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Abstract— We propose a full-state feedback law to stabilize
linear first-order hyperbolic systems featuring n positive and
one negative transport speeds on a finite space domain. Only
one state, corresponding to the negative velocity, is actuated
at the right boundary. The proposed controller guarantees
convergence of the whole (n + 1)–state system to zero in the
L2-sense.

I. Introduction

We investigate boundary stabilization of a class of linear
first-order hyperbolic systems on a finite space domain x ∈
[0, 1]. Transport equations are predominant in modeling of
traffic flow [1], water management systems [5] or multiphase
flow [6]. The coupling between states traveling in opposite
directions, both in-domain and at the boundaries, may induce
instability leading to undesirable behaviors. For example,
oscillatory two-phase flow regimes occurring on oil and gas
production systems directly result, in some cases, from these
mechanisms [7].

A first result on exponential stabilization of linear first-
order hyperbolic systems has been presented in [4], using
a control Lyapunov function to design stabilizing bound-
ary feedback laws. The result deals with 2–state hetero-
directional systems, i.e. systems of 2 transport equations
with opposite transport speeds, but no in-domain coupling.
The control laws take the form of static output feedbacks
applied at both boundaries. In [2], this result is extended to
2–state hetero-directional systems with space-varying trans-
port speeds and linear source terms. However, the source
terms are required to satisfy a restrictive condition on their
magnitude, thus limiting the applicability of the result.

In [13], an observer-controller structure is proposed to
stabilize 2–state hetero-directional systems with the only
restriction that the source terms are bounded in the L∞-
norm on the space domain. A full-state feedback law is
designed using a backstepping approach [9], guaranteeing
exponential stability of the zero equilibrium. Based on the
same approach, a full-state feedback law is designed for a
3–state first-order hyperbolic system representing gas-liquid
flow in oil wells in [8].

In this article, we propose to extend the control designs
of [13] and [8] to a broader class of system. More pre-
cisely, we consider systems of (n + 1) linearly coupled
transport equations, with space-varying transport speeds and
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source term coefficients. One of the transport speeds remains
strictly negative throughout the space domain, while the n
others remain strictly positive. The state corresponding to
the negative velocity is controlled at the right boundary
(x = 1). At the left boundary (x = 0), reflexivity conditions
ensure well-posedness of the system. The system is strongly
underactuated, as only one state is controlled, whereas a
possibly large number of states (determined by the value
of n) are uncontrolled. Yet, we propose a control design
that forces all the states to exponentially converge to the
zero equilibrium profile. This is the main contribution of the
paper.

Following the classical backstepping approach, the system
is mapped to a so-called target system with desirable sta-
bility properties using a Volterra transformation. The target
system is designed by removing from the original system
the minimum amount of coupling terms required to ensure
stability. Then, existence and uniqueness of the transforma-
tion kernels mapping the original system to the target system
are investigated. The kernels are shown to satisfy a system
of first-order hyperbolic PDEs on a triangular domain. After
using the method of characteristics to transform them into
integral equations, the method of successive approximations
is used to prove well-posedness of the kernel equations, and
thus the validity of the design.

The article is organized as follows. In Section II, we de-
scribe the problem statement and the notations. In Section III,
we define the target system and investigate its stability
properties. In Section IV, we describe the backstepping
transformation and derive the kernel equations. In Section V,
we prove existence and uniqueness of the kernels. Finally,
the design is summarized in Section VI where the main result
is stated. We give conclusions and ideas for future work in
Section VII.

II. Problem statement

We consider the following linear hyperbolic system

ut(t, x) + λ(x)ux(t, x) + σ(x)u(t, x) + ω(x)v(t, x) = 0 (1)
vt(t, x) − µ(x)vx(t, x) + θ(x)u(t, x) = 0 (2)

where

u(t, x) =
(
u1(t, x) u2(t, x) · · · un(t, x)

)T
,

λ(x) = diag {λ1(x), ..., λn(x)} , σ(x) =
(
σi, j(x)

)
1≤i, j≤n

,

ω(x) =
(
ω1(x) ω2(x) · · · ωn(x)

)T
,

θ(x) =
(
θ1(x) θ2(x) · · · θn(x)

