#### Mines Paris Tech

## Centre d'Automatique et Systèmes

### ON OBSERVABILITY & OBSERVER FORMS

### Gildas Besançon

Control Systems Department, GIPSA-lab (Grenoble Image Parole Signal Automatique )

Ense<sup>3</sup> - Grenoble INP

March 1st 2010



Some observer problem formulations



- Some observer problem formulations
- Some observability conditions



- Some observer problem formulations
- Some observability conditions
- Some observer forms



- Some observer problem formulations
- Some observability conditions
- Some observer forms



... and some advertising cf G. Besançon, *Nonlinear observers and applications*, Springer 2007, and references therein...



- Some observer problem formulations
  - About motivations
  - About formalization
  - About methods
- Some observability conditions
- Some observer forms



State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- ⇒ observer pb



State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- ⇒ observer pb

Is it possible?



State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- ⇒ observer pb

Is it possible? cf observability



State feedback, parameter identification, fault monitoring

- ⇒ internal information reconstruction from I/O data
- observer pb

Is it possible? cf *observability* 

How?



State feedback, parameter identification, fault monitoring

- $\Rightarrow$  internal information reconstruction from I/O data
- ⇒ observer pb

Is it possible? cf observability

How? cf observer forms



#### System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$
$$y(t) = h(x(t), u(t), t)$$

$$f(t) = H(x(t), u(t), t)$$



#### System description:

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

x state vector



#### System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- *u* known input vector



#### System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- y measurement output vector



#### System description:

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- *u* known input vector
- y measurement output vector
- f, h smooth functions



#### System description:

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- y measurement output vector
- f, h smooth functions

#### Problem description:

Find x(t) from the knowledge of f, h and  $u(\tau), y(\tau)$  on  $\tau \in [t_0, t]$ 



#### System description :

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$
$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- measurement output vector

G. Besançon

f, h smooth functions

#### Problem description:

Find x(t) from the knowledge of f, h and  $u(\tau), y(\tau)$  on  $\tau \in [t_0, t]$ 

Notation : 
$$\chi_u(t, x_{t_0})$$
 s.t.  $\frac{d}{dt}\chi_u(t, x_{t_0}) = f(\chi_u(t, x_{t_0}), u(t), t); \chi_u(t_0, x_{t_0}) = x_{t_0}$ 



#### System description:

About formalization-summary

$$\dot{x}(t) = f(x(t), u(t), t)$$
$$y(t) = h(x(t), u(t), t)$$

- x state vector
- u known input vector
- y measurement output vector
- f, h smooth functions

#### Problem description:

Find x(t) from the knowledge of f, h and  $u(\tau), y(\tau)$  on  $\tau \in [t_0, t]$ 

Notation: 
$$\chi_u(t, x_{t_0})$$
 s.t.  $\frac{d}{dt}\chi_u(t, x_{t_0}) = f(\chi_u(t, x_{t_0}), u(t), t); \; \chi_u(t_0, x_{t_0}) = x_{t_0}$ 

N.B. in general, f(x, u, t) = f(x, u), h(x, u, t) = h(x)with  $x \in X \subset \mathbb{R}^n, u \in U \subset \mathbb{R}^m, y \in Y \subset \mathbb{R}^p \ (\equiv \text{system } \Sigma \text{ in the sequel})$ 



About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$ 



About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?



About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

I. "Corrected trajectory-based" approach :



About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?



#### About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

solve 
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$



#### About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

I. "Corrected trajectory-based" approach : Find an optimal estimation of  $x(t_0)$  according to  $y(t) - h(\hat{x}(t))$  ie :

solve 
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

⇒ Optimization pb



#### About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

solve 
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- $\Rightarrow$  Optimization pb
- II. "Corrected model-based" approach :



#### About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

solve 
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- $\Rightarrow$  Optimization pb
- II. "Corrected model-based" approach : Correct  $\dot{x}$  according to  $y(t) h(\hat{x}(t))$



#### About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

solve 
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- ⇒ Optimization pb
- II. "Corrected model-based" approach : Correct  $\dot{x}$  according to  $y(t)-h(\hat{x}(t))$  ie : Find appropriate correction so that  $\hat{x}(t)-x(t)\to 0$  as  $t\to \infty$



#### About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

solve 
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- $\Rightarrow$  Optimization pb
- II. "Corrected model-based" approach : Correct  $\dot{x}$  according to  $y(t) h(\hat{x}(t))$  ie : Find appropriate correction so that  $\hat{x}(t) x(t) \to 0$  as  $t \to \infty$   $\Rightarrow$  Stabilization pb



#### About methods-overview

Model and input known  $\Rightarrow$  Integrate  $\dot{x}(t)$  to get an estimate  $\hat{x}(t)$  Pb :  $x(t_0)$ ?

I. "Corrected trajectory-based" approach : Find an optimal estimation of  $x(t_0)$  according to  $y(t) - h(\hat{x}(t))$  ie :

solve 
$$\min_{z_{t-T}} \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2 d\tau$$

- ⇒ Optimization pb
- II. "Corrected model-based" approach :

Correct  $\dot{x}$  according to  $y(t) - h(\hat{x}(t))$ 

ie : Find appropriate correction so that  $\hat{x}(t) - x(t) \to 0$  as  $t \to \infty$ 

⇒ Stabilization pb



About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t)) 
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i) 
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii) 
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as  $t \rightarrow +\infty$ 



About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t)) 
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i) 
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii) 
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as  $t \rightarrow +\infty$ 

i.e. system transformation & output injection to get (i)-(ii)



About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t)) 
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i) 
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii) 
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as  $t \rightarrow +\infty$ 

i.e. system transformation & output injection to get (i)-(ii)

If (ii) ok for any  $x(0), \hat{x}(0)$ : global observer



$$\dot{X}(t) = F(X(t), u(t), y(t)) 
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i) 
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii) 
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as  $t \rightarrow +\infty$ 

i.e. system transformation & output injection to get (i)-(ii)

If (ii) ok for any x(0),  $\hat{x}(0)$ : global observer

If (ii) ok exponentially: exponential observer



About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t)) 
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i) 
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \ge 0$$

(ii) 
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as  $t \rightarrow +\infty$ 

i.e. system transformation & output injection to get (i)-(ii)

- If (ii) ok for any x(0),  $\hat{x}(0)$ : global observer
- If (ii) ok exponentially: exponential observer
- If (ii) ok with tunable rate : tunable observer



