Mines Paris Tech

Centre d'Automatique et Systèmes

ON OBSERVABILITY & OBSERVER FORMS

Gildas Besançon

Control Systems Department, GIPSA-lab (Grenoble Image Parole Signal Automatique)

Ense³ - Grenoble INP

March 1st 2010

Some observer problem formulations

- Some observer problem formulations
- Some observability conditions

- Some observer problem formulations
- Some observability conditions
- Some observer forms

- Some observer problem formulations
- Some observability conditions
- Some observer forms

... and some advertising cf G. Besançon, *Nonlinear observers and applications*, Springer 2007, and references therein...

- Some observer problem formulations
 - About motivations
 - About formalization
 - About methods
- Some observability conditions
- Some observer forms

State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- ⇒ observer pb

State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- ⇒ observer pb

Is it possible?

State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- ⇒ observer pb

Is it possible? cf observability

State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- observer pb

Is it possible? cf *observability*

How?

State feedback, parameter identification, fault monitoring

- \Rightarrow internal information reconstruction from I/O data
- ⇒ observer pb

Is it possible? cf observability

How? cf observer forms

System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$
$$y(t) = h(x(t), u(t), t)$$

$$f(t) = H(x(t), u(t), t)$$

System description:

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

x state vector

System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- *u* known input vector

System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- y measurement output vector

System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- *u* known input vector
- y measurement output vector
- f, h smooth functions

System description:

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- y measurement output vector
- f, h smooth functions

Problem description:

Find x(t) from the knowledge of f, h and $u(\tau), y(\tau)$ on $\tau \in [t_0, t]$

System description :

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$
$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- measurement output vector

G. Besançon

f, h smooth functions

Problem description:

Find x(t) from the knowledge of f, h and $u(\tau), y(\tau)$ on $\tau \in [t_0, t]$

Notation :
$$\chi_u(t, x_{t_0})$$
 s.t. $\frac{d}{dt}\chi_u(t, x_{t_0}) = f(\chi_u(t, x_{t_0}), u(t), t); \chi_u(t_0, x_{t_0}) = x_{t_0}$

System description:

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$
$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- y measurement output vector
- f, h smooth functions

Problem description:

Find x(t) from the knowledge of f, h and $u(\tau), y(\tau)$ on $\tau \in [t_0, t]$

Notation:
$$\chi_u(t, x_{t_0})$$
 s.t. $\frac{d}{dt}\chi_u(t, x_{t_0}) = f(\chi_u(t, x_{t_0}), u(t), t); \; \chi_u(t_0, x_{t_0}) = x_{t_0}$

N.B. in general, f(x, u, t) = f(x, u), h(x, u, t) = h(x)with $x \in X \subset \mathbb{R}^n, u \in U \subset \mathbb{R}^m, y \in Y \subset \mathbb{R}^p \ (\equiv \text{system } \Sigma \text{ in the sequel})$

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

I. "Corrected trajectory-based" approach :

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

solve
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

I. "Corrected trajectory-based" approach : Find an optimal estimation of $x(t_0)$ according to $y(t) - h(\hat{x}(t))$ ie :

solve
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

⇒ Optimization pb

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

solve
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- \Rightarrow Optimization pb
- II. "Corrected model-based" approach :

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

solve
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- \Rightarrow Optimization pb
- II. "Corrected model-based" approach : Correct \dot{x} according to $y(t) h(\hat{x}(t))$

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

solve
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- ⇒ Optimization pb
- II. "Corrected model-based" approach : Correct \dot{x} according to $y(t)-h(\hat{x}(t))$ ie : Find appropriate correction so that $\hat{x}(t)-x(t)\to 0$ as $t\to \infty$

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

solve
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- \Rightarrow Optimization pb
- II. "Corrected model-based" approach : Correct \dot{x} according to $y(t) h(\hat{x}(t))$ ie : Find appropriate correction so that $\hat{x}(t) x(t) \to 0$ as $t \to \infty$ \Rightarrow Stabilization pb

About methods-overview

Model and input known \Rightarrow Integrate $\dot{x}(t)$ to get an estimate $\hat{x}(t)$ Pb : $x(t_0)$?

I. "Corrected trajectory-based" approach : Find an optimal estimation of $x(t_0)$ according to $y(t) - h(\hat{x}(t))$ ie :

solve
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- ⇒ Optimization pb
- II. "Corrected model-based" approach :

Correct \dot{x} according to $y(t) - h(\hat{x}(t))$

ie : Find appropriate correction so that $\hat{x}(t) - x(t) \to 0$ as $t \to \infty$

⇒ Stabilization pb

About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t))
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i)
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii)
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as $t \rightarrow +\infty$

About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t))
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i)
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii)
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as $t \rightarrow +\infty$

i.e. system transformation & output injection to get (i)-(ii)

About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t))
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i)
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii)
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as $t \rightarrow +\infty$

i.e. system transformation & output injection to get (i)-(ii)

If (ii) ok for any $x(0), \hat{x}(0)$: global observer

$$\dot{X}(t) = F(X(t), u(t), y(t))
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i)
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii)
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as $t \rightarrow +\infty$

i.e. system transformation & output injection to get (i)-(ii)

If (ii) ok for any x(0), $\hat{x}(0)$: global observer

If (ii) ok exponentially: exponential observer

About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t))
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i)
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \ge 0$$

(ii)
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as $t \rightarrow +\infty$

i.e. system transformation & output injection to get (i)-(ii)

- If (ii) ok for any x(0), $\hat{x}(0)$: global observer
- If (ii) ok exponentially: exponential observer
- If (ii) ok with tunable rate : tunable observer