)
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along with the following boundary conditions

u(t, 0) = Q0v(t, 0) =
(
q1 q2 · · · qn

)T
v(t, 0) (3)

v(t, 1) = U(t) (4)

where U(t) is the control input, and the qi, i = 1, ...n are non-
zero. The transport coefficients continuously differentiable on
the segment [0, 1] and such that1

∀x ∈ [0, 1], ∀i = 1, ..., n λi(x) > 0, µ(x) > 0 (5)

Physically, (5) indicates that the states ui, i = 1, .., n, evolve
from left to right, while v evolves from right to left. Besides,
the source term coefficients are assumed continuous on
the segment [0, 1]. This setup is schematically depicted on
Figure 1.
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Fig. 1. Schematic view of the (n + 1)–state hyperbolic system. The space
dependence of the coupling coefficients has been omitted for the sake of
clarity.

System (1)–(4) is the most general form of (n + 1)–state
linear systems satisfying (5). Such systems arise, e.g., in
modelling of open channel flow (see [2], with n = 1) or
multiphase flow (see [7], with n = 2)2. Our goal is to find
a feedback control law U(t) that exponentially stabilizes the
zero equilibrium of the system (1)–(4).

III. Target system
We want to map system (1)-(4) to the following target

system

αt(t, x) + λ(x)αx(t, x) + σ(x)α(t, x) + ω(x)β(t, x)

+

∫ x

0

[
c(x, ξ)α(t, ξ) + κ(x, ξ)β(x, ξ)

]
dξ = 0

(6)

βt(t, x) − µ(x)βx(t, x) = 0 (7)

where c(x, ξ) =


c1,1(x) c1,2(x) ··· c1,n(x)

c2,1(x) c2,2(x)
. . .

...
...

. . .
. . . cn−1,n(x)

cn,1(x) ··· cn,n−1(x) cn,n(x)

 and κ(x, ξ) =

( κ1(x,ξ) ··· κn−1(x,ξ) κn(x,ξ) )T are function matrices to be defined
1This ensures well-posedness of system (1),(2) with boundary condi-

tions (3),(4).
2Systems corresponding to higher values of n could arise when consid-

ering two-fluid models for gas-liquid flow [3], [11], even though no such
models are, to the best of our knowledge, developed in the literature.

on the triangular domain

T =
{
(x, ξ) ∈ R2 | 0 ≤ ξ ≤ x ≤ 1

}
with the following boundary conditions

α(t, 0) = Q0β(t, 0) β(t, 1) = 0 (8)

The target system is a copy of the original system depicted
in Figure 1, where the θi, i = 1, ..., n coupling terms acting
on the controlled state were removed, and integral coupling
terms between the n uncontrolled states were added. The
stability properties of this system are stated in the following
lemma.

Lemma 3.1: Under the following assumptions

∀i, j = 1, ..., n λi, µ ∈ C
1([0, 1],R∗+), σi, j, ωi, θi ∈ L

∞([0, 1])

α0
i , β

0 ∈ L2([0, 1]), ci, j, κi ∈ L
∞(T )

the equilibrium (α, β)T ≡ (0, ...0, 0)T of system (6)-(7) with
boundary conditions (8) and initial conditions (α0, β0)T =

(α0
1, ...α

0
n, β

0)T is exponentially stable in the L2 sense.

Proof The details of the proof are omitted for lack of space.
Exponential stability is shown by considering the following
Lyapunov functional

V(t) =

∫ 1

0
pe−δx

n∑
i=1

αi(t, x)2

λi(x)
dx +

∫ 1

0

1 + x
µ(x)

β(t, x)2dx (9)

where p > 0 and δ > 0 are analysis parameters. Picking δ
large enough and then p(δ) small enough yields

V̇ ≤ −ηV (10)

for some η > 0.

In order to map the original system (1)–(4) to the target
system (6)–(8), we propose a Volterra transformation of the
second kind. In the next section, we derive a set of PDEs
that the transformation kernels verify.

