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. and some advertising
cf G. Besancon, Nonlinear observers and applications, Springer 2007,
and references therein...
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Some observer problem formulations

About motivations

State feedback, parameter identification, fault monitoring
= internal information reconstruction from //O data

= observer pb
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Some observer problem formulations

System description : About formalization—summary

X state vector
u known input vector
y measurement output vector
f, h smooth functions
Problem description :
Find x(t) from the knowledge of f, h and u(7),y(7) on 7 € [to, t]
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f, h smooth functions

Problem description :
Find x(t) from the knowledge of f, h and u(7),y(7) on 7 € [to, t]
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System description : About formalization—summary

X state vector
u known input vector
y measurement output vector
f, h smooth functions
Problem description :
Find x(t) from the knowledge of f, h and u(7),y(7) on 7 € [to, t]

Notation : x,(t, x¢) s.t. %Xu(t,Xto):f(Xu(t,Xto), u(t), t); xulto, Xey) =X,

N.B. in general, f(x, u,t) = f(x, u), h(x, u, t) = h(x)
withx e X CR"ue UCR™,y € Y CRP (= system X in the sequel)
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Some observer problem formulations

About methods—observer

X(t) = FX(9).u(0)y(r) .
(t) = H(X(t), u(t),y(t))
(i) X(0) =x(0) = %(t) =x(t) Vt>0
(i) X(t) —x(t) = 0ast — +oo
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Some observer problem formulations

X(6) = FX(0).u().x(1) .
5() = HX(D),u(D).y(1) ="

(i) X(0) =x(0) = %(t) =x(t) Vt>0
(ii) %(t) —x(t) = 0as t — +oo

About methods—observer

i.e. system transformation & output injection to get (i)-(ii)
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x(t) = H(X(t),u(t), y(t))
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X(t) _ F( (t) (t) y(t)) i, About methods—observer
x(t) = H(X(t),u(t),y(t))

(i) )A((O) = X(O) = )A((t) = X(t) YVt >0

(i) X(t) —x(t) = 0ast — +oo

i.e. system transformation & output injection to get (i)-(ii)

If (ii) ok for any x(0), X(0) : global observer
If (ii) ok exponentially : exponential observer
If (i) ok with tunable rate : tunable observer

For 'observer forms’, typically :
o global exponential tunable observers;

o X(t) = F(X(t), u(t)) + k(y(t) — h(x(t)),t), k(0,t) =0Vt >0
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Some observer problem formulations

= F(X(1).u(t).y(t) ¢, About methods—observer
(1) = HX(t), u(t),y(t) ~

1) X(0) = x(0) = x(t) =x(t) VvVt>0

(i) &(t) — x(t) — 0 as £ — o0

i.e. system transformation & output injection to get (i)-(ii)

X(t
t

~— —

If (i) ok for any x(0), %(0) : global observer
If (ii) ok exponentially : exponential observer
If (i) ok with tunable rate : tunable observer

For "observer forms’, typically :
o global exponential tunable observers;

o %(t) = F(%(t), u(t)) + k(y(t) — h(%(1)). 1), k(0,£) =0Vt >0
e.g. k(y — h((x)), t) = k(t) x [y(t) — h(x(t))]
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Some observability conditions
About 'structural’ definition—Observability

In general :
An observer design needs an "observability" condition,i.e.

To obtain state information from 1/0 data,
|/O data should contain state information.
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An observer design needs an "observability" condition,i.e.

To obtain state information from 1/0 data,
|/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).

Ex. x = —x 4 u, y = 0 not "observable", yet 8 = —% + u = % — x — 0.
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Some observability conditions
About 'structural’ definition—Observability

In general :
An observer design needs an "observability" condition,i.e.

To obtain state information from 1/0 data,
|/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).

Ex. x = —x + u, y = 0 not "observable", yet x = -8 + u= % — x — 0.
("detectability").
However "observability" is necessary for a "tunable’ observer.
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Some observability conditions

About 'structural’ definition—Formal observability

Observability = "distinguishability of states by output trajectories"
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Some observability conditions

About 'structural’ definition—Formal observability

Observability = "distinguishability of states by output trajectories"

Indistinguishability :
(x0,x3) € R" x R" is indistinguishable for (X) if :

YueU, Vt >0, h(xu(t,x0)) = h(xu(t,xq))-

Observability [resp. at x] :
A indistinguishable pair [resp. indistinguishable pair (x, xp)].