About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t))
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i)
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii)
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as $t \rightarrow +\infty$

i.e. system transformation & output injection to get (i)-(ii)

- If (ii) ok for any x(0), $\hat{x}(0)$: global observer
- If (ii) ok exponentially: exponential observer
- If (ii) ok with tunable rate : tunable observer

For 'observer forms', typically:

• global exponential tunable observers;

G. Besançon

• $\dot{\hat{x}}(t) = f(\hat{x}(t), u(t)) + k(y(t) - h(\hat{x}(t)), t), \ k(0, t) = 0 \ \forall t \ge 0$

Some observer problem formulations

$$\dot{X}(t) = F(X(t), u(t), y(t))
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i)
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii)
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as $t \rightarrow +\infty$

i.e. system transformation & output injection to get (i)-(ii)

If (ii) ok for any x(0), $\hat{x}(0)$: global observer

If (ii) ok exponentially: exponential observer

If (ii) ok with tunable rate : tunable observer

For 'observer forms', typically:

- global exponential tunable observers;
- $\dot{\hat{x}}(t) = f(\hat{x}(t), u(t)) + k(y(t) h(\hat{x}(t)), t), \ k(0, t) = 0 \ \forall t \geq 0$

e.g.
$$k(y - h(\hat{x})), t) = k(t) \times [y(t) - h(\hat{x}(t))]$$

About methods-observer

Outline

- Some observer problem formulations
- Some observability conditions
 - About 'structural' definition
 - About 'geometric' characterization
 - About 'excitation' conditions
- Some observer forms

About 'structural' definition-Observability

In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

About 'structural' definition-Observability

In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

About 'structural' definition-Observability

In general :

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).

About 'structural' definition—Observability

In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).

Ex. $\dot{x} = -x + u$, y = 0 not "observable", yet $\dot{\hat{x}} = -\hat{x} + u \Rightarrow \hat{x} - x \rightarrow 0$. ("detectability").

G. Besançon

About 'structural' definition—Observability

In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).

Ex. $\dot{x} = -x + u$, y = 0 not "observable", yet $\dot{\hat{x}} = -\hat{x} + u \Rightarrow \hat{x} - x \rightarrow 0$. ("detectability").

However "observability" is necessary for a 'tunable' observer.

About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"

About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"

Indistinguishability:

$$(x_0,x_0')\in\mathbb{R}^n imes\mathbb{R}^n$$
 is indistinguishable for (Σ) if :

$$\forall u \in \mathcal{U}, \ \forall t \geq 0, \ h(\chi_u(t, x_0)) = h(\chi_u(t, x_0')).$$

About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"

Indistinguishability:

 $(x_0,x_0')\in\mathbb{R}^n imes\mathbb{R}^n$ is indistinguishable for (Σ) if :

$$\forall u \in \mathcal{U}, \ \forall t \geq 0, \ h(\chi_u(t, x_0)) = h(\chi_u(t, x_0')).$$

Observability [resp. at x_0]:

 $\not\exists$ indistinguishable pair [resp. indistinguishable pair (x, x_0)].

About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"

Indistinguishability:

 $(x_0,x_0')\in\mathbb{R}^n imes\mathbb{R}^n$ is indistinguishable for (Σ) if :

$$\forall u \in \mathcal{U}, \ \forall t \geq 0, \ h(\chi_u(t, x_0)) = h(\chi_u(t, x_0')).$$

Observability [resp. at x_0]:

 $\not\exists$ indistinguishable pair [resp. indistinguishable pair (x, x_0)].

N.B. Very general notion, even too general cf $\dot{x} = u$, y = sin(x)

About 'structural' definition-Local weak observability

 \Rightarrow a weaker notion of observability is more appropriate :

Local weak observability [resp. at x_0]:

 $\forall x \text{ [resp. of } x_0], \exists \text{ a neighborhood } U \text{ s.t. } \forall V \subset U \text{ neighborhood of } x \text{ [resp. } x_0], \not\exists \text{ indistinguishable state from } x \text{ [resp. } x_0] \text{ in } V, \text{ as long as trajectories remain in } V.$

About 'structural' definition-Local weak observability

 \Rightarrow a weaker notion of observability is more appropriate :

Local weak observability [resp. at x_0]:

 $\forall x$ [resp. of x_0], \exists a neighborhood U s.t. $\forall V \subset U$ neighborhood of x [resp. x_0], $\not\exists$ indistinguishable state from x [resp. x_0] in V, as long as trajectories remain in V.

In short: "distinguish every state from its neighbors without going too far"

About 'structural' definition-Local weak observability

 \Rightarrow a weaker notion of observability is more appropriate :

Local weak observability [resp. at x_0]:

 $\forall x$ [resp. of x_0], \exists a neighborhood U s.t. $\forall V \subset U$ neighborhood of x [resp. x_0], $\not\exists$ indistinguishable state from x [resp. x_0] in V, as long as trajectories remain in V.

In short: "distinguish every state from its neighbors without going too far"

- ⇒ more interesting in practice
- ⇒ with a 'simple' geometric characterization

About 'geometric' characterization-Rank condition

Observation space:

The observation space $\mathcal{O}(h)$ for a system (Σ) is the smallest real vector space of \mathcal{C}^{∞} functions containing the components of h and closed under Lie derivation along $f_u:=f(.,u)$ for any constant $u\in\mathbb{R}^m$ (i.e. $\forall \varphi\in\mathcal{O}(h), L_{f_u}\varphi\in\mathcal{O}(h)$, where $L_{f_u}\varphi(x)=\frac{\partial \varphi}{\partial x}f(x,u)$).