About methods-observer

$$\dot{X}(t) = F(X(t), u(t), y(t)) 
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i) 
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii) 
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as  $t \rightarrow +\infty$ 

i.e. system transformation & output injection to get (i)-(ii)

- If (ii) ok for any x(0),  $\hat{x}(0)$ : global observer
- If (ii) ok exponentially: exponential observer
- If (ii) ok with tunable rate : tunable observer

#### For 'observer forms', typically:

• global exponential tunable observers;

G. Besançon

•  $\dot{\hat{x}}(t) = f(\hat{x}(t), u(t)) + k(y(t) - h(\hat{x}(t)), t), \ k(0, t) = 0 \ \forall t \ge 0$ 



# Some observer problem formulations

$$\dot{X}(t) = F(X(t), u(t), y(t)) 
\hat{x}(t) = H(X(t), u(t), y(t))$$
s.t

(i) 
$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t) \quad \forall t \geq 0$$

(ii) 
$$\hat{x}(t) - x(t) \rightarrow 0$$
 as  $t \rightarrow +\infty$ 

i.e. system transformation & output injection to get (i)-(ii)

If (ii) ok for any x(0),  $\hat{x}(0)$ : global observer

If (ii) ok exponentially: exponential observer

If (ii) ok with tunable rate : tunable observer

#### For 'observer forms', typically:

- global exponential tunable observers;
- $\dot{\hat{x}}(t) = f(\hat{x}(t), u(t)) + k(y(t) h(\hat{x}(t)), t), \ k(0, t) = 0 \ \forall t \geq 0$

e.g. 
$$k(y - h(\hat{x})), t) = k(t) \times [y(t) - h(\hat{x}(t))]$$

About methods-observer



#### Outline

- Some observer problem formulations
- Some observability conditions
  - About 'structural' definition
  - About 'geometric' characterization
  - About 'excitation' conditions
- Some observer forms



About 'structural' definition-Observability

In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.



About 'structural' definition-Observability

In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.



About 'structural' definition-Observability

In general :

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).



About 'structural' definition—Observability

#### In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).

Ex.  $\dot{x} = -x + u$ , y = 0 not "observable", yet  $\dot{\hat{x}} = -\hat{x} + u \Rightarrow \hat{x} - x \rightarrow 0$ . ("detectability").

G. Besançon



About 'structural' definition—Observability

#### In general:

An observer design needs an "observability" condition, i.e.

To obtain state information from I/O data, I/O data should contain state information.

N.B. "observability" is not even necessary for an observer as in (i)-(ii).

Ex.  $\dot{x} = -x + u$ , y = 0 not "observable", yet  $\dot{\hat{x}} = -\hat{x} + u \Rightarrow \hat{x} - x \rightarrow 0$ . ("detectability").

However "observability" is necessary for a 'tunable' observer.



About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"



About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"

#### Indistinguishability:

$$(x_0,x_0')\in\mathbb{R}^n imes\mathbb{R}^n$$
 is indistinguishable for  $(\Sigma)$  if :

$$\forall u \in \mathcal{U}, \ \forall t \geq 0, \ h(\chi_u(t, x_0)) = h(\chi_u(t, x_0')).$$



About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"

#### Indistinguishability:

 $(x_0,x_0')\in\mathbb{R}^n imes\mathbb{R}^n$  is indistinguishable for  $(\Sigma)$  if :

$$\forall u \in \mathcal{U}, \ \forall t \geq 0, \ h(\chi_u(t, x_0)) = h(\chi_u(t, x_0')).$$

## Observability [resp. at $x_0$ ]:

 $\not\exists$  indistinguishable pair [resp. indistinguishable pair  $(x, x_0)$ ].



About 'structural' definition-Formal observability

Observability = "distinguishability of states by output trajectories"

#### Indistinguishability:

 $(x_0,x_0')\in\mathbb{R}^n imes\mathbb{R}^n$  is indistinguishable for  $(\Sigma)$  if :

$$\forall u \in \mathcal{U}, \ \forall t \geq 0, \ h(\chi_u(t, x_0)) = h(\chi_u(t, x_0')).$$

## Observability [resp. at $x_0$ ]:

 $\not\exists$  indistinguishable pair [resp. indistinguishable pair  $(x, x_0)$ ].

N.B. Very general notion, even too general cf  $\dot{x} = u$ , y = sin(x)



About 'structural' definition-Local weak observability

 $\Rightarrow$  a weaker notion of observability is more appropriate :

### Local weak observability [resp. at $x_0$ ]:

 $\forall x \text{ [resp. of } x_0], \exists \text{ a neighborhood } U \text{ s.t. } \forall V \subset U \text{ neighborhood of } x \text{ [resp. } x_0], \not\exists \text{ indistinguishable state from } x \text{ [resp. } x_0] \text{ in } V, \text{ as long as trajectories remain in } V.$ 



About 'structural' definition-Local weak observability

 $\Rightarrow$  a weaker notion of observability is more appropriate :

## Local weak observability [resp. at $x_0$ ]:

 $\forall x$  [resp. of  $x_0$ ],  $\exists$  a neighborhood U s.t.  $\forall V \subset U$  neighborhood of x [resp.  $x_0$ ],  $\not\exists$  indistinguishable state from x [resp.  $x_0$ ] in V, as long as trajectories remain in V.

In short: "distinguish every state from its neighbors without going too far"



About 'structural' definition-Local weak observability

 $\Rightarrow$  a weaker notion of observability is more appropriate :

## Local weak observability [resp. at $x_0$ ]:

 $\forall x$  [resp. of  $x_0$ ],  $\exists$  a neighborhood U s.t.  $\forall V \subset U$  neighborhood of x [resp.  $x_0$ ],  $\not\exists$  indistinguishable state from x [resp.  $x_0$ ] in V, as long as trajectories remain in V.

In short: "distinguish every state from its neighbors without going too far"

- ⇒ more interesting in practice
- ⇒ with a 'simple' geometric characterization



About 'geometric' characterization-Rank condition

#### Observation space:

The observation space  $\mathcal{O}(h)$  for a system  $(\Sigma)$  is the smallest real vector space of  $\mathcal{C}^{\infty}$  functions containing the components of h and closed under Lie derivation along  $f_u:=f(.,u)$  for any constant  $u\in\mathbb{R}^m$  (i.e.  $\forall \varphi\in\mathcal{O}(h), L_{f_u}\varphi\in\mathcal{O}(h)$ , where  $L_{f_u}\varphi(x)=\frac{\partial \varphi}{\partial x}f(x,u)$ ).