N.B. Very general notion, even too general cf x = u, y = sin(x)
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Some observability conditions

About 'structural’ definition—Local weak observability

= a weaker notion of observability is more appropriate :

Local weak observability [resp. at xo] :

Vx [resp. of xo], 3 a neighborhood U s.t. VV C U neighborhood of x [resp.
x0], A indistinguishable state from x [resp. xp] in V/, as long as trajectories
remain in V.
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Some observability conditions

About 'structural’ definition—Local weak observability

= a weaker notion of observability is more appropriate :

Local weak observability [resp. at xo] :

Vx [resp. of xo], 3 a neighborhood U s.t. VV C U neighborhood of x [resp.
x0], A indistinguishable state from x [resp. xp] in V/, as long as trajectories
remain in V.

In short : "distinguish every state from its neighbors without going too far"
= more interesting in practice
= with a 'simple’ geometric characterization
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Some observability conditions
About 'geometric’ characterization—Rank condition
Observation space :
The observation space O(h) for a system (X) is the smallest real vector
space of C* functions containing the components of h and closed under
Lie derivation along f, := f(., u) for any constant u € R™
(ie. Voo € O(h), L, € O(h), where Lg,p(x) = 22f(x, u)).
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space of C* functions containing the components of h and closed under
Lie derivation along f, := f(., u) for any constant u € R™
(ie. Voo € O(h), L, € O(h), where Lg,p(x) = 22f(x, u)).

Observability rank condition [resp. at xp] :
Vx, dimdO(h) |x=n [resp. dimdO(h) |x,= n]

where dO(h) |x:= {dp(x),p € O(h)}.
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Some observability conditions
About 'geometric’ characterization—Rank condition
Observation space :
The observation space O(h) for a system (X) is the smallest real vector
space of C* functions containing the components of h and closed under

Lie derivation along f, := f(., u) for any constant u € R™
(ie. Voo € O(h), L, € O(h), where Lg,p(x) = 22f(x, u)).

Observability rank condition [resp. at xp] :
Vx, dimdO(h) |x=n [resp. dimdO(h) |x,= n]
where dO(h) |x:= {dp(x),p € O(h)}.

Local weak observability characterization :
Observability rank condition (at xp) = local weak observability (at xp).

)
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Some observability conditions

About 'geometric’ characterization—Towards observers

N.B. Observability rank cond. = Kalman rank cond. for x = Ax, y = Cx
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Some observability conditions

About 'geometric’ characterization—Towards observers

N.B. Observability rank cond. = Kalman rank cond. for x = Ax, y = Cx
and also sufficient for observer design
when x = Ax + Bu

— Not true in general :

observability instead 'depends on the input’,
and is not enough for observer design.
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Some observability conditions

About 'geometric’ characterization—Towards observers

N.B. Observability rank cond. = Kalman rank cond. for x = Ax, y = Cx
and also sufficient for observer design
when x = Ax + Bu

— Not true in general :

observability instead 'depends on the input’,
and is not enough for observer design.

Ex. x = (8 6’) x, y = (1 0)x observable Vu cst # 0, but not for u =0

= Need to look at the inputs.
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Some observability conditions

About 'excitation’ conditions—Universal inputs

Universal input [resp. on [0, t]] :

u:Vxo # x4, 31 >0 (resp. 37 € [0, t]) s.t. h(xu(T, x0)) # h(xu(T,x5))-

Singular input : u not universal.

I 1

[
A

G. Besangon Observability & observer forms - CAS, Paris, March 2010

14 / 34



Some observability conditions

About 'excitation’ conditions—Universal inputs

Universal input [resp. on [0, t]] :

u:Vxo # x4, 31 >0 (resp. 37 € [0, t]) s.t. h(xu(T, x0)) # h(xu(T,x5))-
Singular input : u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

=
i Grenobiefing
= / G. Besangon Observability & observer forms - CAS, Paris, March 2010 14 / 34



Some observability conditions

About 'excitation’ conditions—Universal inputs

Universal input [resp. on [0, t]] :

u:Vxo # x4, 31 >0 (resp. 37 € [0, t]) s.t. h(xu(T, x0)) # h(xu(T,x5))-
Singular input : u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

In general singularities difficult to be characterized.