About 'geometric' characterization-Rank condition

Observation space:

The observation space $\mathcal{O}(h)$ for a system (Σ) is the smallest real vector space of \mathcal{C}^{∞} functions containing the components of h and closed under Lie derivation along $f_u:=f(.,u)$ for any constant $u\in\mathbb{R}^m$ (i.e. $\forall \varphi\in\mathcal{O}(h), L_{f_u}\varphi\in\mathcal{O}(h)$, where $L_{f_u}\varphi(x)=\frac{\partial \varphi}{\partial x}f(x,u)$).

Observability rank condition [resp. at x_0]:

$$\forall x$$
, $\dim \mathcal{O}(h)|_{x} = n$ [resp. $\dim \mathcal{O}(h)|_{x_0} = n$]

where
$$d\mathcal{O}(h) \mid_{\mathsf{x}} := \{ d\varphi(\mathsf{x}), \varphi \in \mathcal{O}(h) \}.$$

About 'geometric' characterization-Rank condition

Observation space:

The observation space $\mathcal{O}(h)$ for a system (Σ) is the smallest real vector space of \mathcal{C}^{∞} functions containing the components of h and closed under Lie derivation along $f_u:=f(.,u)$ for any constant $u\in\mathbb{R}^m$ (i.e. $\forall \varphi\in\mathcal{O}(h), L_{f_u}\varphi\in\mathcal{O}(h)$, where $L_{f_u}\varphi(x)=\frac{\partial \varphi}{\partial x}f(x,u)$).

Observability rank condition [resp. at x_0]:

$$\forall x$$
, $dimd\mathcal{O}(h)|_{x} = n$ [resp. $dimd\mathcal{O}(h)|_{x_0} = n$]

where $d\mathcal{O}(h) \mid_{\mathsf{x}} := \{ d\varphi(\mathsf{x}), \varphi \in \mathcal{O}(h) \}.$

Local weak observability characterization:

Observability rank condition (at x_0) \Rightarrow local weak observability (at x_0).

About 'geometric' characterization-Towards observers

N.B. Observability rank cond. = Kalman rank cond. for $\dot{x} = Ax$, y = Cx

About 'geometric' characterization-Towards observers

N.B. Observability rank cond. = Kalman rank cond. for $\dot{x} = Ax$, y = Cx and also *sufficient* for observer design when $\dot{x} = Ax + Bu$

About 'geometric' characterization-Towards observers

N.B. Observability rank cond. = Kalman rank cond. for $\dot{x} = Ax$, y = Cx and also *sufficient* for observer design when $\dot{x} = Ax + Bu$

 \rightarrow Not true in general : observability instead 'depends on the input', and is not enough for observer design.

About 'geometric' characterization-Towards observers

- N.B. Observability rank cond. = Kalman rank cond. for $\dot{x} = Ax$, y = Cx and also *sufficient* for observer design when $\dot{x} = Ax + Bu$
- \rightarrow Not true in general : observability instead 'depends on the input', and is not enough for observer design.

Ex.
$$\dot{x} = \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix} x$$
, $y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$ observable $\forall u \ cst \neq 0$, but not for $u = 0$

 \Rightarrow Need to look at the inputs.

About 'excitation' conditions-Universal inputs

Universal input [resp. on [0, t]]:

G. Besancon

 $u: \forall x_0 \neq x_0', \ \exists \tau \geq 0 \ (\text{resp.} \ \exists \tau \in [0, t]) \ \text{s.t.} \ h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$ **Singular input**: u not universal.

About 'excitation' conditions-Universal inputs

Universal input [resp. on [0, t]]:

 $u: \forall x_0 \neq x_0', \ \exists \tau \geq 0 \ (\text{resp. } \exists \tau \in [0, t]) \text{ s.t. } h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$

Singular input: u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

About 'excitation' conditions-Universal inputs

Universal input [resp. on [0, t]]:

 $u: \forall x_0 \neq x_0', \exists \tau \geq 0 \text{ (resp. } \exists \tau \in [0, t]) \text{ s.t. } h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$ Singular input : u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

In general singularities difficult to be characterized.

About 'excitation' conditions-Universal inputs

Universal input [resp. on [0, t]]:

$$u: \forall x_0 \neq x_0', \ \exists \tau \geq 0 \ (\text{resp. } \exists \tau \in [0, t]) \text{ s.t. } h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$$

Singular input : u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

In general singularities difficult to be characterized.

'Nice' case :

Uniformly observable systems (resp. locally) :

 (Σ) is uniformly observable (UO) if every input is universal (resp. on [0, t]).

Ex. The system below is uniformly observable :

$$\dot{x} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & & 0 \\
\vdots & & & & 1 \\
0 & \cdots & & & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\ \vdots \\ 0 \\ \psi_n(x)\end{pmatrix} + \begin{pmatrix}
\varphi_1(x_1) \\ \varphi_2(x_1, x_2) \\ \vdots \\ \varphi_{n-1}(x_1, \dots, x_{n-1}) \\ \varphi_n(x_1, \dots, x_n)\end{pmatrix} u$$

$$y = x_1; \quad x = (x_1, \dots, x_n)^T$$

gipsa-lab Grenoble INP Ex. The system below is uniformly observable:

$$\dot{x} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & & 0 \\
\vdots & & & & 1 \\
0 & \cdots & & & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\ \vdots \\ 0 \\ \psi_n(x)\end{pmatrix} + \begin{pmatrix}
\varphi_1(x_1) \\ \varphi_2(x_1, x_2) \\ \vdots \\ \varphi_{n-1}(x_1, \dots, x_{n-1}) \\ \varphi_n(x_1, \dots, x_n)\end{pmatrix} u$$