About 'geometric' characterization-Rank condition

#### Observation space:

The observation space  $\mathcal{O}(h)$  for a system  $(\Sigma)$  is the smallest real vector space of  $\mathcal{C}^{\infty}$  functions containing the components of h and closed under Lie derivation along  $f_u:=f(.,u)$  for any constant  $u\in\mathbb{R}^m$  (i.e.  $\forall \varphi\in\mathcal{O}(h), L_{f_u}\varphi\in\mathcal{O}(h)$ , where  $L_{f_u}\varphi(x)=\frac{\partial \varphi}{\partial x}f(x,u)$ ).

## Observability rank condition [resp. at $x_0$ ]:

$$\forall x$$
,  $\dim \mathcal{O}(h)|_{x} = n$  [resp.  $\dim \mathcal{O}(h)|_{x_0} = n$ ]

where 
$$d\mathcal{O}(h) \mid_{\mathsf{x}} := \{ d\varphi(\mathsf{x}), \varphi \in \mathcal{O}(h) \}.$$



About 'geometric' characterization-Rank condition

#### Observation space:

The observation space  $\mathcal{O}(h)$  for a system  $(\Sigma)$  is the smallest real vector space of  $\mathcal{C}^{\infty}$  functions containing the components of h and closed under Lie derivation along  $f_u:=f(.,u)$  for any constant  $u\in\mathbb{R}^m$  (i.e.  $\forall \varphi\in\mathcal{O}(h), L_{f_u}\varphi\in\mathcal{O}(h)$ , where  $L_{f_u}\varphi(x)=\frac{\partial \varphi}{\partial x}f(x,u)$ ).

## Observability rank condition [resp. at $x_0$ ]:

$$\forall x$$
,  $dimd\mathcal{O}(h)|_{x} = n$  [resp.  $dimd\mathcal{O}(h)|_{x_0} = n$ ]

where  $d\mathcal{O}(h) \mid_{\mathsf{x}} := \{ d\varphi(\mathsf{x}), \varphi \in \mathcal{O}(h) \}.$ 

#### Local weak observability characterization:

Observability rank condition (at  $x_0$ )  $\Rightarrow$  local weak observability (at  $x_0$ ).



About 'geometric' characterization-Towards observers

N.B. Observability rank cond. = Kalman rank cond. for  $\dot{x} = Ax$ , y = Cx



About 'geometric' characterization-Towards observers

N.B. Observability rank cond. = Kalman rank cond. for  $\dot{x} = Ax$ , y = Cx and also *sufficient* for observer design when  $\dot{x} = Ax + Bu$ 



About 'geometric' characterization-Towards observers

N.B. Observability rank cond. = Kalman rank cond. for  $\dot{x} = Ax$ , y = Cx and also *sufficient* for observer design when  $\dot{x} = Ax + Bu$ 

 $\rightarrow$  Not true in general : observability instead 'depends on the input', and is not enough for observer design.



#### About 'geometric' characterization-Towards observers

- N.B. Observability rank cond. = Kalman rank cond. for  $\dot{x} = Ax$ , y = Cx and also *sufficient* for observer design when  $\dot{x} = Ax + Bu$
- $\rightarrow$  Not true in general : observability instead 'depends on the input', and is not enough for observer design.

Ex. 
$$\dot{x} = \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix} x$$
,  $y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$  observable  $\forall u \ cst \neq 0$ , but not for  $u = 0$ 

 $\Rightarrow$  Need to look at the inputs.



About 'excitation' conditions-Universal inputs

Universal input [resp. on [0, t]]:

G. Besancon

 $u: \forall x_0 \neq x_0', \ \exists \tau \geq 0 \ (\text{resp.} \ \exists \tau \in [0, t]) \ \text{s.t.} \ h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$ **Singular input**: u not universal.



About 'excitation' conditions-Universal inputs

## Universal input [resp. on [0, t]]:

 $u: \forall x_0 \neq x_0', \ \exists \tau \geq 0 \ (\text{resp. } \exists \tau \in [0, t]) \text{ s.t. } h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$ 

**Singular input**: u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.



About 'excitation' conditions-Universal inputs

## Universal input [resp. on [0, t]]:

 $u: \forall x_0 \neq x_0', \exists \tau \geq 0 \text{ (resp. } \exists \tau \in [0, t]) \text{ s.t. } h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$  Singular input : u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

In general singularities difficult to be characterized.



About 'excitation' conditions-Universal inputs

## Universal input [resp. on [0, t]]:

$$u: \forall x_0 \neq x_0', \ \exists \tau \geq 0 \ (\text{resp. } \exists \tau \in [0, t]) \text{ s.t. } h(\chi_u(\tau, x_0)) \neq h(\chi_u(\tau, x_0')).$$

Singular input : u not universal.

cf previous example : u(t) = 1 universal, u(t) = 0 singular.

In general singularities difficult to be characterized.

#### 'Nice' case :

Uniformly observable systems (resp. locally) :

 $(\Sigma)$  is uniformly observable (UO) if every input is universal (resp. on [0, t]).



Ex. The system below is uniformly observable :

$$\dot{x} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & & 0 \\
\vdots & & & & 1 \\
0 & \cdots & & & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\ \vdots \\ 0 \\ \psi_n(x)\end{pmatrix} + \begin{pmatrix}
\varphi_1(x_1) \\ \varphi_2(x_1, x_2) \\ \vdots \\ \varphi_{n-1}(x_1, \dots, x_{n-1}) \\ \varphi_n(x_1, \dots, x_n)\end{pmatrix} u$$

$$y = x_1; \quad x = (x_1, \dots, x_n)^T$$

gipsa-lab Grenoble INP Ex. The system below is uniformly observable:

$$\dot{x} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & & 0 \\
\vdots & & & & 1 \\
0 & \cdots & & & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\ \vdots \\ 0 \\ \psi_n(x)\end{pmatrix} + \begin{pmatrix}
\varphi_1(x_1) \\ \varphi_2(x_1, x_2) \\ \vdots \\ \varphi_{n-1}(x_1, \dots, x_{n-1}) \\ \varphi_n(x_1, \dots, x_n)\end{pmatrix} u$$

