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Moment-SOS aka Lasserre hierarchy

Nonlinear nonconvex problem reformulated as infinite-dimensional

linear optimization problem

Solved approximately with a family of convex (semidefinite)

relaxations of increasing size indexed by relaxation order r ∈ N

Based on the duality between the cone of positive polynomials

and moments and their sum of squares (SOS) and linear matrix

inequality (LMI) approximations

Approximate solutions to the nonlinear nonconvex problem can

be extracted from the solutions of the convex relaxations



1. Polynomial optimization



POP

Given multivariate real polynomials p, p1, . . . , pk, solve globally

v∗ := minx p(x)
s.t. x ∈ X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . ,m}

where X is bounded and p ∈ R[x]d has degree d

Equivalently

v∗ := maxv∈R v
s.t. p− v ∈ P (X)

where P (X) is the convex cone of positive polynomials on X

However this cone is difficult to manipulate directly



Inner approximations

Since X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . ,m} is bounded,

we can assume that p1(x) = R2 −
∑n
i=1 x

2
i for R large enough

Let p0(x) := 1 and for r ≥ d define the convex cone

Q(X)r := {p ∈ R[x]d : p =
∑
k=0

skpk︸ ︷︷ ︸
∈R[x]r

, sk SOS}

Observe that Q(X)r ⊂ Q(X)r+1 ⊂ P (X)

Theorem [Putinar 1993]: Q(X)∞ = P (X)



In words, every positive polynomial on a compact semialgebraic

set can be approximated arbitrary well by SOS polynomials

Testing whether a polynomial is SOS reduces to

semidefinite programming (SDP)

Semidefinite programs can be solved efficiently with primal-dual

interior-point methods



SOS hierarchy

Since Q(X)r ⊂ Q(X)r+1 ⊂ P (X) we have a hierarchy of SDP

problems of increasing size

v∗r := maxv∈R v
s.t. p− v ∈ Q(X)r

yielding a converging monotone sequence of lower bounds

v∗r ≤ v∗r+1 ≤ · · · ≤ v
∗
∞ = v∗



At a given r∗ we want to detect if the bound is exact: v∗r∗ = v∗

For that convex duality is essential [Lasserre 2001]

Primal formulation on positive measures and moments

v∗ = minµ
∫
p(x)dµ(x)

s.t.

∫
dµ(x) = 1

µ ∈ C(X)′+︸ ︷︷ ︸
µ ∈ Prob(X)

v∗ = miny
∑
a paya

s.t. y0 = 1
y ∈ P (X)′

with dual on positive continuous functions and polynomials

v∗ = maxv∈R v
s.t. p− v ∈ C(X)+

v∗ = maxv∈R v
s.t. p− v ∈ P (X)



At a given r∗ we want to detect if the bound is exact: v∗r∗ = v∗

For that convex duality is essential [Lasserre 2001]

Primal formulation on positive measures and moments

v∗ = minµ
∫
p(x)dµ(x)

s.t.

∫
dµ(x) = 1

µ ∈ C(X)′+︸ ︷︷ ︸
µ ∈ Prob(X)

v∗ = miny
∑
a paya

s.t. y0 = 1
y ∈ P (X)′

with dual on positive continuous functions and polynomials

v∗ = maxv∈R v
s.t. p− v ∈ C(X)+

v∗ = maxv∈R v
s.t. p− v ∈ P (X)



Moments

Let (ba(x))a∈Nnd
denote a basis of vector space R[x]d indexed in

Nnd := {a ∈ Nn :
∑n
k=1 ak ≤ d} of cardinality

(
n+d
n

)
The polynomial p can then be written as

p(x) =
∑
a∈Nnd

paba(x)

and the objective function can be written as∫
p(x)dµ(x) =

∑
a∈Nnd

paya

which is a linear function of the moments of measure µ

ya =
∫
X
ba(x)dµ(x)



Moment-SOS hierarchy

So we have a primal moment hierarchy

v∗r = miny
∑
a paya

s.t. y0 = 1
y ∈ Q(X)′r

with explicit LMI relaxations of the cone of moments on X (called
pseudo-moments, or pseudo-expectations) whose dual is the
SOS hierarchy

v∗r := maxv∈R v
s.t. p− v ∈ Q(X)r

In the primal hierarchy, global optimality is ensured whenever y
are moments of the Dirac measure at a global optimum x∗

... or more generally, whenever y are moments of a measure
concentrated on global optima X∗ := {x ∈ X : p(x) = v∗}