IV. Backstepping transformation

We now denote

w =

(
u(t, x)
v(t, x)

)
γ(t, x) =

(
α(t, x)
β(t, x)

)
Σ(x) =

(
σ(x) ω(x)
θ(x) 0

)
Σ0(x) =

(
σ(x) ω(x)
01×n 0

)
Λ(x) =

(
λ(x) 0n×1
01×n −µ(x)

)
C(x, ξ) =

(
c(x, ξ) κ(x, ξ)
01×n 0

)
which allows us to rewrite the original system (1)–(2) and
the target system (6)–(7) in matrix form, as follows, omitting
the time argument for brevity purposes

wt(x) + Λ(x)wx(x) + Σ(x)w(x) = 0 (11)

γt(x) + Λ(x)γx(x) + Σ0(x)γ(x) +

∫ x

0
C(x, ξ)γ(ξ)dξ = 0 (12)

We consider the following backstepping transformation

β(t, x) = v(t, x) −
∫ x

0
k(x, ξ)w(t, ξ)dξ (13)
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where the kernel row vector k has the following form

k =
(

k1 k2 · · · · · · kn+1
)

(14)

Besides, we set α ≡ u.Plugging (13) into (11) and (12), one
shows that k and C satisfy a cascade system of PDEs. First,
the kernel coefficients k j, j = 1, ..., n and kn+1 satisfy the
following (n + 1) × (n + 1) system of hyperbolic PDEs

µ(x)k j
x − λ j(ξ)k

j
ξ = λ′j(ξ)k

j −

n∑
i=1

σi, j(ξ)ki − ω j(ξ)kn+1

µ(x)kn+1
x + µ(ξ)kn+1

ξ = −µ′(ξ)kn+1 −

n∑
i=1

θi(ξ)ki

(15)

with the following boundary conditions
k j(x, x) =

θ j(x)
λ j(x) + µ(x)

, j = 1, ..., n

µ(0)kn+1(x, 0) =

n∑
i=1

q jλ j(0)k j(x, 0)
(16)

Besides, the coefficients of matrix κ satisfy the following
integral equations, for all i = 1, .., n

κi(x, ξ) =

∫ x

ξ

κi(x, s)kn+1(s, ξ)ds + ωi(x)kn+1(x, ξ) (17)

and the coefficients of matrix C are given, for all i, j = 1, .., n,
by

ci, j(x, ξ) =

∫ x

ξ

κi(x, s)k j(s, ξ)ds + ωi(x)k j(x, ξ) (18)

In the next section, we investigate the well-posedness of
System (15) with boundary conditions (16).

V. Well-posedness of the kernel equations

In this section, we investigate the existence, uniqueness
and continuity of the solution to system (15) with boundary
conditions (16). After giving some preliminary results, we
convert the system of hyperbolic PDEs into integral equa-
tions, using the method of characteristics. Then, we use the
method of successive approximations to construct a solution
to the integral equations in the form of a converging series.

A. Preliminary results

To convert hyperbolic PDEs into integral equations, one
must define characteristic curves in the (t, x)–plane along
which the equations are integrated. To do so, we use the two
following lemmas3.

Lemma 5.1: Let (y0, z0) ∈ R be such that 0 ≤ y0 ≤ z0 ≤ 1
and h ∈ C1([0, 1]) be such that ∀x ∈ [0, 1] h(x) < 0. Then,
if y and z are the maximal solutions of the following Cauchy
problems

y′(s) = h(y(s)), y(0) = y0, z′(s) = h(z(s)), z(0) = z0
(19)

then, there exists T > 0 such that y(T ) = 0 and z(T ) ≥ 0.

3Another way to define these is to give an implicit solution to the
characteristics equations as is done in [13]

Lemma 5.2: Let (y0, z0) ∈ R be such that 0 ≤ y0 ≤ z0 ≤ 1
and h, g ∈ C1([0, 1]) be such that ∀x ∈ [0, 1] g(x) > 0 and
h(x) < 0. Then, if y and z are the maximal solutions of the
following Cauchy problems

y′(s) = g(y(s)), y(0) = y0, z′(s) = h(z(s)), z(0) = z0

then, there exists T > 0 such that y(T ) = z(T ).
The interpretation and usefulness of these Lemmas will
appear clearly in Section V-C. Their proofs are omitted for
lack of space. In the next section, we state the main theorem
regarding the existence of the kernel coefficients.