$$y = x_1; \quad x = (x_1 \dots, x_n)^T$$

NB. 
$$u$$
 universal on  $[0, t] \Leftrightarrow \int_0^t ||h(\chi_u(\tau, x_0)) - h(\chi_u(\tau, x_0'))||^2 d\tau > 0, x_0 \neq x_0'$ 



esançon Observability & observer forms - CAS, Paris, March 2010

15 / 34

Ex. The system below is uniformly observable :

$$\dot{x} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & & 0 \\
\vdots & & & & 1 \\
0 & \cdots & & & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\ \vdots \\ 0 \\ \psi_{n}(x)\end{pmatrix} + \begin{pmatrix}
\varphi_{1}(x_{1}) \\ \varphi_{2}(x_{1}, x_{2}) \\ \vdots \\ \varphi_{n-1}(x_{1}, \dots, x_{n-1}) \\ \varphi_{n}(x_{1}, \dots, x_{n})\end{pmatrix} u$$

$$y = x_{1}; \quad x = (x_{1}, \dots, x_{n})^{T}$$

NB. *u* universal on 
$$[0, t] \Leftrightarrow \int_0^t ||h(\chi_u(\tau, x_0)) - h(\chi_u(\tau, x_0'))||^2 d\tau > 0, x_0 \neq x_0'$$

NB.2 : uniform observability ⇒ possible input-independent observer...



About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems  $\Rightarrow$  input-dependent observers.



About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems  $\Rightarrow$  *input-dependent* observers.

Using universal inputs not enough: cf disturbance pb



About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems  $\Rightarrow$  input-dependent observers.

Using universal inputs not enough: cf disturbance pb Univ. inputs on [t,t+T] (persistent) not enough either:cf 'vanishing info' pb



#### About 'excitation' conditions-Regularly persistent excitation

In general, non uniformly observable systems  $\Rightarrow$  input-dependent observers.

Using universal inputs not enough: cf disturbance pb Univ. inputs on [t,t+T] (persistent) not enough either:cf 'vanishing info' pb

 $\Rightarrow$  need of 'regular persistency':

Regularly persistent inputs (RP):

u is regularly persistent for  $(\Sigma)$  if :

$$\exists t_0, T : \forall x_{t-T}, x'_{t-T}, \ \forall t \ge t_0, \\ \int_{t-T}^t ||h(\chi_u(\tau, x_{t-T})) - h(\chi_u(\tau, x'_{t-T}))||^2 d\tau \ge \beta(||x_{t-T} - x'_{t-T}||)$$

for some class K function  $\beta$ .



Ex. For  $\dot{x}(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t)$ , RP inputs are s.t.

$$\exists t_0, T, \alpha : \int_{t-T}^t \Phi_u^T(\tau, t-T) C^T C \Phi_u(\tau, t-T) d\tau \geq \alpha I > 0 \quad \forall t \geq t_0,$$

with 
$$\Phi_u(\tau,t): \frac{d\Phi_u(\tau,t)}{d\tau} = A(u(\tau))\Phi_u(\tau,t), \ \Phi_u(t,t) = I.$$



Ex. For  $\dot{x}(t) = A(u(t))x(t) + B(u(t))$ , y(t) = Cx(t), RP inputs are s.t.

$$\exists t_0, T, \alpha : \int_{t-T}^t \Phi_u^T(\tau, t-T) C^T C \Phi_u(\tau, t-T) d\tau \geq \alpha I > 0 \quad \forall t \geq t_0,$$

with 
$$\Phi_u(\tau,t): \frac{d\Phi_u(\tau,t)}{d\tau} = A(u(\tau))\Phi_u(\tau,t), \ \Phi_u(t,t) = I.$$

N.B. For 
$$\dot{x}(t) = A(t)x(t)$$
,  $y(t) = Cx(t)$ : Kalman *Unif. Complete Obs.*



Observability & observer forms - CAS, Paris, March 2010

17 / 34

Ex. For 
$$\dot{x}(t) = A(u(t))x(t) + B(u(t)), \ y(t) = Cx(t)$$
, RP inputs are s.t.

$$\exists t_0, T, \alpha : \int_{t-T}^t \Phi_u^T(\tau, t-T) C^T C \Phi_u(\tau, t-T) d\tau \geq \alpha I > 0 \quad \forall t \geq t_0,$$

with 
$$\Phi_u(\tau,t)$$
:  $\frac{d\Phi_u(\tau,t)}{d\tau} = A(u(\tau))\Phi_u(\tau,t), \ \Phi_u(t,t) = I.$ 

N.B. For 
$$\dot{x}(t) = A(t)x(t)$$
,  $y(t) = Cx(t)$ : Kalman *Unif. Complete Obs.*

N.B.2. Need of time T. For shorter times : 'short-time' excitation needed.



About 'excitation' conditions-Locally regular excitation

#### Locally regular inputs (LR):

u is locally regular for  $(\Sigma)$  if :

$$\exists T_0, \alpha : \forall x_{t-T}, x'_{t-T}, \ \forall T \leq T_0, \ \forall t \geq T, \\ \int_{t-T}^t ||h(\chi_u(\tau, x_{t-T})) - h(\chi_u(\tau, x'_{t-T}))||^2 d\tau \geq \beta(||x_{t-T} - x'_{t-T}||, \frac{1}{T})$$

for some class  $\mathcal{KL}$  function  $\beta$ .



About 'excitation' conditions-Locally regular excitation

## Locally regular inputs (LR):

u is locally regular for  $(\Sigma)$  if:

$$\exists T_0, \alpha : \forall x_{t-T}, x'_{t-T}, \ \forall T \leq T_0, \ \forall t \geq T,$$

$$\int_{t-T}^{t} ||h(\chi_u(\tau, x_{t-T})) - h(\chi_u(\tau, x'_{t-T}))||^2 d\tau \geq \beta(||x_{t-T} - x'_{t-T}||, \frac{1}{T})$$

for some class  $\mathcal{KL}$  function  $\beta$ .

