grad} v \cdot f \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+} \\
& l_{T}-v(T, .) \in C\left(\{T\} \times X_{T}\right)_{+}
\end{aligned}
$$

Lemma: for every admissible v it holds $v^{*} \geq v$ on $\left[t_{0}, T\right] \times X$

Lemma: there exists a maximizing sequence $\left(v_{r}\right)_{r \in \mathbb{N}}$ such that $\lim _{r \rightarrow \infty} v_{r}\left(t_{0}, x_{0}\right)=v^{*}\left(t_{0}, x_{0}\right)$.

Subsolutions to HJB PDE [Lasserre, H, Prieur, Trélat. SICON 2008]

Theorem [H \& Pauwels 2017]: For any admissible $\left(v_{r}\right)_{r \in \mathbb{N}}$ and optimal trajectory $\left(x_{t}\right)_{t \in\left[t_{0}, T\right]}$ it holds

$$
0 \leq v^{*}\left(t, x_{t}\right)-v_{r}\left(t, x_{t}\right) \leq v^{*}\left(t_{0}, x_{0}\right)-v_{r}\left(t_{0}, x_{0}\right) \underset{r \rightarrow \infty}{\longrightarrow} 0
$$

In words, the gap between the value function and its lower bound decreases uniformly in time along optimal trajectories

Convergence in space is pointwise but we can do better...

In the Liouville equation

$$
\frac{\partial \mu}{\partial t}+\operatorname{div}(f \mu)+\mu_{T}=\delta_{\left(t_{0}, x_{0}\right)}
$$

instead of a Dirac right hand side we can use a general probability measure $\xi_{0} \in \operatorname{Prob}(X)$ supported on a set of initial conditions

$$
\frac{\partial \mu}{\partial t}+\operatorname{div}(f \mu)+\mu_{T}=\delta_{t_{0}} \xi_{0}=: \mu_{0}
$$

Equivalently, instead of using the occupation measure

$$
d \mu\left(t, x, u \mid x_{0}\right):=d t \omega_{t}(d u) \delta_{x_{t}}\left(d x \mid x_{0}, u\right)
$$

we use the averaged occupation measure

$$
d \mu(t, x, u):=\int_{X} d \mu\left(t, x, u \mid x_{0}\right) d \xi_{0}\left(x_{0}\right)
$$

Given an initial condition x_{0} and a relaxed control ω_{t}, let $\left(x_{t}\right)_{t \in\left[t_{0}, T\right]}$ be the solution to the controlled ODE

Let ξ_{t} denote the image measure of ξ_{0} through the flow map $x_{0} \mapsto x_{t}$, such that $\xi_{t}(A):=\xi_{0}\left(\left\{x_{0}: F_{t}\left(x_{0}\right) \in A\right\}\right)$ for all $A \subset X$

The averaged occupation measure writes $d \mu(t, x, u)=d t \omega_{t}(d u) \xi_{t}(d x)$

The value function also becomes averaged

$$
\bar{v}^{*}\left(\mu_{0}\right):=\int_{X} v^{*}\left(t_{0}, x_{0}\right) \xi_{0}\left(x_{0}\right)
$$

and it matches the primal LP averaged value

$$
\begin{aligned}
\bar{p}^{*}\left(\mu_{0}\right):= & \min _{\mu, \mu_{T}}
\end{aligned} \begin{array}{ll}
& \langle l, \mu\rangle+\left\langle l_{T}, \mu_{T}\right\rangle \\
& \text { s.t. }
\end{array} \begin{aligned}
& \frac{\partial \mu}{\partial t}+\operatorname{div}(f \mu)+\mu_{T}=\mu_{0} \\
& \\
&
\end{aligned} \mu \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+}^{\prime}, \mu_{T} \in C\left(\{T\} \times X_{T}\right)_{+}^{\prime}+
$$

and the dual LP averaged value

$$
\begin{aligned}
\bar{d}^{*}\left(\mu_{0}\right):= & \sup _{v} \\
& \left\langle v, \mu_{0}\right\rangle \\
& \text { s.t. } \\
& l+\frac{\partial v}{\partial t}+\operatorname{grad} v \cdot f \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+} \\
& l_{T}-v(T, .) \in C\left(\{T\} \times X_{T}\right)_{+}
\end{aligned}
$$