B. Existence of the kernel

For clarity purposes, we re-write the kernel equa-
tions (15),(16) using simpler notations. We show well-
posedness of the following generic hyperbolic (n+1)×(n+1)
system. For i = 1, ..., n, the system equations read

µ(x)F i
x − λi(ξ)F i

ξ = ai(x, ξ)G +

n∑
j=1

bi, j(x, ξ)F j (20)

µ(x)Gx + µ(ξ)Gξ = d(x, ξ)G +

n∑
i=1

ei(x, ξ)F i (21)

evolving on the domain T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}, with
boundary conditions

∀i = 1, ..., n ∀x ∈ [0, 1] F i(x, x) = fi(x) (22)

∀i = 1, ..., n ∀x ∈ [0, 1] G(x, 0) =

n∑
i=1

gi(x)F i(x, 0) (23)

The following Theorem discusses existence and uniqueness
of the solutions to equations (20)–(23).

Theorem 5.3: Under the following assumptions

∀i, j = 1, .., n ai, bi, j, d, ei, j ∈ L
∞(T ), fi, gi ∈ L

∞([0, 1])

∀i = 1, .., n λi, µ ∈ C
0([0, 1],R∗+)

system (20)–(23) admits a unique continuous solution on T .
The proof of Theorem 5.3 is contained in the next two
sections. First, we transform system (20)–(23) into integral
equations using the method of characteristics.

C. Transformation to integral equations

For equation (21), we define the characteristic curves (χ, ζ)
along which the equations can be integrated as the solutions
of the following Cauchy problems

d
ds
χ(x, ξ; s) = µ(χ(x, ξ; s)), s ∈ [0, sF(x, ξ)],

χ(x, ξ; sF(x, ξ)) = x, χ(x, ξ; 0) = χ0(x, ξ)
(24)


d
ds
ζ(x, ξ; s) = µ(ξ(x, ξ; s)), s ∈ [0, sF(x, ξ)],

ζ(x, ξ; sF(x, ξ)) = ξ, ζ(x, ξ; 0) = 0
(25)

For each (x, ξ) ∈ T , the existence of sF(x, ξ) such that there
exists such solutions is proved by applying Lemma 5.1 with

h(x) = −µ(x), sF(x, ξ) = T (26)

χ(x, ξ; s) = z(sF(x, ξ) − s) ζ(x, ξ; s) = y(sF(x, ξ) − s) (27)
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In other words, Lemmas 5.1 ensures that, when solving the
characteristic equations (24),(25) backwards from a given
point (x, ξ) in T , one “hits” the boundary ξ = 0 of the tri-
angular domain. Similarly, for each equation of system (20),
we define the characteristics curves (xi, ξi) as the solutions
of the following Cauchy problems

d
ds

xi(x, ξ; s) = µ(xi(x, ξ; s)), s ∈ [0, sF
i (x, ξ)],

xi(x, ξ; sF
i (x, ξ)) = x, xi(x, ξ; 0) = x0

i (x, ξ)
(28)


d
ds
ξi(x, ξ; s) = −λi(ξi(x, ξ; s)), s ∈ [0, sF

i (x, ξ)],

ξi(x, ξ; sF
i (x, ξ)) = ξ, ζ(x, ξ; 0) = xi(x, ξ; 0)

(29)

Again, for each (x, ξ) ∈ T and each i = 1, ..., n, the existence
of sF

i (x, ξ) such that there exists such solutions is proved by
applying Lemma 5.2 with

h(x) = −µ(x), g(x) = λi(x), sF
i (x, ξ) = T, (30)

xi(x, ξ; s) = z(sF
i (x, ξ) − s), ξi(x, ξ; s) = y(sF

i (x, ξ) − s) (31)

Again, Lemma 5.2 ensures that, when solving the character-
istics equations backwards from a given point (x, ξ) in T ,
one “hits” the boundary x = ξ of the triangular domain. In-
tegrating equations (20) along there respective characteristic
lines defined by (28),(29), between 0 and sF

i (x, ξ) and using
the boundary conditions (22) yields, for all i = 1, ..., n

F i(x, ξ) = fi(x0
i (x, ξ)) +

∫ sF
i (x,ξ)

0

[
ai(xi(x, ξ; s), ξi(x, ξ; s))

×G(xi(x, ξ; s), ξi(x, ξ; s)) +

n∑
j=1

bi, j(xi(x, ξ; s), ξi(x, ξ; s))