Ex. For 
$$\dot{x}(t) = A(u(t))x(t) + B(u(t)), y(t) = Cx(t)$$
, LR inputs are s.t.

$$\exists T_0, \alpha : \forall T < T_0, \ \forall t > T,$$

$$\int_{t-T}^{t} \Phi_{u}^{T}(\tau, t-T) C^{T} C \Phi_{u}(\tau, t-T) d\tau \geq \alpha \frac{1}{T} \begin{pmatrix} T & & 0 \\ & T^{2} & \\ & & \ddots & \\ 0 & & & T^{n} \end{pmatrix}^{2}$$



N.B. LR inputs make observability  $\simeq$  linear one.

Summary

## Observer design needs:

• Appropriate modelling :  $\dot{x}(t) = f(x(t), u(t)), y(t) = h(x(t))$ 



Summary

## Observer design needs:

- Appropriate modelling :  $\dot{x}(t) = f(x(t), u(t)), \ y(t) = h(x(t))$
- Appropriate property : observability (rank condition + input selection)



Summary

## Observer design needs:

- Appropriate modelling :  $\dot{x}(t) = f(x(t), u(t)), \ y(t) = h(x(t))$
- Appropriate property : observability (rank condition + input selection)
   N.B.
  - If rank condition not satisfied, the system might be turned into :

$$\dot{\zeta}_1 = f_1(\zeta_1, \zeta_2, u) 
\dot{\zeta}_2 = f_2(\zeta_2, u) 
y = h_2(\zeta_2)$$

with  $f_2$ ,  $h_2$  rank observable.



Summary

## Observer design needs:

- Appropriate modelling :  $\dot{x}(t) = f(x(t), u(t)), \ y(t) = h(x(t))$
- Appropriate property : observability (rank condition + input selection)
   N.B.
  - If rank condition not satisfied, the system might be turned into :

$$\dot{\zeta}_1 = f_1(\zeta_1, \zeta_2, u) 
\dot{\zeta}_2 = f_2(\zeta_2, u) 
y = h_2(\zeta_2)$$

with  $f_2$ ,  $h_2$  rank observable.

If system not observable, but s.t. :

$$\forall u: x_0, x_0' \text{ indistinguishable}, \chi_u(t, x_0) - \chi_u(t, x_0') \to 0$$

an observer might still be designed (detectability).



• If system observable, effective design might depend on observability :



- If system observable, effective design might depend on observability :
  - ► For uniform observability, *uniform observers*;



- If system observable, effective design might depend on observability :
  - ► For uniform observability, uniform observers;
  - ▶ For non-uniform observability, non-uniform observers.



- If system observable, effective design might depend on observability :
  - ► For uniform observability, *uniform observers*;
  - For non-uniform observability, non-uniform observers.

N.B. Also ∃ 'cross-cases'...



- If system observable, effective design might depend on observability :
  - ► For uniform observability, uniform observers;
  - For non-uniform observability, non-uniform observers.

N.B. Also ∃ 'cross-cases'...

⇒ observer forms ≡ uniform (cf Luenberger) & non-uniform (cf Kalman)



# Outline

- Some observer problem formulations
- Some observability conditions
- Some observer forms
  - 'Uniformly observable' systems
  - 'Non uniformly observable' systems
  - Example(s)



#### 'Uniformly observable' systems-LTI

## Basic (LTI) system:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t)$ 



#### 'Uniformly observable' systems-LTI

Basic (LTI) system:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t)$ 

Result [Luenberger]:

If (A, C) is observable, then  $\exists$  an observer :

G. Besancon

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - K(C\hat{x}(t) - y(t))$$



'Uniformly observable' systems-LTI

Basic (LTI) system :

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t)$ 

Result [Luenberger]:

If (A, C) is observable, then  $\exists$  an observer :

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - K(C\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t. A - KC stable;

G. Besançon

The rate of convergence can be arbitrarily chosen via K.



#### 'Uniformly observable' systems-LTI

Basic (LTI) system :

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t)$ 

Result [Luenberger]:

If (A, C) is observable, then  $\exists$  an observer :

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - K(C\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t. A - KC stable;

The rate of convergence can be arbitrarily chosen via K.

Indeed:  $e = \hat{x} - x \Rightarrow \dot{e} = (A - KC)e$ 



'Uniformly observable' systems-LTI + I/O NL

System with additive I/O nonlinearities :

G. Besançon

$$\dot{x}(t) = Ax(t) + B(u(t), Cx(t))$$
  
 $y(t) = Cx(t)$ 



#### 'Uniformly observable' systems-LTI + I/O NL

System with additive I/O nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), Cx(t)) 
y(t) = Cx(t)$$

Result [Error linearization] :

If (A, C) is observable, then  $\exists$  an observer :

G. Besançon

$$\dot{\hat{x}}(t) = A\hat{x}(t) + B(u(t), y(t)) - K(C\hat{x}(t) - y(t))$$



## 'Uniformly observable' systems-LTI + I/O NL

System with additive I/O nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), Cx(t)) 
y(t) = Cx(t)$$

Result [Error linearization] :

If (A, C) is observable, then  $\exists$  an observer :

$$\dot{\hat{x}}(t) = A\hat{x}(t) + B(u(t), y(t)) - K(C\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t. A - KC stable (cf Luenberger)



#### 'Uniformly observable' systems-LTI + Lipschitz NL

System with additive Lipschitz nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), x(t)) 
y(t) = Cx(t)$$

with B globally Lipschitz /x, unif. /u

(i.e. 
$$\exists \gamma : \forall x, u, \|B(u, x) - B(u, z)\| \le \gamma \|x - z\|$$
)

G. Besançon



#### 'Uniformly observable' systems-LTI + Lipschitz NL

System with additive Lipschitz nonlinearities:

$$\dot{x}(t) = Ax(t) + B(u(t), x(t)) 
y(t) = Cx(t)$$

with B globally Lipschitz /x, unif. /u

(i.e. 
$$\exists \gamma : \forall x, u, \|B(u, x) - B(u, z)\| \le \gamma \|x - z\|$$
)

First idea :

If  $\exists K$  and P, Q positive definite s.t.

$$P(A - KC) + (A - KC)^{T}P = -Q$$

$$\frac{eigmin(Q)}{2eigmax(P)} > \gamma$$

then  $\hat{x} = A\hat{x} + B(u, \hat{x}) - K(C\hat{x} - y)$  is an observer



#### 'Uniformly observable' systems-LTI + Lipschitz NL

System with additive Lipschitz nonlinearities :

$$\dot{x}(t) = Ax(t) + B(u(t), x(t)) 
y(t) = Cx(t)$$

with B globally Lipschitz /x,unif./u

(i.e. 
$$\exists \gamma : \forall x, u, \|B(u, x) - B(u, z)\| \le \gamma \|x - z\|$$
)

First idea :

If  $\exists K$  and P, Q positive definite s.t.

$$P(A - KC) + (A - KC)^{T}P = -Q$$

$$\frac{eigmin(Q)}{2eigmax(P)} > \gamma$$

then 
$$\dot{\hat{x}} = A\hat{x} + B(u, \hat{x}) - K(C\hat{x} - y)$$
 is an observer

G. Besançon

Pb : Find *K*, *P*, *Q*...