$$y = x_1; \quad x = (x_1 \dots, x_n)^T$$

NB.
$$u$$
 universal on $[0, t] \Leftrightarrow \int_0^t ||h(\chi_u(\tau, x_0)) - h(\chi_u(\tau, x_0'))||^2 d\tau > 0, x_0 \neq x_0'$

esançon Observability & observer forms - CAS, Paris, March 2010

15 / 34

Ex. The system below is uniformly observable :

$$\dot{x} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & & 0 \\
\vdots & & & & 1 \\
0 & \cdots & & & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\ \vdots \\ 0 \\ \psi_{n}(x)\end{pmatrix} + \begin{pmatrix}
\varphi_{1}(x_{1}) \\ \varphi_{2}(x_{1}, x_{2}) \\ \vdots \\ \varphi_{n-1}(x_{1}, \dots, x_{n-1}) \\ \varphi_{n}(x_{1}, \dots, x_{n})\end{pmatrix} u$$

$$y = x_{1}; \quad x = (x_{1}, \dots, x_{n})^{T}$$

NB. *u* universal on
$$[0, t] \Leftrightarrow \int_0^t ||h(\chi_u(\tau, x_0)) - h(\chi_u(\tau, x_0'))||^2 d\tau > 0, x_0 \neq x_0'$$

NB.2 : uniform observability ⇒ possible input-independent observer...

About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems \Rightarrow input-dependent observers.

About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems \Rightarrow *input-dependent* observers.

Using universal inputs not enough: cf disturbance pb

About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems \Rightarrow input-dependent observers.

Using universal inputs not enough: cf disturbance pb Univ. inputs on [t,t+T] (persistent) not enough either:cf 'vanishing info' pb

About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems \Rightarrow input-dependent observers.

Using universal inputs not enough: cf disturbance pb Univ. inputs on [t,t+T] (persistent) not enough either:cf 'vanishing info' pb

 \Rightarrow need of 'regular persistency':

Regularly persistent inputs (RP):

u is regularly persistent for (Σ) if :

$$\exists t_0, T : \forall x_{t-T}, x'_{t-T}, \ \forall t \ge t_0, \\ \int_{t-T}^t ||h(\chi_u(\tau, x_{t-T})) - h(\chi_u(\tau, x'_{t-T}))||^2 d\tau \ge \beta(||x_{t-T} - x'_{t-T}||)$$

for some class K function β .

Ex. For $\dot{x}(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t)$, RP inputs are s.t.

$$\exists t_0, T, \alpha : \int_{t-T}^t \Phi_u^T(\tau, t-T) C^T C \Phi_u(\tau, t-T) d\tau \geq \alpha I > 0 \quad \forall t \geq t_0,$$

with
$$\Phi_u(\tau,t): \frac{d\Phi_u(\tau,t)}{d\tau} = A(u(\tau))\Phi_u(\tau,t), \ \Phi_u(t,t) = I.$$

Ex. For $\dot{x}(t) = A(u(t))x(t) + B(u(t))$, y(t) = Cx(t), RP inputs are s.t.

$$\exists t_0, T, \alpha : \int_{t-T}^t \Phi_u^T(\tau, t-T) C^T C \Phi_u(\tau, t-T) d\tau \geq \alpha I > 0 \quad \forall t \geq t_0,$$

with
$$\Phi_u(\tau,t): \frac{d\Phi_u(\tau,t)}{d\tau} = A(u(\tau))\Phi_u(\tau,t), \ \Phi_u(t,t) = I.$$

N.B. For
$$\dot{x}(t) = A(t)x(t)$$
, $y(t) = Cx(t)$: Kalman *Unif. Complete Obs.*

Observability & observer forms - CAS, Paris, March 2010

17 / 34

Ex. For
$$\dot{x}(t) = A(u(t))x(t) + B(u(t)), \ y(t) = Cx(t)$$
, RP inputs are s.t.

$$\exists t_0, T, \alpha : \int_{t-T}^t \Phi_u^T(\tau, t-T) C^T C \Phi_u(\tau, t-T) d\tau \geq \alpha I > 0 \quad \forall t \geq t_0,$$

with
$$\Phi_u(\tau,t)$$
: $\frac{d\Phi_u(\tau,t)}{d\tau} = A(u(\tau))\Phi_u(\tau,t), \ \Phi_u(t,t) = I.$

N.B. For
$$\dot{x}(t) = A(t)x(t)$$
, $y(t) = Cx(t)$: Kalman *Unif. Complete Obs.*

N.B.2. Need of time T. For shorter times : 'short-time' excitation needed.

About 'excitation' conditions-Locally regular excitation

Locally regular inputs (LR):

u is locally regular for (Σ) if :

$$\exists T_0, \alpha : \forall x_{t-T}, x'_{t-T}, \ \forall T \leq T_0, \ \forall t \geq T, \\ \int_{t-T}^t ||h(\chi_u(\tau, x_{t-T})) - h(\chi_u(\tau, x'_{t-T}))||^2 d\tau \geq \beta(||x_{t-T} - x'_{t-T}||, \frac{1}{T})$$

for some class \mathcal{KL} function β .

About 'excitation' conditions-Locally regular excitation

Locally regular inputs (LR):

u is locally regular for (Σ) if:

$$\exists T_0, \alpha : \forall x_{t-T}, x'_{t-T}, \ \forall T \leq T_0, \ \forall t \geq T,$$

$$\int_{t-T}^{t} ||h(\chi_u(\tau, x_{t-T})) - h(\chi_u(\tau, x'_{t-T}))||^2 d\tau \geq \beta(||x_{t-T} - x'_{t-T}||, \frac{1}{T})$$

for some class \mathcal{KL} function β .