=
E Grenob tefine
= / G. Besangon Observability & observer forms - CAS, Paris, March 2010 14 / 34



Some observability conditions

About 'excitation’ conditions—Universal inputs

Universal input [resp. on [0, t]] :

u:Vxo # x4, 31 >0 (resp. 37 € [0, t]) s.t. h(xu(T,x0)) # h(xu(T,x5))-
Singular input : u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

In general singularities difficult to be characterized.

"Nice' case :
Uniformly observable systems (resp. locally) :
(X) is uniformly observable (UO) if every input is universal (resp. on [0,
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Ex. The system below is uniformly observable :

H(psrah

0

N
5

1

0

G. Besangon

0

o

H4o

0 p1(x1)
: p2(x1,x2)
X+ + :
0 On—1(X1, .- Xn—1)
¢n(X) SOn(Xla cee 7Xn)
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Ex. The system below is uniformly observable :

o 1 0 --- 0 0 ©1(x1)
S : p2(x1,x2)
x = 0fx+ + : u
: 1 Pn-1(X1, -+, Xn-1)
0 0 Yn(x) en(X1; - -5 Xn)
y = xii x=(x1., xa)

t
NB. u universal on [0, t]@/ I1h(xu(T, %0)) = h(xu(T, X4))||2dT >0, x0# X}
0
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Ex. The system below is uniformly observable :

o 1 0 --- 0 0 ©1(x1)
S : p2(x1,x2)
x = 0fx+ + : u
: 1 Pn-1(X1, -+, Xn-1)
0 0 Yn(x) en(X1; - -5 Xn)
y = xii x=(x1., xa)

t
NB. u universal on [0, t]@/ I1h(xu(T, %0)) = h(xu(T, X4))||2dT >0, x0# X}
0

NB.2 : uniform observability = possible input-independent observer...
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Some observability conditions
About 'excitation’ conditions—Regularly persistent excitation

In general, non uniformly observable systems = input-dependent observers.
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Some observability conditions
About 'excitation’ conditions—Regularly persistent excitation

In general, non uniformly observable systems = input-dependent observers.

Using universal inputs not enough : cf disturbance pb
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Some observability conditions
About 'excitation’ conditions—Regularly persistent excitation

In general, non uniformly observable systems = input-dependent observers.

Using universal inputs not enough : cf disturbance pb
Univ. inputs on [t, t+ T| (persistent) not enough either :cf 'vanishing info’ pb

= need of 'regular persistency’ :
Regularly persistent inputs (RP) :
u is regularly persistent for (X) if :
dtg, T : \V/Xt—T,X;,T, Yt > to,
t
/ . 1Cxu(T,xe-7)) = h(xu(T, xt—7))I1Pd7 > Blxe-7 — xt_ 7))
t_

for some class K function 3.

)

H(psra

G. Besangon Observability & observer forms - CAS, Paris, March 2010 16 / 34



Ex. For x(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t), RP inputs are s.t.
t
dto, T, v : / OI(r,t = T)CTCO,(r,t — T)dT > al >0 Vit > to,
t—T

o, (7,t)

with ®,(7,t) : d T A(u(7))Py(T, t), Syu(t,t) =1.

()]
=

G. Besancgon Observability & observer forms - CAS, Paris, March 2010 17 / 34



Ex. For x(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t), RP inputs are s.t.
t
Jto, T, : / OI(r,t = T)CTCO,(r,t — T)dT > al >0 Vit > to,
t—T
o, (7,t)

with ®,(7,t) : d J
-

N.B. For x(t) = A(t)x(t), y(t) = Cx(t) : Kalman Unif. Complete Obs.

= A(u(r))Pu(r, t), Pu(t,t) = 1.
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Ex. For x(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t), RP inputs are s.t.
t
Jto, T, : / OI(r,t = T)CTCO,(r,t — T)dT > al >0 Vit > to,
t—T
o, (7,t)

with ®,(7,t) : d J
-

N.B. For x(t) = A(t)x(t), y(t) = Cx(t) : Kalman Unif. Complete Obs.