'Uniformly observable' systems-LTI + structured NL

System with additive triangular nonlinearities :

$$\dot{x}(t) = A_0x(t) + B(u(t), x(t)) 
y(t) = C_0x(t)$$

with 
$$A_0=egin{pmatrix} 0&1&&0\\&&\ddots&\\&&&1\\0&&&0 \end{pmatrix},\quad C_0=(1\ 0\ \cdots\ 0),\ x\in\mathbb{R}^n,\ y\in\mathbb{R}$$



'Uniformly observable' systems-LTI + structured NL

System with additive triangular nonlinearities:

$$\begin{array}{lcl} \dot{x}(t) & = & A_0x(t) + B(u(t), x(t)) \\ y(t) & = & C_0x(t) \end{array}$$

with 
$$A_0 = \begin{pmatrix} 0 & 1 & & 0 \\ & & \ddots & \\ & & & 1 \\ 0 & & & 0 \end{pmatrix}, \quad C_0 = (1 \ 0 \ \cdots \ 0), \ x \in \mathbb{R}^n, \ y \in \mathbb{R}$$

Result [High Gain Observer] :

Result [Figh Gain Observer]:

If 
$$B$$
 globally Lipschitz  $/x$ , unif.  $/u$ :  $\frac{\partial B_i}{\partial x_j}(u,x) = 0$  for  $j \ge i+1$ ,

then  $\exists$  obs.  $\dot{\hat{x}} = A_0\hat{x} + B(u,\hat{x}) - \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda^n \end{pmatrix} K_0(C_0\hat{x} - y)$ 



with  $K_0$  s.t.  $A_0 - K_0 C_0$  stable, and  $\lambda$  large enough.

25 / 34

'Uniformly observable' systems- about high gain

• High gain observer since based on  $\lambda$  large enough.



'Uniformly observable' systems- about high gain

- High gain observer since based on  $\lambda$  large enough.
- ullet The larger  $\lambda$  is, the faster the convergence is.



'Uniformly observable' systems- about high gain

- High gain observer since based on  $\lambda$  large enough.
- The larger  $\lambda$  is, the faster the convergence is.
- Output injection can also be used.



## 'Uniformly observable' systems— about high gain

- High gain observer since based on  $\lambda$  large enough.
- ullet The larger  $\lambda$  is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$

where  $\frac{\partial f_i}{\partial x_j}=0$  for j>i+1 and  $\frac{\partial f_i}{\partial x_{i+1}}\geq \alpha_i>0$  for all x,u.



## 'Uniformly observable' systems- about high gain

- High gain observer since based on  $\lambda$  large enough.
- ullet The larger  $\lambda$  is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$

where  $\frac{\partial f_i}{\partial x_i} = 0$  for j > i+1 and  $\frac{\partial f_i}{\partial x_{i+1}} \ge \alpha_i > 0$  for all x, u.

• Possible extension to multi-output systems.



## 'Uniformly observable' systems- about high gain

- High gain observer since based on  $\lambda$  large enough.
- The larger  $\lambda$  is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$
 where  $\frac{\partial f_i}{\partial x_i} = 0$  for  $j > i+1$  and  $\frac{\partial f_i}{\partial x_{i+1}} \ge \alpha_i > 0$  for all  $x, u$ .

- Possible extension to multi-output systems.
- Possible adaptive gain implementation

$$\dot{\lambda}(t) = L(\lambda(t), \int_{t-T}^t \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2).$$



## 'Uniformly observable' systems- about high gain

- High gain observer since based on  $\lambda$  large enough.
- ullet The larger  $\lambda$  is, the faster the convergence is.
- Output injection can also be used.
- Possible extension to systems :

$$\dot{x}(t) = f(x(t), u(t)), \ y(t) = C_0 x(t)$$

where  $\frac{\partial f_i}{\partial x_j} = 0$  for j > i+1 and  $\frac{\partial f_i}{\partial x_{i+1}} \ge \alpha_i > 0$  for all x, u.

- Possible extension to multi-output systems.
- Possible adaptive gain implementation

$$\dot{\lambda}(t) = L(\lambda(t), \int_{t-T}^{t} \|h(\chi_u(\tau, z_{t-T})) - y(\tau)\|^2).$$

• For observer form 'characteristic' of uniform observability



'Non uniformly observable' systems-LTV

### System:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t), A(t), C(t) uniformly bounded.$$



G. Besançon

'Non uniformly observable' systems-LTV

## System:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t), A(t), C(t) uniformly bounded.$$

## Result [Kalman]:

If (A(t), C(t)) is uniformly completely observable, then  $\exists$  an observer :

$$\dot{\hat{x}}(t) = A(t)\hat{x}(t) + B(t)u(t) - K(t)(C(t)\hat{x}(t) - y(t))$$



'Non uniformly observable' systems-LTV

## System:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t), A(t), C(t) uniformly bounded.$$

### Result [Kalman]:

If (A(t), C(t)) is uniformly completely observable, then  $\exists$  an observer :

$$\dot{\hat{x}}(t) = A(t)\hat{x}(t) + B(t)u(t) - K(t)(C(t)\hat{x}(t) - y(t))$$

N.B. K is to be chosen s.t.

$$\dot{M}(t) = A(t)M(t) + M(t)A^{T}(t) - M(t)C^{T}(t)W^{-1}C(t)M(t) + V + \delta M(t)$$
  
 $M(0) = M_{0} = M_{0}^{T} > 0, W = W^{T} > 0$ 

$$K(t) = M(t)C^{T}(t)W^{-1}$$
; with  $\delta > 2||A(t)|| \ \forall t$ , or  $V = V^{T} > 0$ ;

The rate of convergence can be arbitrarily chosen via  $\delta$ , V.