Ex. For
$$\dot{x}(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t)$$
, LR inputs are s.t.

$$\exists T_0, \alpha : \forall T < T_0, \ \forall t > T,$$

$$\int_{t-T}^{t} \Phi_{u}^{T}(\tau, t-T) C^{T} C \Phi_{u}(\tau, t-T) d\tau \geq \alpha \frac{1}{T} \begin{pmatrix} T & & 0 \\ & T^{2} & \\ & & \ddots & \\ 0 & & & T^{n} \end{pmatrix}^{2}$$

N.B. LR inputs make observability \simeq linear one.

Summary

Observer design needs:

• Appropriate modelling : $\dot{x}(t) = f(x(t), u(t)), y(t) = h(x(t))$

Summary

Observer design needs:

- Appropriate modelling : $\dot{x}(t) = f(x(t), u(t)), \ y(t) = h(x(t))$
- Appropriate property : observability (rank condition + input selection)

Summary

Observer design needs:

- Appropriate modelling : $\dot{x}(t) = f(x(t), u(t)), \ y(t) = h(x(t))$
- Appropriate property : observability (rank condition + input selection)
 N.B.
 - If rank condition not satisfied, the system might be turned into :

$$\dot{\zeta}_1 = f_1(\zeta_1, \zeta_2, u)
\dot{\zeta}_2 = f_2(\zeta_2, u)
y = h_2(\zeta_2)$$

with f_2 , h_2 rank observable.

Summary

Observer design needs:

- Appropriate modelling : $\dot{x}(t) = f(x(t), u(t)), \ y(t) = h(x(t))$
- Appropriate property : observability (rank condition + input selection)
 N.B.
 - If rank condition not satisfied, the system might be turned into :

$$\dot{\zeta}_1 = f_1(\zeta_1, \zeta_2, u)
\dot{\zeta}_2 = f_2(\zeta_2, u)
y = h_2(\zeta_2)$$

with f_2 , h_2 rank observable.

If system not observable, but s.t. :

$$\forall u: x_0, x_0' \text{ indistinguishable}, \chi_u(t, x_0) - \chi_u(t, x_0') \to 0$$

an observer might still be designed (detectability).

• If system observable, effective design might depend on observability :

- If system observable, effective design might depend on observability :
 - ► For uniform observability, *uniform observers*;

- If system observable, effective design might depend on observability :
 - ► For uniform observability, uniform observers;
 - ▶ For non-uniform observability, non-uniform observers.

- If system observable, effective design might depend on observability :
 - ► For uniform observability, *uniform observers*;
 - For non-uniform observability, non-uniform observers.

N.B. Also ∃ 'cross-cases'...

- If system observable, effective design might depend on observability :
 - ► For uniform observability, uniform observers;
 - For non-uniform observability, non-uniform observers.

N.B. Also ∃ 'cross-cases'...

⇒ observer forms ≡ uniform (cf Luenberger) & non-uniform (cf Kalman)

Outline

- Some observer problem formulations
- Some observability conditions
- Some observer forms
 - 'Uniformly observable' systems
 - 'Non uniformly observable' systems
 - Example(s)

'Uniformly observable' systems-LTI

Basic (LTI) system:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t)$

'Uniformly observable' systems-LTI

Basic (LTI) system:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t)$

Result [Luenberger]:

If (A, C) is observable, then \exists an observer :

G. Besancon

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - K(C\hat{x}(t) - y(t))$$

'Uniformly observable' systems-LTI

Basic (LTI) system :

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t)$

Result [Luenberger]:

If (A, C) is observable, then \exists an observer :

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - K(C\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t. A - KC stable;

G. Besançon

The rate of convergence can be arbitrarily chosen via K.

'Uniformly observable' systems-LTI

Basic (LTI) system :

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t)$

Result [Luenberger]:

If (A, C) is observable, then \exists an observer :

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - K(C\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t. A - KC stable;

The rate of convergence can be arbitrarily chosen via K.

Indeed: $e = \hat{x} - x \Rightarrow \dot{e} = (A - KC)e$

'Uniformly observable' systems-LTI + I/O NL

System with additive I/O nonlinearities :

G. Besançon

$$\dot{x}(t) = Ax(t) + B(u(t), Cx(t))$$

 $y(t) = Cx(t)$

'Uniformly observable' systems-LTI + I/O NL

System with additive I/O nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), Cx(t))
y(t) = Cx(t)$$

Result [Error linearization] :

If (A, C) is observable, then \exists an observer :

G. Besançon

$$\dot{\hat{x}}(t) = A\hat{x}(t) + B(u(t), y(t)) - K(C\hat{x}(t) - y(t))$$

'Uniformly observable' systems-LTI + I/O NL

System with additive I/O nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), Cx(t))
y(t) = Cx(t)$$

Result [Error linearization] :

If (A, C) is observable, then \exists an observer :

$$\dot{\hat{x}}(t) = A\hat{x}(t) + B(u(t), y(t)) - K(C\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t. A - KC stable (cf Luenberger)

'Uniformly observable' systems-LTI + Lipschitz NL

System with additive Lipschitz nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), x(t))
y(t) = Cx(t)$$

with B globally Lipschitz /x, unif. /u

(i.e.
$$\exists \gamma : \forall x, u, \|B(u, x) - B(u, z)\| \le \gamma \|x - z\|$$
)

