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Abstract— Constant biases associated to measured linear and
angular velocities of a moving object can be estimated from
measurements of a static environment by embedded camera
and depth sensor. We propose here a Lyapunov-based observer
taking advantage of the SO(3)-invariance of the partial dif-
ferential equations satisfied by the measured brightness and
depth fields. The resulting observer is governed by a non-
linear integro/partial differential system whose inputs are the
linear/angular velocities and the brightness/depth fields. Con-
vergence analysis is investigated under C3 regularity assump-
tions on the object motion and its environment. Technically,
it relies on Ascoli-Arzela theorem and pre-compacity of the
observer trajectories. It ensures asymptotic convergence of
the estimated brightness and depth fields. Convergence of the
estimated biases is characterized by constraints depending only
on the environment. We conjecture that these constraints are
automatically satisfied when the environment does not admit
any rotational symmetry axis. Such asymptotic observers can be
adapted to any realistic camera model. Preliminary simulations
with synthetic image and depth data (corrupted by noise around
10%) indicate that such Lyapunov-based observers converge for
much weaker regularity assumptions.

I. INTRODUCTION

The problem of estimating the position and the orientation
of a moving object such as a ground, an aerial or an
underwater vehicle has been extensively studied since World
War II. In the 1950’s, expensive inertial measurement units
(IMUs) were developed, as missile guidance and control
required extremely accurate navigation data [1]. Tactical
grade IMUs, less expensive, enable dead-reckoning tech-
niques over short time periods, but require position fixes
provided by GPS [2], or combination through data fusion
of other sensors outputs [3], [4]. As to recent low-cost
IMUs using MEMS technologies, the cumulated error due
to the bias of gyroscopes integrated over long time periods
induces drift in orientation, which can be managed; but from
accelerometers, only high frequency output (dynamics) can
be relied on. As odometers and velocimeters (e.g. Doppler
radar [5], Pitot tube, electromagnetic (EM) log sensor), are
commonly available technologies in vehicles, mass market
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applications can combine their linear velocity outputs with
angular velocity from low-quality IMUs. Unfortunately, Pitot
probes and EM log sensors are known to only provide air-
speed and speed-through-the-water (STW) instead of speed-
over-ground (SOG). We intend to study the situation, where
linear and angular velocity are provided up to a slowly
varying bias (the wind or an ocean current), which can be
illustrated by [6].

Our approach leans on vision techniques: the field of
dynamic vision mainly focuses on the estimation of motion
of a camera and structure of a scene from a sequence of
images [7], [8]. It usually tracks feature points between
images and simultaneously recovers their three-dimensional
(3D) position and the ego-motion of the camera through
extended Kalman filtering (simultaneous localization and
motion, SLAM) [9] or non-linear observers [10], [11], [12].
Two difficulties systematically arise in those methods: as
monocular systems can only estimate translation up to a
scale factor, an additional output is required [13]; perspec-
tive systems induce nonlinearities to the system dynamics,
which forces to study other geometrical formulations (e.g the
essential space [14], the Plücker coordinates [15]).

The Kinect device has been a huge outbreak in the
robotics and vision communities ([16]) as it provides depth
measurements registered at each pixel of a RGB image, at a
relatively low cost. To our knowledge, there are few attempts
to exploit simultaneously image and dense depth data.

The contributions of this paper can be summarized as
follows. We propose an original method to estimate constant
biases on angular and translational velocities and, in the
same time, to filter the image and depth data. This method
relies on an SO(3)-invariant partial differential system [17],
[18] coupling, for a static environment, the brightness field
perceived by a spherical camera, the depth field and the angu-
lar/translational velocities. The observer design is based on a
Lyapunov functional. It yields an integro/partial differential
system for the estimated fields and biases (see (8) for fields
on the entire sphere S2 and see (17) for an adaptation to
fields localized on a spherical cap). Asymptotic convergence
is investigated under C3 regularity assumptions on object
motions and environment (theorem 2). Simulations (figures 6
and 7) show that such observers could be used with noisy
fields and an environment with only a C0 regularity.