'Non uniformly observable' systems–LTV-like with I/O NL

System with additive and multiplicative I/O nonlinearities (state affine systems) :

$$\dot{x}(t) = A(u(t), Cx(t))x(t) + B(u(t), Cx(t)) 
y(t) = Cx(t)$$

with  $A(u(t), C\chi_u(t, x_0))$  bounded,



'Non uniformly observable' systems-LTV-like with I/O NL

System with additive and multiplicative I/O nonlinearities (state affine systems) :

$$\dot{x}(t) = A(u(t), Cx(t))x(t) + B(u(t), Cx(t))$$

$$y(t) = Cx(t)$$

with  $A(u(t), C\chi_u(t, x_0))$  bounded,

Result:

If u is regularly persistent for the system in the sense that it makes A, C uniformly completely observable, then  $\exists$  observer :

$$\dot{\hat{x}}(t) = A(u(t), y(t))\hat{x}(t) + B(u(t), y(t)) - K(t)(C(t)\hat{x}(t) - y(t))$$

with K(t) as in Kalman observer.



#### 'Non uniformly observable' systems-LTV-like with structured NL

System with additive triangular nonlinearities and multiplicative I/O nonlinearities :

$$\dot{x}(t) = A_0(u(t), Cx(t))x(t) + B(u(t), x(t)) 
y(t) = C_0x(t)$$
with  $A_0(u, Cx) = \begin{pmatrix} 0 & a_{12}(u, Cx) & 0 \\ & \ddots & \\ & & a_{n-1n}(u, Cx) \\ 0 & & 0 \end{pmatrix}$  bounded,

$$C_0 = (1 \ 0 \cdots 0), \ x \in \mathbb{R}^n, \ y \in \mathbb{R}$$

G. Besancon



#### 'Non uniformly observable' systems-LTV-like with structured NL

System with additive triangular nonlinearities and multiplicative I/O nonlinearities :

$$\dot{x}(t) = A_0(u(t), Cx(t))x(t) + B(u(t), x(t)) 
y(t) = C_0x(t)$$
with  $A_0(u, Cx) = \begin{pmatrix} 0 & a_{12}(u, Cx) & 0 \\ & \ddots & \\ & & a_{n-1n}(u, Cx) \\ 0 & & 0 \end{pmatrix}$  bounded,

 $C_0 = (1 \ 0 \cdots 0), \ \overset{\cdot}{x} \in \mathbb{R}^n, \ y \in \mathbb{R}$ 

→ combine high gain and Kalman...



#### Result:

If B globally Lipschitz/x,unif./u:  $\frac{\partial B_i}{\partial x_j}(x,u) = 0$  for  $j \geq i+1$  and u locally regular in the sense that it makes  $v(t) := \begin{pmatrix} u(t) \\ C\chi_u(t,x_0) \end{pmatrix}$  locally regular for  $\dot{x}(t) = A(v(t))x(t), y(t) = Cx(t)$  for any  $x_0$ , then  $\exists$  an observer :

$$\dot{\hat{x}} = A_0(u,y)\hat{x} + \varphi(\hat{x},u) - \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda^n \end{pmatrix} K_0(t)(C_0\hat{x} - y)$$

G. Besancon

Result:

If B globally Lipschitz/x,unif./u:  $\frac{\partial B_i}{\partial x_j}(x,u) = 0$  for  $j \geq i+1$  and u locally regular in the sense that it makes  $v(t) := \begin{pmatrix} u(t) \\ C\chi_u(t,x_0) \end{pmatrix}$  locally regular for  $\dot{x}(t) = A(v(t))x(t), \ y(t) = Cx(t)$  for any  $x_0$ , then  $\exists$  an observer :

$$\dot{\hat{x}} = A_0(u,y)\hat{x} + \varphi(\hat{x},u) - \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda^n \end{pmatrix} K_0(t)(C_0\hat{x} - y)$$

with  $K_0(t)$  given by :

$$\dot{M}(t) = \lambda [M(t)A^{T}(u(t), y(t)) + A(u(t), y(t))M(t) 
-M(t)C^{T}W^{-1}CM(t) + \delta M(t)] 
M(0) = M^{T}(0) > 0, W = W^{T} > 0 
K(t) = M(t)C^{T}W^{-1}$$

for  $\delta > 2||A(u, y)||$  and  $\lambda$  large enough.

'Non uniformly observable' systems-About LTV-based high gain

• Similar remarks as in standard High Gain case;



'Non uniformly observable' systems-About LTV-based high gain

• Similar remarks as in standard High Gain case;

• Possible extension to A(u,x) with  $a_{ij}=0$ ,  $i\neq j+1$ , and  $\frac{\partial a_{ii+1}}{\partial x_i} = 0, j \le i+1.$ 

### 'Non uniformly observable' systems-About LTV-based high gain

• Similar remarks as in standard High Gain case;

- Possible extension to A(u,x) with  $a_{ij}=0, i \neq j+1$ , and  $\frac{\partial a_{ii+1}}{\partial x_i}=0, j \leq i+1$ .
- Possible extension to *blocks*  $a_{ii+1} \in \mathbb{R}^{n_i \times n_{i+1}}$



### 'Non uniformly observable' systems-About LTV-based high gain

Similar remarks as in standard High Gain case;

- Possible extension to A(u,x) with  $a_{ij}=0, i \neq j+1$ , and  $\frac{\partial a_{ii+1}}{\partial x_i} = 0, j \le i+1.$
- Possible extension to *blocks*  $a_{ii+1} \in \mathbb{R}^{n_i \times n_{i+1}}$
- For observer form 'characteristic' of uniform observability



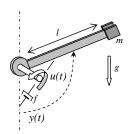
Example(s) of observer forms...



Example(s) of observer forms...

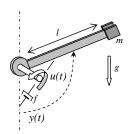


 $\mathsf{Example}(\mathsf{s}) \quad \text{ of observer forms...}$ 





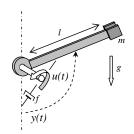
 $\mathsf{Example}(\mathsf{s}) \quad \text{ of observer forms...}$ 





Example(s) of observer forms...