G. Besançon

'Uniformly observable' systems-LTI + Lipschitz NL

System with additive Lipschitz nonlinearities:

$$\dot{x}(t) = Ax(t) + B(u(t), x(t))
y(t) = Cx(t)$$

with B globally Lipschitz /x, unif. /u

(i.e.
$$\exists \gamma : \forall x, u, \|B(u, x) - B(u, z)\| \le \gamma \|x - z\|$$
)

First idea :

If $\exists K$ and P, Q positive definite s.t.

$$P(A - KC) + (A - KC)^{T}P = -Q$$

$$\frac{eigmin(Q)}{2eigmax(P)} > \gamma$$

then $\hat{x} = A\hat{x} + B(u, \hat{x}) - K(C\hat{x} - y)$ is an observer

'Uniformly observable' systems-LTI + Lipschitz NL

System with additive Lipschitz nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), x(t))
y(t) = Cx(t)$$

with B globally Lipschitz /x,unif./u

(i.e.
$$\exists \gamma : \forall x, u, \|B(u, x) - B(u, z)\| \le \gamma \|x - z\|$$
)

First idea :

If $\exists K$ and P, Q positive definite s.t.

$$P(A - KC) + (A - KC)^{T}P = -Q$$

$$\frac{eigmin(Q)}{2eigmax(P)} > \gamma$$

then
$$\dot{\hat{x}} = A\hat{x} + B(u, \hat{x}) - K(C\hat{x} - y)$$
 is an observer

G. Besançon

Pb : Find *K*, *P*, *Q*...

'Uniformly observable' systems-LTI + structured NL

System with additive triangular nonlinearities :

$$\dot{x}(t) = A_0x(t) + B(u(t), x(t))
y(t) = C_0x(t)$$

with
$$A_0=egin{pmatrix} 0&1&&0\\&&\ddots&\\&&&1\\0&&&0 \end{pmatrix},\quad C_0=(1\ 0\ \cdots\ 0),\ x\in\mathbb{R}^n,\ y\in\mathbb{R}$$

'Uniformly observable' systems-LTI + structured NL

System with additive triangular nonlinearities:

$$\begin{array}{lcl} \dot{x}(t) & = & A_0x(t) + B(u(t), x(t)) \\ y(t) & = & C_0x(t) \end{array}$$

with
$$A_0 = \begin{pmatrix} 0 & 1 & & 0 \\ & & \ddots & \\ & & & 1 \\ 0 & & & 0 \end{pmatrix}, \quad C_0 = (1 \ 0 \ \cdots \ 0), \ x \in \mathbb{R}^n, \ y \in \mathbb{R}$$

Result [High Gain Observer] :

Result [Figh Gain Observer]:

If
$$B$$
 globally Lipschitz $/x$, unif. $/u$: $\frac{\partial B_i}{\partial x_j}(u,x) = 0$ for $j \ge i+1$,

then \exists obs. $\dot{\hat{x}} = A_0\hat{x} + B(u,\hat{x}) - \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda^n \end{pmatrix} K_0(C_0\hat{x} - y)$

with K_0 s.t. $A_0 - K_0 C_0$ stable, and λ large enough.

25 / 34

'Uniformly observable' systems- about high gain

• High gain observer since based on λ large enough.

'Uniformly observable' systems- about high gain

- High gain observer since based on λ large enough.
- ullet The larger λ is, the faster the convergence is.

'Uniformly observable' systems- about high gain

- High gain observer since based on λ large enough.
- The larger λ is, the faster the convergence is.
- Output injection can also be used.

'Uniformly observable' systems— about high gain

- High gain observer since based on λ large enough.
- ullet The larger λ is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$

where $\frac{\partial f_i}{\partial x_j}=0$ for j>i+1 and $\frac{\partial f_i}{\partial x_{i+1}}\geq \alpha_i>0$ for all x,u.

'Uniformly observable' systems- about high gain

- High gain observer since based on λ large enough.
- ullet The larger λ is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$

where $\frac{\partial f_i}{\partial x_i} = 0$ for j > i+1 and $\frac{\partial f_i}{\partial x_{i+1}} \ge \alpha_i > 0$ for all x, u.

• Possible extension to multi-output systems.

'Uniformly observable' systems- about high gain

- High gain observer since based on λ large enough.
- The larger λ is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$
 where $\frac{\partial f_i}{\partial x_i} = 0$ for $j > i+1$ and $\frac{\partial f_i}{\partial x_{i+1}} \ge \alpha_i > 0$ for all x, u .

- Possible extension to multi-output systems.
- Possible adaptive gain implementation

$$\dot{\lambda}(t) = L(\lambda(t), \int_{t-T}^t \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2).$$

'Uniformly observable' systems- about high gain

- High gain observer since based on λ large enough.
- ullet The larger λ is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$

where $\frac{\partial f_i}{\partial x_j} = 0$ for j > i+1 and $\frac{\partial f_i}{\partial x_{i+1}} \ge \alpha_i > 0$ for all x, u.

- Possible extension to multi-output systems.
- Possible adaptive gain implementation

$$\dot{\lambda}(t) = L(\lambda(t), \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2).$$

• For observer form 'characteristic' of uniform observability

'Non uniformly observable' systems-LTV

System:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t), A(t), C(t) uniformly bounded.$$

G. Besançon

'Non uniformly observable' systems-LTV

System:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t), A(t), C(t) uniformly bounded.$$

Result [Kalman]:

If (A(t), C(t)) is uniformly completely observable, then \exists an observer :

$$\dot{\hat{x}}(t) = A(t)\hat{x}(t) + B(t)u(t) - K(t)(C(t)\hat{x}(t) - y(t))$$

'Non uniformly observable' systems-LTV

System:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t), A(t), C(t) uniformly bounded.$$

Result [Kalman]:

If (A(t), C(t)) is uniformly completely observable, then \exists an observer :

$$\dot{\hat{x}}(t) = A(t)\hat{x}(t) + B(t)u(t) - K(t)(C(t)\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t.

$$\dot{M}(t) = A(t)M(t) + M(t)A^{T}(t) - M(t)C^{T}(t)W^{-1}C(t)M(t) + V + \delta M(t)$$

 $M(0) = M_{0} = M_{0}^{T} > 0, W = W^{T} > 0$

$$K(t) = M(t)C^{T}(t)W^{-1}$$
; with $\delta > 2||A(t)|| \ \forall t$, or $V = V^{T} > 0$;

The rate of convergence can be arbitrarily chosen via δ , V.