Section II is devoted to the SO(3)-invariant model, the
partial differential system coupling brightness and depth
fields and the C3 regularity and geometric assumptions used
for the observer convergence analysis. In section III, the
Lyapunov-based nonlinear observer is introduced and its
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convergence is investigated. In section IV, we explain how
to adapt this observer to a realistic pinhole camera model
with restricted fields of view, and we present simulations
illustrating robustness to noise of 10%.

II. THE SO(3)-INVARIANT MODEL

A. Modelling and regularity assumptions

The model is based on geometric assumptions introduced
in [17], [18]. They are recalled in this sub-section. The
camera is spherical. Its motion is given through the linear
and angular velocities v(t) and ω(t) expressed in a reference
frame attached to the camera: the camera frame. More
precisely, the position of the optical center in the reference
frame R is denoted by C(t). Orientation versus R is given
by the quaternion q(t): any vector ς in the camera frame
corresponds to the vector qςq∗ in the reference frame R
using the identification of vectors as imaginary quaternions.
We have thus: q̇ = 1

2qω and Ċ = qvq∗. A pixel is labeled
by the unit vector η in the camera frame: η belongs to the
sphere S2 and receives the brightness y(t, η). Thus at each
time t, the image produced by the camera is described by
the scalar field S2 3 η 7→ y(t, η) ∈ R.

The scene is modeled as a closed, C3 and convex surface
Σ of R3, diffeomorphic to S2. The camera is inside the
domain Ω ⊂ R3 delimited by Σ = ∂Ω. To a point M ∈ Σ
corresponds one and only one camera pixel. At each time t,
there is a bijection between the position of the pixel given by
η ∈ S2 and the point M ∈ Σ. Since the point M are labelled
by s ∈ S2, this means that for each t, exist two mapping
S2 3 s 7→ η = φ(t, s) ∈ S2 and S2 3 η 7→ s = ψ(t, η) ∈ S2

with φ(t, ψ(t, η)) ≡ η and ψ(t, φ(t, s)) ≡ s, for all η, s ∈ S2.
To summarize we have:

η := q(t)∗
−−−−−−→
C(t)M(s)

‖
−−−−−−→
C(t)M(s)‖

q(t) and s = ψ(t, η) (1)

where ψ(t, .) and φ(t, .) are diffeomorphisms of S2 for every
t > 0.

The density of light emitted by a point M(s) ∈ Σ does
not depend on the direction of emission (Σ is a Lambertian
surface) and is independent of t (the scene is static). This
means that y(t, η) depends only on s: there exists a function
yΣ(s) such that

y(t, η) = yΣ(ψ(t, η)). (2)

The distance ‖
−−−−−−→
C(t)M(s)‖ between the optical center and

the object seen in the direction η = φ(t, s) is denoted by
D(t, s), and its inverse by Γ = 1/D

Γ(t, η) :=
1

‖
−−−−−−−−−−−→
C(t)M(ψ(t, η))‖

. (3)

Fig.1 illustrates the model and the notations.
We assume
1) v and ω are C2 functions of t ∈ [0,+∞) and their

derivatives are uniformly bounded up to order 2 with
respect to t ≥ 0,

2) yΣ is a C3 function of s ∈ S2,

Fig. 1. Model and notations of a spherical camera in a static environment
[17], [18].

3) C(t) stays in a fixed compact subset K of Ω for all
t > 0.