= A(u(r))Pu(r, t), Pu(t,t) = 1.

N.B.2. Need of time T. For shorter times : 'short-time’ excitation needed.

()]
=
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Some observability conditions
About 'excitation’ conditions—Locally regular excitation
Locally regular inputs (LR) :
u is locally regular for (X) if :

ATo,a :Vxe—1,x,_7, VT < To, Vt > T,
t
/ . hOxu(T, xe-7)) — h(xu(T, Xt )I1PdT > BlIxe—1 — xt_ 7],
t_

for some class KL function 3.

e
N
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Some observability conditions
About 'excitation’ conditions—Locally regular excitation
Locally regular inputs (LR) :
u is locally regular for (X) if :

ATo,a :Vxe—1,x,_7, VT < To, Vt > T,
t
1
/ . [h(xu(T, xe-7)) = h(xu(m X ))IPdT > Blxe-1 = x(_ 7, )
t_
for some class KL function 3.

Ex. For x(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t), LR inputs are s.t.
ITo, a0 : VT < Tp, Vt > T,

2
T 0
f T T 1 T
/ OT(r. ¢t — T)CTCodu(r, t — T)dr > as
t—T T T

0 T

§ R ek N.B. LR inputs make observability ~ linear one.
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Some observability conditions
Summary

Observer design needs :
o Appropriate modelling : x(t) = f(x(t), u(t)), y(t) = h(x(t))
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Some observability conditions
Summary
Observer design needs :
o Appropriate modelling : x(t) = f(x(t), u(t)), y(t) = h(x(t))
@ Appropriate property : observability (rank condition + input selection)
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Some observability conditions
Summary
Observer design needs :
o Appropriate modelling : x(t) = f(x(t), u(t)), y(t) = h(x(t))
@ Appropriate property : observability (rank condition + input selection)
N.B.
o If rank condition not satisfied, the system might be turned into :

é:-l = f1(<17 C2a U)
CZ — f2(<27 IJ)
y = h(¢q)

with £, hy rank observable.

[
~=
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Some observability conditions
Summary

Observer design needs :
o Appropriate modelling : x(t) = f(x(t), u(t)), y(t) = h(x(t))

@ Appropriate property : observability (rank condition + input selection)

N.B.

o If rank condition not satisfied, the system might be turned into :

é:-l = fl(Cl? C2a U)
<2 — f2(<27 IJ)
y = h(¢q)

with £, hy rank observable.
o If system not observable, but s.t. :

Vu : xg, x§ indistinguishable, x,(t, x0) — xu(t,x}) — 0
an observer might still be designed (detectability).

/ G. Besancgon Observability & observer forms - CAS, Paris, March 2010
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Some observability conditions

Summary-cont’ed

o If system observable, effective design might depend on observability :
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Some observability conditions

Summary-cont’ed

o If system observable, effective design might depend on observability :

» For uniform observability, uniform observers;
» For non-uniform observability, non-uniform observers.
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Some observability conditions

Summary-cont’ed

o If system observable, effective design might depend on observability :

» For uniform observability, uniform observers;
» For non-uniform observability, non-uniform observers.

N.B. Also 3 'cross-cases’...

/ G. Besangon Observability & observer forms - CAS, Paris, March 2010 20 / 34



Some observability conditions

Summary-cont'ed

o If system observable, effective design might depend on observability :

» For uniform observability, uniform observers;
» For non-uniform observability, non-uniform observers.

N.B. Also 3 'cross-cases’...

= observer forms = uniform (cf Luenberger) & non-uniform (cf Kalman)
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Outline

© Some observer forms
@ 'Uniformly observable’ systems
@ 'Non uniformly observable’ systems
@ Example(s)

R gipsa \I
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Basic (LTI) system :

G. Besangon

Some observer forms

'Uniformly observable’ systems—LT]

= Ax(t)+ Bu(t)
= Cx(t)
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Some observer forms
'Uniformly observable’ systems—LT]

Basic (LTI) system :

x(t) = Ax(t)+ Bu(t)
y(t) = (t)

Result [Luenberger] :
If (A, C) is observable, then 3 an observer :

X(t) = AX(t) + Bu(t) — K(Cx(t) — y(t))
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Some observer forms
"Uniformly observable’ systems—LT]