$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$





### Example(s) of observer forms...

#### Robot arm :

$$\Rightarrow ml^{2}\ddot{y}(t) + fl^{2}\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -a_{1}sin(x_{1}) - a_{2}x_{2} + bu \\ y = x_{1} \end{cases}$$

G. Besançon



Example(s) of observer forms...

$$\Rightarrow ml^{2}\ddot{y}(t) + fl^{2}\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -a_{1}sin(x_{1}) - a_{2}x_{2} + bu \\ y = x_{1} \end{cases}$$

$$\Rightarrow Pb: x_{1}, x_{2}? (\leftrightarrow x)$$



### Example(s) of observer forms...

$$\Rightarrow ml^{2}\ddot{y}(t) + fl^{2}\dot{y}(t) + mglsin(y(t)) = u(t)$$

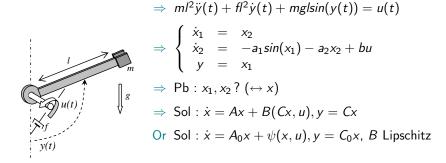
$$\Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -a_{1}sin(x_{1}) - a_{2}x_{2} + bu \\ y = x_{1} \end{cases}$$

$$\Rightarrow Pb : x_{1}, x_{2}? (\leftrightarrow x)$$

$$\Rightarrow Sol : \dot{x} = Ax + B(Cx, u), y = Cx$$

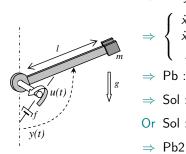


Example(s) of observer forms...





### Example(s) of observer forms...



$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a_1sin(x_1) - a_2x_2 + bu \\ y = x_1 \end{cases}$$

$$\Rightarrow$$
 Pb:  $x_1, x_2$ ? ( $\leftrightarrow x$ )

$$\Rightarrow$$
 Sol :  $\dot{x} = Ax + B(Cx, u), y = Cx$ 

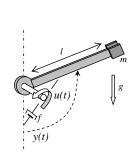
Or Sol : 
$$\dot{x} = A_0x + \psi(x, u), y = C_0x$$
, B Lipschitz

$$\Rightarrow$$
 Pb2 :  $x_1, x_2, b$ ? ( $\leftrightarrow x_e$ )



### Example(s) of observer forms...

#### Robot arm :



$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a_1sin(x_1) - a_2x_2 + bu \\ y = x_1 \end{cases}$$

$$\Rightarrow$$
 Pb:  $x_1, x_2$ ? ( $\leftrightarrow x$ )

$$\Rightarrow$$
 Sol :  $\dot{x} = Ax + B(Cx, u), y = Cx$ 

Or Sol : 
$$\dot{x} = A_0x + \psi(x, u), y = C_0x$$
, B Lipschitz

$$\Rightarrow$$
 Pb2 :  $x_1, x_2, b$ ? ( $\leftrightarrow x_e$ )

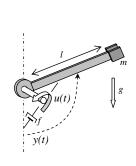
G. Besançon

$$\Rightarrow$$
 Sol:  $\dot{x}_e = A_e(u)x + B_e(C_ex_e, u), y = C_ex_e$ 



### Example(s) of observer forms...

#### Robot arm :



$$\Rightarrow ml^2\ddot{y}(t) + fl^2\dot{y}(t) + mglsin(y(t)) = u(t)$$

$$\Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a_1sin(x_1) - a_2x_2 + bu \\ y = x_1 \end{cases}$$

$$\Rightarrow$$
 Pb:  $x_1, x_2$ ? ( $\leftrightarrow x$ )

$$\Rightarrow$$
 Sol:  $\dot{x} = Ax + B(Cx, u), y = Cx$ 

Or Sol : 
$$\dot{x} = A_0x + \psi(x, u), y = C_0x$$
, B Lipschitz

$$\Rightarrow$$
 Pb2 :  $x_1, x_2, b$ ? ( $\leftrightarrow x_e$ )

G. Besançon

$$\Rightarrow$$
 Sol :  $\dot{x}_e = A_e(u)x + B_e(C_ex_e, u), y = C_ex_e$ 

Or Sol: 
$$\dot{x}_e = A_{0e}(u)x + \psi_e(x_e, u), y = C_{0e}x, B$$
 Lipschitz



Van der Pol oscillator :

Example(s)...of observability condition

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and  $\dot{x}, \gamma, \omega$  to be estimated.

G. Besançon

•  $\exists$  a model  $\dot{z} = A(y)z + Bu$ ;  $y = Cz \Rightarrow$  observer form



Van der Pol oscillator :

 ${\sf Example}(s)... of \ observability \ condition$ 

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and  $\dot{x}, \gamma, \omega$  to be estimated.

- $\exists$  a model  $\dot{z} = A(y)z + Bu$ ;  $y = Cz \Rightarrow$  observer form
- $\bullet$   $\exists$  a limit cycle  $\Rightarrow$  observability with 'regular persistency'



Van der Pol oscillator :

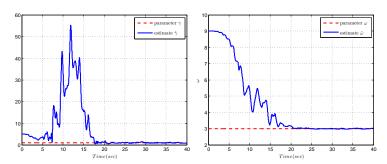
Example(s)...of observability condition

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and  $\dot{x}, \gamma, \omega$  to be estimated.

G. Besançon

- $\exists$  a model  $\dot{z} = A(y)z + Bu$ ;  $y = Cz \Rightarrow$  observer form
- ∃ a limit cycle ⇒ observability with 'regular persistency'





33 / 34

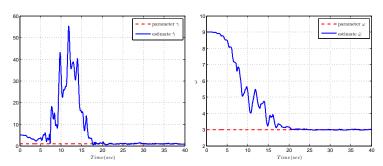
Van der Pol oscillator :

Example(s)...of observability condition

$$\ddot{x}(t) - \gamma \left[1 - x^2(t)\right] \dot{x}(t) + \omega^2 x(t) = 0$$

with y = x and  $\dot{x}, \gamma, \omega$  to be estimated.

- $\exists$  a model  $\dot{z} = A(y)z + Bu$ ;  $y = Cz \Rightarrow$  observer form
- ∃ a limit cycle ⇒ observability with 'regular persistency'





[ cf *Automatica 2010*, to come ]

• Observability can be uniform or non uniform



- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform



- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform
- ∃ characterizations of observabilities



- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform
- ∃ characterizations of observabilities
- ∃ transformations for observer forms



- Observability can be uniform or non uniform
- Observer forms can uniform or non uniform
- ∃ characterizations of observabilities
- ∃ transformations for observer forms

but also still some work to be done...