Thanks to 1), C(t) and q(t) are C3 functions and their
derivatives are uniformly bounded up to order 3 with respect
to t ≥ 0. Thanks to 1) ψ(t, η) and φ(t, s) are C3 functions
and, thanks to 3), their derivatives are uniformly bounded
up to order 3 with respect to t ≥ 0, η, s ∈ S2 (use (1) and
the existence of ς > 0 with ‖

−−−−→
C(t)M‖ ≥ ς for all t > 0

and M ∈ Σ). Thanks to 3) and (2), y(t, η) is a C3 function
and its derivatives are uniformly bounded up to order 3 with
respect to t ≥ 0 and η ∈ S2 . Thanks to 3), the minimum
of D(t, s) = ‖

−−−−−−→
C(t)M(s)‖ for t ≥ 0 and s ∈ S2 is strictly

positive, thus Γ(t, η) is a C3 function and its derivatives
are uniformly bounded up to order 3 with respect to t ≥ 0
and η ∈ S2 (see (3)). In the sequel, ∇y and ∇Γ denote the
gradients of y and Γ on the Riemannian sphere S2.

B. Statement of the bias estimation problem

Under the above assumptions, the y and Γ obey to ([17],
[18])

ẏ = −∇y · (η × (ω + Γη × v)) (4)

Γ̇ = −∇Γ · (η × (ω + Γη × v)) + Γ2v · η (5)

where ẏ and Γ̇ stand for partial derivatives of y and Γ with
respect to t. The Euclidean scalar product of two vectors a
and b in R3 is denoted by a · b and their wedge product by
a×b. Equations (4) and (5) are SO(3)-invariant: they remain
unchanged by any rotation described by the quaternion σ and
changing (η, ω, v) to (σησ∗, σωσ∗, σvσ∗).

The camera motion characterized by (v, ω) is not known
precisely. We assume here that sensor data provide vm(t) and
ωm(t) differing from true velocities by measurement biases,
defined as constant errors:

vm(t) = v(t) + pv, ωm(t) = ω(t) + pω (6)

where pv, pω ∈ R3 are constant:

ṗv = 0, ṗω = 0 (7)

The state equations are given by (4), (5) and (7) where
v(t) and ω(t) depend on the unknown parameters pv and
pω via (6). Here (vm, ωm) are considered as known inputs
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and (y,Γ) as the measured outputs. The goal is to estimate
in real-time the parameters (pv, pω) from the known signals
y, Γ, v and ω. Notice that, as assumed in the previous sub-
section, y and Γ are C3 with respect to t and η with bounded
partial derivatives up to order 3.

III. THE ASYMPTOTIC OBSERVER

A. A Lyapunov based observer

We propose the following observer for pω and pv , inspired
by the one proposed in [17]:

˙̂y = −∇ŷ · (η × (ωm − p̂ω + Γη × (vm − p̂v)))
+ky(y − ŷ)

˙̂
Γ = −∇Γ̂ · (η × (ωm − p̂ω + Γη × (vm − p̂v)))

+Γ2(vm − p̂v) · η + kΓ(Γ− Γ̂)
˙̂pω = −kω

∫
S2

(
λy(ŷ − y)(∇ŷ × η)

+λΓ(Γ̂− Γ)(∇Γ̂× η)
)
dση

˙̂pv = kv

∫
S2

(
λΓ(Γ̂− Γ)Γ2η

−λy(ŷ − y)(Γη × (η ×∇ŷ))

−λΓ(Γ̂− Γ)(Γη × (η ×∇Γ̂))
)
dση

(8)

where ky , kΓ, kω , kv , λy , λΓ are constant positive gains. The
choice of this observer is justified by the following Lyapunov
function:

V =
1

2

(∫
S2

(
λy ỹ

2 + λΓΓ̃2
)
dση +

‖p̃ω‖2

kω
+
‖p̃v‖2

kv

)
with ỹ = ŷ−y, Γ̃ = Γ̂−Γ, p̃ω = p̂ω−pω and p̃v = p̂v−pv . To
prove that V decreases as the time t increases, let us consider
any scalar field h(t, η) defined on S2 and its integral H on
the unit sphere:

H =

∫
S2

h(t, η)2dση =

∫
S2

h(t, q∗ηq)2dση

since η 7→ q∗ηq is an isometry on S2. For η a constant
vector of the earth-fixed frame, q∗ηq is the same vector,
expressed in the camera frame. Thus, h(t, q∗ηq) is the value
of h corresponding to a specific object M(s) of the scene.
This yields

d
dtH =

∫
S2

d
dt (h(t, q∗ηq)2)dση

= 2

∫
S2

h(t, q∗ηq) d
dth(t, q∗ηq)