Basic (LTI) system :

x(t) = Ax(t)+ Bu(t)
y(t) = (1)

Result [Luenberger] :
If (A, C) is observable, then 3 an observer :

%(t) = A%(t) + Bu(t) — K(Cx(t) — y(t))

N.B. K is to be chosen s.t. A — KC stable:
The rate of convergence can be arbitrarily chosen via K.
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Some observer forms

'Uniformly observable’ systems—LT]

Basic (LTI) system :

x(t) = Ax(t)+ Bu(t)
y(t) = (t)

Result [Luenberger] :
If (A, C) is observable, then 3 an observer :

%(t) = A%(t) + Bu(t) — K(Cx(t) — y(t))

N.B. K is to be chosen s.t. A — KC stable;
The rate of convergence can be arbitrarily chosen via K.

Indeed : e=%X—x=é=(A— KC)e
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Some observer forms
"Uniformly observable’ systems—LTIl 4+ [/O NL

System with additive |/O nonlinearities :

x(t) = Ax(t)+ B(u(t), Cx(t))
y(t) = Cx(t)

R gipsa-l \I

G. Besangon Observability & observer forms - CAS, Paris, March 2010

23 /34



Some observer forms
"Uniformly observable’ systems—LTIl 4+ [/O NL

System with additive |/O nonlinearities :

x(t) = Ax(t)+ B(u(t), Cx(t))
y(t) = Cx(t)

Result [Error linearization] :
If (A, C) is observable, then 3 an observer :

x(t) = AR(t) + B(u(t). (1)) — K(CR(t) — y(t))

‘D gipsa-lak \I
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Some observer forms
"Uniformly observable’ systems—LTIl 4+ [/O NL

System with additive |/O nonlinearities :

x(t) = Ax(t)+ B(u(t), Cx(t))
y(t) = (1)

Result [Error linearization] :
If (A, C) is observable, then 3 an observer :

x(t) = AR(t) + B(u(t). (1)) — K(CR(t) — y(t))

N.B. K is to be chosen s.t. A— KC stable (cf Luenberger)
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Some observer forms
'Uniformly observable’ systems—LTI| + Lipschitz NL
System with additive Lipschitz nonlinearities :

x(t) = Ax(t)+ B(u(t),x(t))
y(t) = (1)

with B globally Lipschitz /x,unif./u
(e 37 Vx, 0, [|B(u,x) — B(u,2)] < lx - ])
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Some observer forms
'Uniformly observable’ systems—LTI| + Lipschitz NL
System with additive Lipschitz nonlinearities :
x(t) = Ax(t)+ B(u(t),x(t))
y(t) = (1)
with B globally Lipschitz /x,unif./u
(i.e. Iy :Vx,u, ||B(u,x) — B(u, z)|| <~vl|x — z||)

First idea :
If 3K and P, Q positive definite s.t.
P(A-KC)+(A-KC)TP = —-Q
eigmin(Q
2e§g-ma>g(P)) >

then X = A% + B(u, %) — K(CX — y) is an observer
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Some observer forms
'Uniformly observable’ systems—LTI| + Lipschitz NL
System with additive Lipschitz nonlinearities :
x(t) = Ax(t)+ B(u(t),x(t))
y(t) = (1)
with B globally Lipschitz /x,unif./u
(i.e. Iy :Vx,u, ||B(u,x) — B(u, z)|| <~vl|x — z||)

First idea :
If 3K and P, Q positive definite s.t.
P(A-KC)+(A-KC)TP = —-Q
eigmin(Q
2eéma>£(l2) >

then X = A% + B(u, %) — K(CX — y) is an observer
Pb: Find K, P, Q...
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Some observer forms
'Uniformly observable’ systems—LTI| + structured NL
System with additive triangular nonlinearities :
x(t) = Aox(t) + B(u(t), x(t))
y(t) = Gox(t)

01 0

with Ag = B 1 s CO:(10---O),X€IR”,y€R
0 0

é )/I G. Besangon Observability & observer forms - CAS, Paris, March 2010
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Some observer forms
'Uniformly observable’ systems—LTI| + structured NL
System with additive triangular nonlinearities :
x(t) = Aox(t) + B(u(t), x(t))
y(t) = Gox(t)

0 1 0
with Ay = aE Go=(10---0), xeR", yeR
0 0

Result [High Gain Observer] :

B; .
If B globally Lipschitz /x,unif./u : ?9 (u,x)=0forj > i+1,
m
T 0
then 3 obs. X = AoX + B(u, %) — Ko(Cok — y)
0 A7

with Ky s.t. Ag — Ko G stable, and X large enough.
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Some observer forms

"Uniformly observable’ systems— about high gain

o High gain observer since based on A large enough.