'Non uniformly observable' systems–LTV-like with I/O NL

System with additive and multiplicative I/O nonlinearities (state affine systems) :

$$\dot{x}(t) = A(u(t), Cx(t))x(t) + B(u(t), Cx(t))
y(t) = Cx(t)$$

with $A(u(t), C\chi_u(t, x_0))$ bounded,

'Non uniformly observable' systems-LTV-like with I/O NL

System with additive and multiplicative I/O nonlinearities (state affine systems) :

$$\dot{x}(t) = A(u(t), Cx(t))x(t) + B(u(t), Cx(t))$$

$$y(t) = Cx(t)$$

with $A(u(t), C\chi_u(t, x_0))$ bounded,

Result:

If u is regularly persistent for the system in the sense that it makes A, C uniformly completely observable, then \exists observer :

$$\dot{\hat{x}}(t) = A(u(t), y(t))\hat{x}(t) + B(u(t), y(t)) - K(t)(C(t)\hat{x}(t) - y(t))$$

with K(t) as in Kalman observer.

'Non uniformly observable' systems-LTV-like with structured NL

System with additive triangular nonlinearities and multiplicative I/O nonlinearities :

$$\dot{x}(t) = A_0(u(t), Cx(t))x(t) + B(u(t), x(t))
y(t) = C_0x(t)$$
with $A_0(u, Cx) = \begin{pmatrix} 0 & a_{12}(u, Cx) & 0 \\ & \ddots & \\ & & a_{n-1n}(u, Cx) \\ 0 & & 0 \end{pmatrix}$ bounded,

$$C_0 = (1 \ 0 \cdots 0), \ x \in \mathbb{R}^n, \ y \in \mathbb{R}$$

G. Besancon

'Non uniformly observable' systems-LTV-like with structured NL

System with additive triangular nonlinearities and multiplicative I/O nonlinearities :

$$\dot{x}(t) = A_0(u(t), Cx(t))x(t) + B(u(t), x(t))
y(t) = C_0x(t)$$
with $A_0(u, Cx) = \begin{pmatrix} 0 & a_{12}(u, Cx) & 0 \\ & \ddots & \\ & & a_{n-1n}(u, Cx) \\ 0 & & 0 \end{pmatrix}$ bounded,

 $C_0 = (1 \ 0 \cdots 0), \ \overset{\cdot}{x} \in \mathbb{R}^n, \ y \in \mathbb{R}$

→ combine high gain and Kalman...

Result:

If B globally Lipschitz/x,unif./u: $\frac{\partial B_i}{\partial x_j}(x,u) = 0$ for $j \geq i+1$ and u locally regular in the sense that it makes $v(t) := \begin{pmatrix} u(t) \\ C\chi_u(t,x_0) \end{pmatrix}$ locally regular for $\dot{x}(t) = A(v(t))x(t), y(t) = Cx(t)$ for any x_0 , then \exists an observer :

$$\dot{\hat{x}} = A_0(u,y)\hat{x} + \varphi(\hat{x},u) - \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda^n \end{pmatrix} K_0(t)(C_0\hat{x} - y)$$

G. Besancon

Result:

If B globally Lipschitz/x,unif./u: $\frac{\partial B_i}{\partial x_j}(x,u) = 0$ for $j \geq i+1$ and u locally regular in the sense that it makes $v(t) := \begin{pmatrix} u(t) \\ C\chi_u(t,x_0) \end{pmatrix}$ locally regular for $\dot{x}(t) = A(v(t))x(t), \ y(t) = Cx(t)$ for any x_0 , then \exists an observer :

$$\dot{\hat{x}} = A_0(u,y)\hat{x} + \varphi(\hat{x},u) - \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda^n \end{pmatrix} K_0(t)(C_0\hat{x} - y)$$

with $K_0(t)$ given by :

$$\dot{M}(t) = \lambda [M(t)A^{T}(u(t), y(t)) + A(u(t), y(t))M(t)
-M(t)C^{T}W^{-1}CM(t) + \delta M(t)]
M(0) = M^{T}(0) > 0, W = W^{T} > 0
K(t) = M(t)C^{T}W^{-1}$$

for $\delta > 2||A(u, y)||$ and λ large enough.

'Non uniformly observable' systems-About LTV-based high gain

• Similar remarks as in standard High Gain case;

'Non uniformly observable' systems-About LTV-based high gain

• Similar remarks as in standard High Gain case;

• Possible extension to A(u,x) with $a_{ij}=0$, $i\neq j+1$, and $\frac{\partial a_{ii+1}}{\partial x_i} = 0, j \le i+1.$

'Non uniformly observable' systems-About LTV-based high gain

• Similar remarks as in standard High Gain case;

- Possible extension to A(u,x) with $a_{ij}=0, i \neq j+1$, and $\frac{\partial a_{ii+1}}{\partial x_i}=0, j \leq i+1$.
- Possible extension to *blocks* $a_{ii+1} \in \mathbb{R}^{n_i \times n_{i+1}}$

'Non uniformly observable' systems-About LTV-based high gain

Similar remarks as in standard High Gain case;

- Possible extension to A(u,x) with $a_{ij}=0, i \neq j+1$, and $\frac{\partial a_{ii+1}}{\partial x_i} = 0, j \le i+1.$
- Possible extension to *blocks* $a_{ii+1} \in \mathbb{R}^{n_i \times n_{i+1}}$
- For observer form 'characteristic' of uniform observability

Example(s) of observer forms...