∣∣
s
dση

= 2

∫
S2

h(t, q∗ηq)
(
ḣ+∇h · (η × (ω + Γη × v))

)
dση

One can apply this calculation rule to the scalar fields ỹ and
Γ̃. Then, (4) and (8) yield

˙̃y +∇ỹ · (η × (ω + Γη × v))

= ∇ŷ · (η × (p̃ω + Γη × p̃v))− ky ỹ. (9)

Equations (5) and (8) yield

˙̃
Γ +∇Γ̃ · (η × (ω + Γη × v))

= ∇Γ̂ · (η × (p̃ω + Γη × p̃v))− Γ2η · p̃v − kΓΓ̃. (10)

Now, using a · (b × c) = (a × b) · c and the expressions of
˙̂pω and ˙̂pv , one finally gets

V̇ = −
∫
S2

(
kyλy ỹ

2 + kΓλΓΓ̃2
)
dση.

The Lyapunov function V decreases along the trajectories.
The convergence analysis will be done by proving, under
the assumptions given in subsection II-A, the following
successive steps:

1) the non-linear partial differential equations (8) define
a well posed Cauchy problem for t ≥ 0 as soon as the
initial state ŷ and Γ̂ are C3 versus t and η; moreover
the partial derivatives of ŷ, Γ̂, p̂v and p̂ω up to order
3 are uniformly bounded with respect to t ≥ 0 and
η ∈ S2.

2) since t 7→ V̇ is proved to converge to zero as t
tends to infinite, the estimates ŷ and Γ̂ tend to y and
Γ; since partial derivatives of order 3 are bounded
uniformly with respect to t, such convergence occurs
also for C1-norm topology; its yields to a geometric
characterization (depending only on the shape of the
domain Ω) of the possible limit set for p̃v and p̃ω .

3) we conjecture that this geometric characterization is
reduced to p̃v = p̃ω = 0 when the convex domain
Ω ⊂ R3 inside which the camera moves admits no
rotational symmetry axis.

B. Well posedness and bounds for the observer

Existence and uniqueness of solutions of (8) is given by
the next statement.

Theorem 1: Assume that

[0,+∞[×S2 3 (t, η) 7→ (y(t, η),Γ(t, η), v(t), ω(t))

obeying to (4), (5) satisfy the regularity assumptions of
subsection II-A. Then for every (ŷ0, Γ̂0, p̂v0, p̂ω0) ∈
C3(S2,R)2 × R6, there exists a unique solution
(ŷ, Γ̂, p̂v, p̂ω) ∈ C3([0,+∞)× S2,R)2 × C3([0,+∞),R3)2

of (8) such that

∀η ∈ S2, (ŷ(0, η), Γ̂(0, η), p̂v(0), p̂ω(0))

= (ŷ0(η), Γ̂0(η), p̂v0, p̂ω0).

Moreover, all partial derivatives versus t and η, up to order
3, of ŷ, Γ̂, p̂v , p̂ω are uniformly bounded with respect to
t ≥ 0 and η ∈ S2.

Proof: In a first step, let us assume that (ŷ, Γ̂, p̂v, p̂ω)
is a solution. Let ϕ = ϕ(t, η) be the characteristics{

ϕ̇ = ϕ× (ω − p̃ω + Γ(t, ϕ)ϕ× (v − p̃v)),
ϕ(0, η) = η.