2 )
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Some observer forms

"Uniformly observable’ systems— about high gain

o High gain observer since based on A large enough.
@ The larger \ is, the faster the convergence is.

7o)
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Some observer forms

"Uniformly observable’ systems— about high gain

o High gain observer since based on A large enough.
@ The larger A is, the faster the convergence is.
@ Output injection can also be used.
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Some observer forms

"Uniformly observable’ systems— about high gain

High gain observer since based on )\ large enough.
The larger ) is, the faster the convergence is.
Output injection can also be used.

Possible extension to systems :

x(t) = f(x(2), u(t)), y(t) = Cox(t)

=0forj>i+1and 5 6f

>a,>0fora||xu
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Some observer forms

"Uniformly observable’ systems— about high gain

High gain observer since based on )\ large enough.
The larger ) is, the faster the convergence is.
Output injection can also be used.

Possible extension to systems :

x(t) = f(x(¢), u(t), y(t) = Cox(t)
0forj>i+1and 4 8f >a,>0fora||xu
P055|b|e extension to multl—output systems.

31‘,7

where
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Some observer forms

"Uniformly observable’ systems— about high gain

High gain observer since based on )\ large enough.
The larger ) is, the faster the convergence is.
Output injection can also be used.

Possible extension to systems :

x(t) = F(x(t), u(t)), y(t) = Gox(t)
0forj>i+1and 4 8f >a,>0fora||x u.

P055|b|e extension to multl—output systems.
Possible adaptive gain implementation

5O =100, [ 1htrz1) IR

81‘,7

where
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Some observer forms

"Uniformly observable’ systems— about high gain

High gain observer since based on )\ large enough.
The larger ) is, the faster the convergence is.
Output injection can also be used.

Possible extension to systems :

x(t) = F(x(t), u(t)), y(t) = Gox(t)
0forj>i+1and 4 8f >a,>0fora||x u.

P055|b|e extension to multl—output systems.
Possible adaptive gain implementation

5O =100, [ 1htrz1) IR

For observer form 'characteristic’ of uniform observability

)

81‘,7

where
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Some observer forms

'Non uniformly observable' systems-LTV

System :
x(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t), A(t), C(t) uniformly bounded.
g
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Some observer forms

'Non uniformly observable' systems-LTV

System :

x(t) = A(t)x(t)+ B(t)u(t)
y(t) = C(t)x(t), A(t), C(t) uniformly bounded.

Result [Kalman] :

If (A(t), C(t)) is uniformly completely observable, then 3 an observer :

K(t) = A1) + B(2)u(t) — K()(C(B)K(E) — y(1))

‘D gipsa-lak \ [

G. Besangon Observability & observer forms - CAS, Paris, March 2010

27 / 34



Some observer forms

'Non uniformly observable' systems-LTV

System :
x(t) = A(t)x(t)+ B(t)u(t)
y(t) = C(t)x(t), A(t), C(t) uniformly bounded.
Result [Kalman] :
If (A(t), C(t)) is uniformly completely observable, then 3 an observer :
x(t) = A(D)x(t) + B(t)u(t) — K(£)(C(£)x(t) — y(t))
N.B. K is to be chosen s.t.
M(t) = A()M(t)+M(t)AT (£)=M(t)CT(t)WLC(t)M(t)+V +3M(t)
MO) = My=M] >0, W=WT >0
K(t) = M(t)CT(t)W™L; with § > 2||A(t)|| Vt,or V=VT >0;

The rate of convergence can be arbitrarily chosen via 4, V.
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Some observer forms
"Non uniformly observable’ systems—LTV-like with 1/0O NL
System with additive and multiplicative |/O nonlinearities
(state affine systems) :

x(t) = Alu(t), Cx(8))x(t) + B(u(t), Cx(t))
y(t) = (1)

with A(u(t), Cxu(t, x0)) bounded,
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Some observer forms