×F j(xi(x, ξ; s), ξi(x, ξ; s))
]

ds (32)

Similarly, integrating equations (21) along the characteristic
lines defined by (24)-(25) between 0 and sF(x, ξ), using
boundary conditions (22) and the expression of F i given
by (32) yields, for all (x, ξ) ∈ T and i = 1, ..., n

G(x, ξ) =

n∑
i=1

gi(χ0(x, ξ))
[
fi(x0

i (χ0(x, ξ), 0))

+

∫ sF
i (χ0(x,ξ),0)

0

[
ai(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))

×G(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))

+

n∑
j=1

bi, j(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))

×F j(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))
]

ds
]

+

∫ sF (x,ξ)

0

[
d(χ(x, ξ; s), ζ(x, ξ; s))G(χ(x, ξ; s), ζ(x, ξ; s))

+

n∑
i=1

ei(χ(x, ξ; s), ζ(x, ξ; s))F i(χ(x, ξ; s), zi(x, ξ; s)) (33)

In the next section, we solve equations (32), for i = 1, ..., n
and (33) using the method of successive approximations.

D. Solution of the integral equations via a successive ap-
proximation series

The successive approximation method can be used to solve
the integral equations. Define first, for i = 1, ..., n

ϕi(x, ξ) = fi(x0
i (x, ξ))

ψ(x, ξ) =

n∑
i=1

gi(χ0(x, ξ)) fi(x0
i (χ0(x, ξ), 0))

Besides, denoting

H =
[

F1 · · · Fn G
]T

φ(x, ξ) =
[
ϕ1(x, ξ) · · · ϕn(x, ξ) ψ

]T

we define the following functionals acting on H

Φi[H](x, ξ) =∫ sF
i (x,ξ)

0

[
ai(xi(x, ξ; s), ξi(x, ξ; s))G(xi(x, ξ; s), ξi(x, ξ; s))

+

n∑
j=1

bi, j(xi(x, ξ; s), ξi(x, ξ; s))F j(xi(x, ξ; s), ξi(x, ξ; s))

 ds

(34)

Ψ[H](x, ξ) =

n∑
i=1

gi(χ0(x, ξ))

×

∫ sF
i (χ0(x,ξ),0)

0

[
ai(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))

×G(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))

+

n∑
j=1

bi, j(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))

×F j(xi(χ0(x, ξ), 0; s), ξi(χ0(x, ξ), 0; s))
]

ds

+

∫ sF (x,ξ)

0

[
d(χ(x, ξ; s), ζ(x, ξ; s))G(χ(x, ξ; s), ζ(x, ξ; s))

+

n∑
i=1

ei(χ(x, ξ; s), ζ(x, ξ; s))F i(χ(x, ξ; s), zi(x, ξ; s))
]

ds (35)

Define then the following sequence

H0(x, ξ) = 0,

Hm(x, ξ) = φ(x, ξ) +Φ[Hm−1](x, ξ)

=


φ1(x, ξ) + Φ1[Hm−1](x, ξ)

...
φn(x, ξ) + Φn[Hm−1](x, ξ)
ψ(x, ξ) + Ψ[Hm−1](x, ξ)

 =


Hm

1 (x, ξ)
...

Hm
n (x, ξ)

Hm
n+1(x, ξ)


(36)

Finally, define for n ≥ 1 the increment ∆Hm = Hm − Hm−1,
with ∆H0 = φ by definition. Since the functional Φ is linear,
the following equation ∆Hm(x, ξ) = Φ[Hm−1](x, ξ) holds.

If the limit exists, then H = lim
m→+∞

Hm(x, ξ) is a solution of
the integral equations, and thus solves the original hyperbolic
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system. Using the definition of ∆Hm, it follows that if the

sum
+∞∑
m=0

∆Hm(x, ξ) is finite, then

H(x, ξ) =

+∞∑
m=0

∆Hm(x, ξ) (37)

We now prove convergence of the series. First, define

f̄ = max
{

1, max
(x,ξ)∈T , i, j=1,...,n

| fi, j(x, ξ)|
}
, for f = a, b, d, e, g

(38)
φ̄ = max

(x,ξ)∈T , i=1,...,n
{φ(x, ξ), ψ(x, ξ)} (39)