Extracting global optimizers

To certify exactness, we can post-process the solution of the

primal SDP and check the rank of the so-called moment matrix

Mr(y) :=
(∫

bar(x)bac(x)dµ(x)
)
ar,ac∈Nnr

If the rank of Mr(y) does not increase when r increases, then

the moment relaxation is exact [Curto & Fialkow 1991]

Global solutions extracted by linear algebra, as implemented in

our Matlab interface GloptiPoly [H & Lasserre 2003]

Exactness at finite relaxation order is generic [Nie 2014]



Approximating global optimizers

Since the moment matrix is positive semidefinite, it holds

Md(y) = PEP ′

where P is an orthonormal matrix whose columns are denoted pi
and E is a diagonal matrix of eigenvalues ei+1 ≥ ei ≥ 0

Each column pi is the vector of coefficients in basis b(x) of a
polynomial pi(x), so that

p′iMd(y)pi =
∫
p2
i (x)dµ(x) = ei

Let r ∈ N and define the Christoffel-Darboux polynomial SOS

pCD(x) :=
r∑

i=1

p2
i (x)



Given β > 0, let γ :=
∑r
i=1 ei/β so that µ({x : pCD(x) ≤ γ}) ≥ 1−β

Hence the measure is concentrated on small sublevel sets of the
Christoffel-Darboux polynomial [Lasserre & Pauwels 2019]

Moment matrix of order 4 and size 15 for the POP minx∈R2(x2
1 +x2

2)2−x2
1 +x2

2



2. Polynomial optimal control



POC

A polynomial optimal control (POC) problem is a time-varying

extension of a POP

v∗(t0, x0) := infu
∫ T
t0
l(xt, ut)dt+ lT (xT )

s.t. ẋt = f(xt, ut), xt0 = x0
xt ∈ X, ut ∈ U, ∀t ∈ [t0, T ]
xT ∈ XT

All the given data f , l, lT are polynomial

and the given sets X, XT , U are compact semi-algebraic

Terminal time T can be either given or free

The function v∗ of the initial data t0, x0 is the value function



From value function to optimal control

From the value function v∗ we can derive an optimal control

u∗t ∈ arg min
u
{l(xt, u) + grad v∗(t, xt) · f(xt, u)}

by solving an optimization problem

Then we can verify optimality

l(xt, u
∗
t ) +

∂v∗(t, xt)

∂t
+ grad v∗(t, xt) · f(xt, u

∗
t ) = 0



HJB PDE

The value function solves the Hamilton-Jacobi-Bellman (HJB)
equation, a nonlinear first-order partial differential equation (PDE)

∂v(t, x)

∂t
+ h(t,grad v(t, x)) = 0

v(T, .) = lT

with Hamiltonian conjugate to the Lagrangian

h(t, p) := inf
u
{l(x, u) + p · f(x, u)}

In general this PDE does not have a regular solution, and
a notion of weak solution (viscosity solution) must be defined

The value function can be discontinuous and complicated

And there are additional difficulties...



No optimal control

Bolza problem

v∗(0,0) = infu
∫ 1

0
(x2
t + (u2

t − 1)2)dt

s.t. ẋt = ut, x0 = 0
xt ∈ X := [−1,1], ut ∈ U := [−1,1] ∀t ∈ [0,1]

Note that the cost is nonconvex in the control

Let us construct a minimizing sequence...





The infimum v∗(0,0) = 0 is not attained in the space of

measurable functions of time

t 7→ ut ∈ U

so let us enlarge the space of allowable controls

Instead of classical controls let us consider relaxed controls

t 7→ ωt(du) = ω(du|t) ∈ Prob(U)

as time-dependent probability measures on U



The controlled ordinary differential equation (ODE)

ẋt = f(xt, ut), ut ∈ U

becomes a relaxed controlled ODE

ẋt =
∫
U
f(xt, u)ωt(du), ωt ∈ Prob(U)

or equivalently a convex differential inclusion

ẋt ∈ Conv{f(xt, u) : u ∈ U}

Classical controls correspond to ωt(du) = δut(du)

Relaxed controls capture limit behavior such as e.g. oscillations



The classical Bolza problem

v∗(0,0) = infu
∫ 1

0
(x2
t + (u2

t − 1)2)dt

s.t. ẋt = ut, x0 = 0
xt ∈ [−1,1], ut ∈ [−1,1] ∀t ∈ [0,1]

becomes the relaxed Bolza problem

v∗R(0,0) = infωt

∫ 1

0

∫
U

(x2
t + (u2 − 1)2) ωt(du)dt

s.t. ẋt =
∫
U
u ωt(du), x0 = 0

xt ∈ [−1,1], ωt ∈ Prob([−1,1]) ∀t ∈ [0,1]