'Non uniformly observable" systems—LTV-like with 1/O NL
System with additive and multiplicative 1/O nonlinearities
(state affine systems) :

x(t) = Alu(t), Cx(8))x(t) + B(u(t), Cx(t))
y(t) = (1)

with A(u(t), Cxu(t, x0)) bounded,
Result :

If uis regularly persistent for the system in the sense that it makes A, C
uniformly completely observable, then 3 observer :

x(t) = Au(t), y(£))%(2) + B(u(t), y(t)) = K(£)(C(£)X(t) — y(t))

with K(t) as in Kalman observer.

R gipsa-l \I
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Some observer forms
'Non uniformly observable’ systems—LTV-like with structured NL

System with additive triangular nonlinearities
and multiplicative 1/O nonlinearities :

x(t) = Aolu(t), Cx(t))x(t) + B(u(t), x(t))
y(t) = Gox(t)

0 a12(u, CX) 0
with Ag(u, Cx) = (0, %) bounded,
an—1n\U, LX
0 0

G=(10---0), xeR" yeR
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Some observer forms
'Non uniformly observable’ systems—LTV-like with structured NL

System with additive triangular nonlinearities
and multiplicative 1/O nonlinearities :

x(t) = Aolu(t), Cx(t))x(t) + B(u(t), x(t))
y(t) = Gox(t)

0 a12(u, CX) 0
with Ag(u, Cx) = (0, %) bounded,
an—1n\U, LX
0 0

G=(10---0), xeR" yeR

— combine high gain and Kalman...
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Result :

If B globally Lipschitz/x,unif./u : aaf;(x, u)=0forj>i+1and u locally
u(t)

Cxu(t, x0)

%(t) = A(v(£)x(1), y(£) = Cx(z) for any xo,

then 3 an observer :

regular in the sense that it makes v(t) := < > locally regular for
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Result :
0B;

If B globally Lipschitz/x,unif./u : —(x,u) =0forj > i+ 1 and u locally

%y

u(t)
CXu(t,Xo)
x(t) = A(v(t))x(t), y(t) = Cx(t) for any xo,
then 3 an observer :

regular in the sense that it makes v(t) := <

A 0
= Aou, )X+ p(%,u) — Ko(t)(CoX — )
0 A"
with Ko(t) given by :

M(t) = AM(t)AT (u(t), y(t)) + A(u(t), y(t))M(t)
—M(t)CTW=LCM(t) + sM(t)]

M@O) = MT(QO)>0,W=WT>0

K(t) = M(t)CTw1

for § > 2||A(u, y)|| and A large enough.

=
3“ G_nm)..;p\
= / G. Besangon Observability & observer forms - CAS, Paris, March 2010
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Some observer forms
'Non uniformly observable’ systems—About LTV-based high gain

@ Similar remarks as in standard High Gain case;

m gipsa-lab \
T )
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Some observer forms
'Non uniformly observable’ systems—About LTV-based high gain

@ Similar remarks as in standard High Gain case;

o Possible extension to A(u, x) with a;j =0, i # j+ 1, and
Dajiy1
Oxj

=0,j<i+1.

7 )
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Some observer forms
'Non uniformly observable’ systems—About LTV-based high gain

@ Similar remarks as in standard High Gain case;

@ Possible extension to A(u, x) with a; =0, i # j + 1, and
dajit1
Oxj

=0,j<i+1.

@ Possible extension to blocks aji 1 € R* M+t
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Some observer forms
'Non uniformly observable’ systems—About LTV-based high gain

Similar remarks as in standard High Gain case;

Possible extension to A(u, x) with a; =0, i #j + 1, and
dajit1
Oxj

=0,j<i+1.
Possible extension to blocks aj; 1 € R*Mi+1

For observer form 'characteristic’ of uniform observability
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

m gipsa-lab
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@ Robot arm :

Some observer forms

Example(s)  of observer forms...