(11)

The functions ĥ(t, η) = Γ̂(t, ϕ(t, η)), k̂(t, η) = ŷ(t, ϕ(t, η))
solve{

˙̂
h = h2(v − p̃v).ϕ+ kΓ(h− ĥ),

ĥ(0, η) = Γ̂0(η),

{
˙̂
k = ky(k − k̂),

k̂(0, η) = ŷ0(η).
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where h(t, η) = Γ(t, ϕ(t, η)) and k(t, η) = y(t, ϕ(t, η)).
Thus ŷ and Γ̂ satisfy

ŷ(t, ϕ(t, η)) = ŷ0(η)e−kyt

+

∫ t

0

kyy(τ, ϕ(τ, η))eky(τ−t)dτ (12)

and

Γ̂(t, ϕ(t, η)) = Γ̂0(η)e−kΓt

+

∫ t

0

[
Γ2(τ, ϕ(τ, η))(v(τ)− p̃v(τ))

+ kΓΓ(τ, ϕ(τ, η))
]
ekΓ(τ−t)dτ. (13)

Thus, the characteristic equations (11) are nonlinear integro-
differential equations. Indeed, p̂v(t) may be replaced by

p̂v(t) = p̂v0 +

∫ t

0

dp̂v
dτ

(τ)dτ,

where dp̂v
dτ may be replaced by its expression given in (8), in

which ŷ and Γ̂ may be replaced by (12) and (13) (idem for
p̂ω). The existence and uniqueness of local solutions may be
proved with a fixed point argument. Maximal solutions are
global because there is no explosion in finite time. This ends
the proof of the well posedness.

To prove that ŷ, Γ̂ p̃v and p̃ω and their partial derivatives
versus t and η up to order 3 are uniformly bounded with
respect to t > 0 and η ∈ S2, let us state the following
lemma (proven in appendix).

Lemma 1: Consider the following partial differential
equation:

ḣ =
∂h

∂η
· F (t, η) + a(t, η)h+G(t, η)− kh

where h : (t, η) ∈ [0,+∞) × S2 → R and k is a positive
constant. Let n ∈ N∗. Assuming that the partial derivatives
up-to order n of F , a and G with respect to t and η are
uniformly bounded, then ∃ k∗ such that ∀k ≥ k∗, the partial
derivatives up-to order n of h with respect to t and η are
uniformly bounded.

Now, let us prove the uniform bounds of Proposition 1.
Lemma 1 applies to ŷ with
• F (t, η) = −η × (ω − p̃ω + Γη × (v − p̃v))
• a(t, η) = 0
• G(t, η) = kyy(t, η)

Indeed, as V is a Lyapunov function (therefore bounded),
there exists a constant VM > 0 such that, ∀t ≥ 0,∫

S2

ỹ2,

∫
S2

Γ̃2, ‖p̃v‖, ‖p̃ω‖ 6 VM (14)

and F , G and their partial derivatives with respect to η are
uniformly bounded. Thus ŷ and ∇ŷ are uniformly bounded.
Similarly, Lemma 1 applies to Γ̂. Then, we get from (8) that
the time-derivatives of p̃v and p̃ω are uniformly bounded. The
same reasoning applies to prove the uniform boundedness up
to order 3.

C. The Ω-limit set

Theorem 2: Under the assumptions of theorem 1 we have
1) • limt→+∞ supη∈S2 |ỹ|+ ‖∇ỹ‖+ | ˙̃y| = 0

• limt→+∞ supη∈S2 |Γ̃|+ ‖∇Γ̃‖+ | ˙̃Γ| = 0
2) for every adherence value (Pv, Pω) of (p̃v, p̃ω) as t→

+∞, there exists C̄ ∈ K ⊂ Ω a camera position such
that, ∀η ∈ S2

(∇ȳ × η) · Pω + Γ̄η × (η ×∇ȳ) · Pv = 0 (15)

(∇Γ̄×η) ·Pω− (Γ̄2η− Γ̄η× (η×∇Γ̄)) ·Pv = 0 (16)

where ȳ(t, η) and Γ̄(t, η) are the brightness and depth fields
associated to the position C̄ of the camera with orientation
q̄ = 1.