There is no relaxation gap: v∗(0,0) = v∗R(0,0) = 0

and the relaxed infimum is attained at ω∗t = 1
2(δ−1 + δ+1)



Let’s relax



The classical POC problem

v∗(t0, x0) := infu
∫ T
t0
l(xt, ut)dt+ lT (xT )

s.t. ẋt = f(xt, ut), xt0 = x0
xt ∈ X, ut ∈ U, ∀t ∈ [t0, T ]
xT ∈ XT

becomes a relaxed POC problem

v∗R(t0, x0) := minωt

∫ T
t0

∫
U
l(xt, u)ωt(du)dt+ lT (xT )

s.t. ẋt =
∫
U
f(xt, u)ωt(du), xt0 = x0

xt ∈ X, ωt ∈ Prob(U), ∀t ∈ [t0, T ]
xT ∈ XT

and under reasonable assumptions, it can be shown that there is

no relaxation gap: v∗R = v∗



Not relaxed enough



The POC problem is now linear in the relaxed control ωt
but it remains nonlinear in the state x

For a given initial state x0 and a given relaxed control ωt,

let us introduce the occupation measure

dµ(t, x, u|x0) := dt ωt(du)δxt(dx|x0, u)

corresponding to the trajectory xt



The occupation measure µ := dt ωt δxt and the terminal measure

µT := δ(T,xT ) solve the Liouville equation

∂µ

∂t
+ div(fµ) + µT = δ(t0,x0)

which should be understood in the weak sense, i.e.∫
vµT = v(t0, x0) +

∫ (
∂v

∂t
+ grad v · f

)
µ

for all v ∈ C1([t0, T ]×X)

The non-linear ODE ẋ = f(x, u) has been relaxed

to a linear transport PDE on measures



The original POC problem

v∗(t0, x0) := infu
∫ T
t0
l(xt, ut)dt+ lT (xT )

s.t. ẋt = f(xt, ut), xt0 = x0
xt ∈ X, ut ∈ U, ∀t ∈ [t0, T ]
xT ∈ XT

becomes a linear problem (LP)

p∗(t0, x0) := minµ,µT

∫
lµ+

∫
lTµT

s.t. ∂µ
∂t + div(fµ) + µT = δ(t0,x0)

on measures µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+

It can be shown that there is no relaxation gap: p∗ = v∗



The primal measure LP

p∗(t0, x0) := minµ,µT

∫
lµ+

∫
lTµT

s.t. ∂µ
∂t + div(fµ) + µT = δ(t0,x0)
µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+

has a dual LP

d∗(t0, x0) := supv v(t0, x0)
s.t. l + ∂v

∂t + grad v · f ∈ C([t0, T ]×X × U)+
lT − v(T, .) ∈ C({T} ×XT )+

on functions v ∈ C1([t0, T ]×X)

It can be shown that there is no duality gap: p∗ = d∗



Convergence guarantees



Dual LP

d∗(t0, x0) := supv v(t0, x0)
s.t. l + ∂v

∂t + grad v · f ∈ C([t0, T ]×X × U)+
lT − v(T, .) ∈ C({T} ×XT )+

Lemma: for every admissible v it holds v∗ ≥ v on [t0, T ]×X

Lemma: there exists a maximizing sequence (vr)r∈N such

that limr→∞ vr(t0, x0) = v∗(t0, x0).

Subsolutions to HJB PDE [Lasserre, H, Prieur, Trélat. SICON 2008]



Theorem [H & Pauwels 2017]: For any admissible (vr)r∈N and

optimal trajectory (xt)t∈[t0,T ] it holds

0 ≤ v∗(t, xt)− vr(t, xt) ≤ v∗(t0, x0)− vr(t0, x0) −→
r→∞ 0

In words, the gap between the value function and its lower bound

decreases uniformly in time along optimal trajectories

Convergence in space is pointwise but we can do better...