= ml2y(t) + f2y(t) + mglsin(y(t)) = u(t)

G. Besangon
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

= ml2y(t) + f2y(t) + mglsin(y(t)) = u(t)

5(1 = X2
= %o = —aysin(xy) — axxa + bu
y = X1
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

= ml2y(t) + f2y(t) + mglsin(y(t)) = u(t)

5(1 = X2
= %o = —aysin(xy) — axxa + bu
y = X1

= Pb:xy,x2? (< x)
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

= ml2y(t) + f2y(t) + mglsin(y(t)) = u(t)

5(1 = X2
= %o = —aysin(xy) — axxa + bu
y = X1

= Pb:xy,x2? (< x)

= Sol : X = Ax+ B(Cx,u),y = Cx
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

= ml2y(t) + f2y(t) + mglsin(y(t)) = u(t)

5(1 = X2
= %o = —aysin(xy) — axxa + bu
y = X1

= Pb:x,x? (< x)
= Sol : X = Ax+ B(Cx,u),y = Cx
Or Sol : x = Agx + ¥(x, u),y = Cox, B Lipschitz
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

= ml2y(t) + f2y(t) + mglsin(y(t)) = u(t)

5(1 = X2
= %o = —aysin(xy) — axxa + bu
y = X1

= Pb:x,x? (< x)
= Sol : X = Ax+ B(Cx,u),y = Cx
Or Sol : x = Agx + ¥(x, u),y = Cox, B Lipschitz
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

= mlPy(t) + fPy(t) + mglsin(y(t)) = u(t)

5(1 = X2
= %o = —aysin(xy) — axxa + bu
y = X1

= Pb:x,x? (< x)
= Sol : X = Ax+ B(Cx,u),y = Cx
Or Sol : x = Agx + ¥(x, u),y = Cox, B Lipschitz

' = Pb2: x1,x,b7 (< xe)

= Sol : %o = Ae(U)x + Be(CeXe, t), y = Cexe
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Some observer forms

Example(s)  of observer forms...

@ Robot arm :

= mlPy(t) + fPy(t) + mglsin(y(t)) = u(t)

X1 = X
= %o = —aysin(xy) — axxa + bu
y = X

= Pb:x,x? (< x)
= Sol : X = Ax+ B(Cx,u),y = Cx
Or Sol : x = Agx + ¥(x, u),y = Cox, B Lipschitz

= Pb2: x1,x,b7 (< xe)
= Sol : %o = Ae(U)x + Be(CeXe, t), y = Cexe
Or Sol : % = Age(u)x+1)e(Xe, u),y = Coex, B Lipschitz
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Some observer forms
Van der Pol oscillator Example(s)...of observability condition
X(t) — v [1—x*()] x(t) + w’x(t) = 0
with y = x and x,y,w to be estimated.
e Jamodel z= A(y)z + Bu; y = Cz = observer form

I 1

[
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Some observer forms

Van der Pol oscillator : Example(s)...of observability condition

x(t)—~[1- x2(t)] x(t) +w?x(t) = 0
with y = x and X, y,w to be estimated.

e Jamodel z= A(y)z + Bu; y = Cz = observer form
e Ja limit cycle = observability with 'regular persistency’
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Some observer forms

Van der Pol oscillator Example(s)...of observability condition

x(t)—~[1- x2(t)] x(t) +w?x(t) = 0
with y = x and X, y,w to be estimated.

e Jamodel z= A(y)z + Bu; y = Cz = observer form
e Ja limit cycle = observability with 'regular persistency’

Mt [ cf Automatica 2010, to come |
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Some conclusions

@ Observability can be uniform or non uniform

‘D gipsa-lak \I

/ G. Besangon Observability & observer forms - CAS, Paris, March 2010 34 / 34



Some conclusions

@ Observability can be uniform or non uniform

@ Observer forms can uniform or non uniform

a1

/ G. Besangon Observability & observer forms - CAS, Paris, March 2010 34 / 34

=
=
&



H(psrah

Some conclusions

@ Observability can be uniform or non uniform
@ Observer forms can uniform or non uniform

o I characterizations of observabilities
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Some conclusions

Observability can be uniform or non uniform
Observer forms can uniform or non uniform
3 characterizations of observabilities

3 transformations for observer forms
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Some conclusions

Observability can be uniform or non uniform
Observer forms can uniform or non uniform
3 characterizations of observabilities
3 transformations for observer forms

but also still some work to be done...
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