Theorem [H \& Pauwels 2017]: For any maximizing sequence $\left(v_{r}\right)_{r \in \mathbb{N}}$ it holds

$$
0 \leq \int_{X}\left(v^{*}(t, x)-v_{r}(t, x)\right) \xi_{t}(d x) \leq \int_{X}\left(v^{*}\left(t_{0}, x_{0}\right)-v_{r}\left(t_{0}, x_{0}\right)\right) \xi_{0}(d x) \underset{r \rightarrow \infty}{\longrightarrow} 0
$$

Hence by transporting a probability measure ξ_{0}, we have $L_{1}\left(\xi_{0}\right)$ convergence to the value function

Now let's compute

To solve the primal LP

$$
\begin{array}{ll}
\min _{\mu, \mu_{T}} & \int l \mu+\int l_{T} \mu_{T} \\
\text { s.t. } & \frac{\partial \mu}{\partial t}+\operatorname{div}(f \mu)+\mu_{T}=\mu_{0} \\
& \mu \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+}^{\prime}, \quad \mu_{T} \in C\left(\{T\} \times X_{T}\right)_{+}^{\prime}
\end{array}
$$

and dual LP

$$
\begin{array}{ll}
\sup _{v} & \int v \mu_{0} \\
\text { s.t. } & l+\frac{\partial v}{\partial t}+\operatorname{grad} v \cdot f \in C\left(\left[t_{0}, T\right] \times X \times U\right)_{+} \\
& l_{T}-v(T, .) \in C\left(\{T\} \times X_{T}\right)_{+}
\end{array}
$$

with X, X_{T} bounded basic semialgebraic and l, l_{T}, f polynomial we can readily use the moment-SOS hierarchy

We replace $C(.)_{+}$with $Q(.)_{r}$ for increasing relaxation order r and at the price of solving SDP problems of increasing size we get pseudo-moments and polynomials v_{r} in $\mathbb{R}[x]_{r}$

Numerical examples

Turnpike control

$$
\begin{array}{ll}
& v^{*}\left(t_{0}, x_{0}\right):= \\
\inf _{u} & \int_{t_{0}}^{2}\left(x_{t}+u_{t}\right) d t \\
\text { s.t. } & \dot{x}_{t}=1+x_{t}-x_{t} u_{t}, x_{t_{0}}=x_{0} \\
& x_{t} \in[-3,3], u_{t} \in[0,3]
\end{array}
$$

optimal trajectory x_{t} starting at $\left(t_{0}, x_{0}\right)=(0,0)$

Turnpike control

Differences $t \mapsto v^{*}\left(t, x_{t}\right)-v_{r}\left(t, x_{t}\right)$ between the actual value function and its poly. approx. of deg. $r=3,5,7,9$ along the optimal trajectory starting at $\left(t_{0}, x_{0}\right)=(0,0)$

Observe convergence along this trajectory, as well as time decrease of the difference

LQR set control

$$
v^{*}\left(t_{0}, x_{0}\right):=
$$

$\inf _{u} \int_{t_{0}}^{1}\left(10 x_{t}^{2}+u_{t}^{2}\right) d t$
s.t. $\quad \dot{x}_{t}=x_{t}+u_{t}, x_{t_{0}}=x_{0}$

Contour lines of $(t, x) \mapsto \log \left(v^{*}(t, x)-v_{\sigma}(t, x)\right)$ with v_{6} poly. approx. of deg. 6 to actual value function v^{*} obtained by transporting the Lebesgue measure on $[-1,1]$

Minimum time double integrator with state constraints

With the moment-SOS hierarchy, we compute the pseudo-moments of degree 8 of the occupation measure, and we construct the moment matrices of size 45 of the control and state marginals

For each time we minimize the respective Christoffel-Darboux polynomial (from left to right: control, first and second state, red curves to be compared with the analytic solutions in black)

Take-home messages

Polynomial optimization (POP) and optimal control (POC) can be solved approximately with the moment-SOS hierarchy

Non-linear non-convex problems reformulated as primal linear problems on probability measures or occupation measures

Dual linear SOS problems give bounds on the optimal value with convergence guarantees

From the primal solutions we can certify global optimality (linear algebra on the moment matrix) and/or extract approximate solutions (Christoffel-Darboux polynomial)

Current research directions

Exploit various kinds of sparsity to improve scability of the moment-SOS hierarchy

From optimal control of ODEs to SDEs and PDEs

Occupation measures on infinite-dimensional spaces

The
 Moment-SOS Hierarchy

Lectures in Probability, Statistics, Computational
Geometry, Control and Nonlinear PDEs

Polynomial Optimization, Efficiency
through Moments and Algebra
poema-network.eu