M = nḡ
(
ā + nb̄

)
+ d̄ + nē (40)

Lemma 5.4: For i = 1, ..., n, p ≥ 1, (x, ξ) ∈

T , and sF
i (x, ξ), ζF

i (x, ξ), xi(x, ξ, ·), χi(c, ξ, ·) defined as
in (24),(25),(28),(29), the following inequalities holds∫ sF

i (x,ξ)

0
xm

i (x, ξ; s)ds ≤ Mλ
xm+1

m + 1
(41)∫ ζF

i (x,ξ)

0
χm(x, ξ; s)ds ≤ Mλ

xm+1

m + 1
(42)

Proof We first prove (41). Consider the following change of
integration variable ς = xi(x, ξ; s). Then,

dς =
d
ds

xi(x, ξ; s)ds = µ(xi(x, ξ; s))ds (43)

Thus, the left-hand-side of (41) rewrites∫ sF
i (x,ξ)

0
xm

i (x, ξ; s)ds =

∫ x

x0
i (x,ξ)

ςm

λ(ς)
dς ≤ Mλ

∫ x

0
ςmdς

= Mλ
xm+1

m + 1

Inequality (42) is proved the same way using change of
integration variable ς = χ(x, ξ; s).

Lemma 5.5: For m ≥ 1, assume that, for all (x, ξ) ∈ T ,
and i = 1, ..., n∣∣∣∆F i(x, ξ)

∣∣∣ ≤ φ̄Mmxm

m!
and |∆G(x, ξ)| ≤ φ̄

Mmxm

m!
(44)

then, it follows that for all (x, ξ) ∈ T , and i = 1, ..., n

|Φi[∆H](x, ξ)| ≤ φ̄
Mm+1xm+1

(m + 1)!
, |Ψ[∆H](x, ξ)| ≤ φ̄

Mm+1xm+1

(m + 1)!
(45)

Proof Assume that (44) holds. Then, for all i = 1, .., n and
(x, ξ) ∈ T one has, using the expression of Φi given by (34)
and the inequality (44)

|Φi[∆H](x, ξ)| ≤ ā
∫ sF

i (x,ξ)

0
φ̄Mm xi(x, ξ; s)m

m!
ds

+

n∑
j=1

b̄
∫ sF

i (x,ξ)

0
φ̄Mm xi(x, ξ; s)m

m!
ds

Using Lemma 5.4, and the fact that xi(x, ξ; s) ≤ x, this yields

|Φi[∆H](x, ξ)| ≤ φ̄
[
ā + nb̄

]
Mm xm+1

(m + 1)!

≤ φ̄Mm+1 xm+1

(m + 1)!

using the definition of M given by (40). Similarly, using
the expression of Ψ given by (35), the inequality (44) and
Lemma 5.4, one has

|Ψ[∆H](x, ξ)| ≤ φ̄Mm+1 xm+1

(m + 1)!

which concludes the proof.

Finally, we prove that (37) converges.
Proposition 5.6: Consider the sequence Hm, m ≥ 0 de-

fined by (36). For i = 1, .., 2n, one has

∀(x, ξ) ∈ T

∣∣∣∣∣∣∣
+∞∑
m=0

∆Hm
i (x, ξ)

∣∣∣∣∣∣∣ ≤ φ̄eMx

Proof The result follows if we show that for all m ≥ 0, one
has

∀i = 1, ..., 2n
∣∣∣∆Hm

i (x, ξ)
∣∣∣ ≤ φ̄Mmxm

m!
(46)

We prove this result by induction. For m = 0, it follows
directly from the fact that ∆H0 = φ and the definition of φ̄
given by (39). Assume that (46) holds for m ≥ 1. Then, for
i = 1, ...n, one has

|∆Hm+1
i (x, ξ)| = |Φi[∆Hm](x, ξ)| by definition of ∆Hm+1

≤ φ̄
Mm+1xm+1

(m + 1)!
using Lemma 5.5.

Similarly, using the definition of ∆Hm+1
n+1 and Lemma 5.5, one

has

|∆Hm+1
n+1 (x, ξ)| ≤ φ̄

Mm+1xm+1

(m + 1)!

which concludes the proof.