In the Liouville equation

∂µ

∂t
+ div(fµ) + µT = δ(t0,x0)

instead of a Dirac right hand side we can use a general probability

measure ξ0 ∈ Prob(X) supported on a set of initial conditions

∂µ

∂t
+ div(fµ) + µT = δt0ξ0 =: µ0

Equivalently, instead of using the occupation measure

dµ(t, x, u|x0) := dt ωt(du)δxt(dx|x0, u)

we use the averaged occupation measure

dµ(t, x, u) :=
∫
X
dµ(t, x, u|x0)dξ0(x0)



Given an initial condition x0 and a relaxed control ωt,
let (xt)t∈[t0,T ] be the solution to the controlled ODE

Let ξt denote the image measure of ξ0 through the flow map
x0 7→ xt, such that ξt(A) := ξ0({x0 : Ft(x0) ∈ A}) for all A ⊂ X

The averaged occupation measure writes dµ(t, x, u) = dtωt(du)ξt(dx)



The value function also becomes averaged

v̄∗(µ0) :=
∫
X
v∗(t0, x0)ξ0(x0)

and it matches the primal LP averaged value

p̄∗(µ0) := minµ,µT 〈l, µ〉+ 〈lT , µT 〉
s.t. ∂µ

∂t + div(fµ) + µT = µ0
µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+

and the dual LP averaged value

d̄∗(µ0) := supv 〈v, µ0〉
s.t. l + ∂v

∂t + grad v · f ∈ C([t0, T ]×X × U)+
lT − v(T, .) ∈ C({T} ×XT )+



Theorem [H & Pauwels 2017]: For any maximizing sequence
(vr)r∈N it holds

0 ≤
∫
X

(v∗(t, x)− vr(t, x))ξt(dx) ≤
∫
X

(v∗(t0, x0)− vr(t0, x0))ξ0(dx) −→
r→∞

0

Hence by transporting a probability measure ξ0,

we have L1(ξ0) convergence to the value function



Now let’s compute



To solve the primal LP

minµ,µT

∫
lµ+

∫
lTµT

s.t. ∂µ
∂t + div(fµ) + µT = µ0
µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+

and dual LP

supv

∫
vµ0

s.t. l + ∂v
∂t + grad v · f ∈ C([t0, T ]×X × U)+

lT − v(T, .) ∈ C({T} ×XT )+

with X, XT bounded basic semialgebraic and l, lT , f polynomial
we can readily use the moment-SOS hierarchy

We replace C(.)+ with Q(.)r for increasing relaxation order r and
at the price of solving SDP problems of increasing size we get
pseudo-moments and polynomials vr in R[x]r



Numerical examples



Turnpike control

v∗(t0, x0) :=

infu
∫ 2

t0
(xt + ut)dt

s.t. ẋt = 1 + xt − xtut, xt0 = x0
xt ∈ [−3,3], ut ∈ [0,3] 0

1

2

3

0.0 0.5 1.0 1.5 2.0
t

optimal trajectory xt starting at

(t0, x0) = (0,0)



Turnpike control

0

1
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3

0.0 0.5 1.0 1.5 2.0
t

degree 3

degree 5

degree 7

degree 9

Differences t 7→ v∗(t, xt) − vr(t, xt)
between the actual value function and
its poly. approx. of deg. r = 3,5,7,9
along the optimal trajectory starting
at (t0, x0) = (0,0)

Observe convergence along this trajec-
tory, as well as time decrease of the
difference



LQR set control

v∗(t0, x0) :=

infu
∫ 1

t0
(10x2

t + u2
t )dt

s.t. ẋt = xt + ut, xt0 = x0

−2

−1

0

1

2
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t

x
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0

Contour lines of (t, x) 7→ log(v∗(t, x)− v6(t, x)) with
v6 poly. approx. of deg. 6 to actual value function v∗

obtained by transporting the Lebesgue measure on [−1,1]



Minimum time double integrator with state constraints

With the moment-SOS hierarchy, we compute the pseudo-moments
of degree 8 of the occupation measure, and we construct the
moment matrices of size 45 of the control and state marginals

For each time we minimize the respective Christoffel-Darboux
polynomial (from left to right: control, first and second state,
red curves to be compared with the analytic solutions in black)



Take-home messages

Polynomial optimization (POP) and optimal control (POC)

can be solved approximately with the moment-SOS hierarchy

Non-linear non-convex problems reformulated as primal

linear problems on probability measures or occupation measures

Dual linear SOS problems give bounds on the optimal value

with convergence guarantees

From the primal solutions we can certify global optimality

(linear algebra on the moment matrix) and/or extract

approximate solutions (Christoffel-Darboux polynomial)



Current research directions

Exploit various kinds of sparsity to improve scability of

the moment-SOS hierarchy

From optimal control of ODEs to SDEs and PDEs

Occupation measures on infinite-dimensional spaces
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