Example(s) of observer forms...

 $\mathsf{Example}(\mathsf{s}) \quad \text{ of observer forms...}$

 $\mathsf{Example}(\mathsf{s}) \quad \text{ of observer forms...}$

Example(s) of observer forms...

$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$

Example(s) of observer forms...

Robot arm :

$$\Rightarrow ml^{2}\ddot{y}(t) + fl^{2}\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -a_{1}sin(x_{1}) - a_{2}x_{2} + bu \\ y = x_{1} \end{cases}$$

G. Besançon

Example(s) of observer forms...

$$\Rightarrow ml^{2}\ddot{y}(t) + fl^{2}\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -a_{1}sin(x_{1}) - a_{2}x_{2} + bu \\ y = x_{1} \end{cases}$$

$$\Rightarrow Pb: x_{1}, x_{2}? (\leftrightarrow x)$$

Example(s) of observer forms...

$$\Rightarrow ml^{2}\ddot{y}(t) + fl^{2}\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -a_{1}sin(x_{1}) - a_{2}x_{2} + bu \\ y = x_{1} \end{cases}$$

$$\Rightarrow Pb : x_{1}, x_{2}? (\leftrightarrow x)$$

$$\Rightarrow Sol : \dot{x} = Ax + B(Cx, u), y = Cx$$

Example(s) of observer forms...

Example(s) of observer forms...

$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a_1sin(x_1) - a_2x_2 + bu \\ y = x_1 \end{cases}$$

$$\Rightarrow$$
 Pb: x_1, x_2 ? ($\leftrightarrow x$)

$$\Rightarrow$$
 Sol : $\dot{x} = Ax + B(Cx, u), y = Cx$

Or Sol :
$$\dot{x} = A_0x + \psi(x, u), y = C_0x$$
, B Lipschitz

$$\Rightarrow$$
 Pb2 : x_1, x_2, b ? ($\leftrightarrow x_e$)

Example(s) of observer forms...

Robot arm :

$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a_1sin(x_1) - a_2x_2 + bu \\ y = x_1 \end{cases}$$

$$\Rightarrow$$
 Pb: x_1, x_2 ? ($\leftrightarrow x$)

$$\Rightarrow$$
 Sol : $\dot{x} = Ax + B(Cx, u), y = Cx$

Or Sol :
$$\dot{x} = A_0x + \psi(x, u), y = C_0x$$
, B Lipschitz

$$\Rightarrow$$
 Pb2 : x_1, x_2, b ? ($\leftrightarrow x_e$)

G. Besançon

$$\Rightarrow$$
 Sol: $\dot{x}_e = A_e(u)x + B_e(C_ex_e, u), y = C_ex_e$

Example(s) of observer forms...

Robot arm :

$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a_1sin(x_1) - a_2x_2 + bu \\ y = x_1 \end{cases}$$

$$\Rightarrow$$
 Pb: x_1, x_2 ? ($\leftrightarrow x$)

$$\Rightarrow$$
 Sol: $\dot{x} = Ax + B(Cx, u), y = Cx$

Or Sol :
$$\dot{x} = A_0x + \psi(x, u), y = C_0x$$
, B Lipschitz

$$\Rightarrow$$
 Pb2 : x_1, x_2, b ? ($\leftrightarrow x_e$)

G. Besançon

$$\Rightarrow$$
 Sol : $\dot{x}_e = A_e(u)x + B_e(C_ex_e, u), y = C_ex_e$

Or Sol:
$$\dot{x}_e = A_{0e}(u)x + \psi_e(x_e, u), y = C_{0e}x, B$$
 Lipschitz

Van der Pol oscillator :

Example(s)...of observability condition

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and \dot{x}, γ, ω to be estimated.

G. Besançon

• \exists a model $\dot{z} = A(y)z + Bu$; $y = Cz \Rightarrow$ observer form

Van der Pol oscillator :

 ${\sf Example}(s)... of \ observability \ condition$

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and \dot{x}, γ, ω to be estimated.

- \exists a model $\dot{z} = A(y)z + Bu$; $y = Cz \Rightarrow$ observer form
- \bullet \exists a limit cycle \Rightarrow observability with 'regular persistency'

Van der Pol oscillator :

Example(s)...of observability condition

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and \dot{x}, γ, ω to be estimated.

G. Besançon

- \exists a model $\dot{z} = A(y)z + Bu$; $y = Cz \Rightarrow$ observer form
- ∃ a limit cycle ⇒ observability with 'regular persistency'

33 / 34

Van der Pol oscillator :

Example(s)...of observability condition

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and \dot{x}, γ, ω to be estimated.

- \exists a model $\dot{z} = A(y)z + Bu$; $y = Cz \Rightarrow$ observer form
- ∃ a limit cycle ⇒ observability with 'regular persistency'

[cf *Automatica 2010*, to come]

• Observability can be uniform or non uniform

- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform

- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform
- ∃ characterizations of observabilities

- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform
- ∃ characterizations of observabilities
- ∃ transformations for observer forms

- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform
- ∃ characterizations of observabilities
- ∃ transformations for observer forms

but also still some work to be done...