The proof of uniqueness and continuity of the solutions is
identical to the one in [13]. For this reason and brevity
purposes, we will not detail it here. We now assess the
invertibility of transformation (13) and the existence of the
coefficients κi, ci, j, i, j = 1, ..., n.

E. Inverse transformation and target system coefficients

Since α ≡ u, transformation (13) rewrites

v(t, x) −
∫ x

0
kn+1(x, ξ)v(t, ξ)dξ = Γ(t, x) (47)

with Γ(t, x) = β(t, x) +
n∑

i=1

∫ x
0 ki(x, ξ)αi(t, ξ)dξ. Since kn+1 is

continuous, there exists a unique continuous inverse kernel
ln+1 defined on T and such that (see, e.g., [12])

v(t, x) = Γ(t, x) +

∫ x

0
ln+1(x, ξ)Γ(t, ξ)dξ (48)
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which yields the following inverse transformation

v(t, x) = β(t, x) +

∫ x

0
ln+1(x, ξ)β(t, ξ)dξ

+

n∑
i=1

(
ki(x, ξ) +

∫ x

ξ

ki(x, ξ)ln+1(ξ, s)ds
)
α(t, ξ)dξ (49)

Besides, the continuity (and thus, the boundedness) of K also
implies the existence and continuity of the solutions to the
Volterra equations of the second kind (17) (see, e.g., [10,
Theorem 3.1, p.30]). Therefore, the functions κi and ci, j

(defined by (18)), for i, j = 1, ..., n are continuous on T .
In the next section, we summarize the control design in
Theorem 6.1.

VI. Control law and main result

We now state the main result of the paper.
Theorem 6.1: Consider system (1),(2) with boundary con-

ditions (3),(4), initial conditions u0, v0 and the following
control law

U(t) =

∫ 1

0

 n∑
i=1

ki(x, ξ)ui(t, ξ) + kn+1(x, ξ)v(t, ξ)

 dξ (50)

where, for i = 1, ..., n + 1, the ki satisfy System (15) with
boundary conditions (16). Then, under the assumption that
for all i, j = 1, ..., n

λi, µ ∈ C
1([0, 1]), σi, j, ωi, θi ∈ L

∞([0, 1]), u0, v0 ∈ L2([0, 1])

the equilibrium w ≡ 0 is exponentially stable in the L2 sense

Proof The existence of the kernel coefficients verifying (15)
with boundary conditions (16) is proved by applying Theo-
rem 5.3 with, for all i, j = 1, ..., n

F i(x, ξ) = ki(x, ξ), G(x, ξ) = kn+1(x, ξ)

ai(x, ξ) = −ωi(ξ), bi, j(x, ξ) =

{
λ′i(ξ) if i = j
−σ j,i(ξ) otherwise

d(x, ξ) = −µ′(ξ), ei(x, ξ) = −θi(ξ),

fi(x) = −
θi(x)

λi(x) + µ(x)
, gi(x) =

qiλi(0)
µ(0)

The existence of the direct and inverse transformations
(respectively given by (13) and (49)) guarantees that the
exponential stability of the target system (6),(7) with bound-
ary conditions (8), investigated in Lemma 3.1, is equivalent
to that of the original system (1),(2) with boundary condi-
tions (3),(4), which concludes the proof.

VII. Conclusion and future work

We have presented a control design for a class of linear
first-order hyperbolic systems, which guarantees exponential
stability of the zero equilibrium. The control gains may be
computed, indifferently, by solving the hyperbolic system
of equations (15) with boundary conditions (16), or by
truncating the infinite sum (37).

The resulting control law is a full-state static feedback
which requires measurements or estimates of all the states

over the entire spatial domain. Thus, the design of a boundary
observer generalizing the one presented in [13] for the special
case n = 1 is an important focusing point for current and
future investigations. The main difficulty of such a design
is the necessity to cancel coupling terms between homo-
directional states (i.e. states traveling in the same direction),
which may result in ill-posed equations for the corresponding
backstepping kernels.

Another direction for future investigations is to further
generalize the control and observer designs to a broader class
of systems, by considering arbitrary numbers of states in
either direction, i.e. (n + m)-state systems with n positive
transport speeds and m negative ones. Again, the necessary
cancellation of coupling terms between homo-directional
states severely complicates the control design.
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