Proof: In a first step we prove that

f(t) :=
1

2

∫
S2

ky ỹ
2 + kΓΓ̃2dση

converges to zero as t → +∞. Note that V̇ = −f(t) and
V converges as t→ +∞ (because non increasing and > 0).
Thus f ∈ L1(0,+∞). In order to conclude, it is sufficient to
prove that f is uniformly continuous on [0,+∞) (Barbalat
Lemma). We have

ḟ =

∫
S2

(
ky ỹ(∇ŷ · (η × (p̃ω + Γη × p̃v))− ky ỹ)

+ kΓΓ̃(∇Γ̂ · (η× (p̃ω + Γη× p̃v)) + Γ2η · p̃v − kΓΓ̃)
)
dση

Under assumptions described in II-A, Proposition 1 proves
that ∇ŷ, ∇Γ̂ are uniformly bounded with respect to t > 0
and η ∈ S2. Thanks to Cauchy-Schwarz inequality, ḟ(t) is
bounded uniformly with respect to t > 0, which ends the
proof of the first step.

Second step: let us prove the first conclusion of the
theorem. Under assumptions described in II-A, theorem 1
proves that ỹ, Γ̃ and their partial derivatives up to order 3
are uniformly bounded with respect to t > 0 and η ∈ S2.
Thus partial derivatives up to second order admit, according
to Ascoli-Arzela theorem, accumulation η-functions when t
tends to +∞. Let us consider such accumulation functions,

ỹ, Γ̃, ∇ỹ, ∇Γ̃, ˙̃y, ˙̃
Γ for ỹ, Γ̃, ∇ỹ, ∇Γ̃, ˙̃y, ˙̃

Γ respectively.
Thus exists (tn) ∈ [0,+∞)N with tn → +∞ such that
ỹ(tn) → ỹ, Γ̃(tn) → Γ̃, ∇ỹ(tn) → ∇ỹ, ∇Γ̃(tn) → ∇Γ̃,
˙̃y(tn)→ ˙̃y and ˙̃

Γ(tn)→ ˙̃
Γ where → stands for convergence

with the L∞-norm on η ∈ S2. Such uniforme convergence
yields ∇ỹ = ∇ỹ and ∇Γ̃ = ∇Γ̃. According to the first step
of this proof, the only possible value for (ỹ, Γ̃) is (0, 0) and
thus (∇ỹ,∇Γ̃)=(0, 0). Now, considering the time-derivatives
of f , one gets:

ḟ = 2

∫
S2

(
ky ỹ ˙̃y + kΓΓ̃

˙̃
Γ
)
dση

f̈ = 2

∫
S2

(
ky(ỹ¨̃y + ˙̃y

2
) + kΓ(Γ̃

¨̃
Γ +

˙̃
Γ

2

)

)
dση
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Thus, ḟ(tn) tends to 0 and f̈(tn) tends to

2

∫
S2

(
ky

(
˙̃y
)2

+ kΓ

(
˙̃
Γ

)2
)
dση.

Moreover f̈ is uniformly continuous (f (3) is uniformly
bounded because ỹ and Γ̃ are bounded in C3 topology), this
yields f̈(tn) → 0 as n → +∞ and thus ˙̃y(tn) → 0 and
˙̃
Γ(tn)→ 0. This proves the first conclusion of theorem 2.

Third step: Let us prove the second conclusion of the
theorem. Combining (4), (5) and (8) with the convergence
of ỹ and Γ̃ towards 0 for C1 topology yields, ∀η ∈ S2:

lim
t→+∞

(∇y × η) · p̃ω + Γη × (η ×∇y) · p̃v = 0,

lim
t→+∞

(∇Γ× η) · p̃ω − (Γ2η − Γη × (η ×∇Γ)) · p̃v = 0.

Let us consider accumulation points y, Γ, p̃v and p̃ω of y, Γ,
p̃v and p̃ω for t tending to +∞ (Ascoli-Arzela theorem for
y and Γ and p̃v , p̃ω bounded). According to subsection II-A,
y and Γ correspond to accumulation points C and q for C(t)
and q(t). The above two limits provide, for all η ∈ S2,

(∇y × η) · p̃ω + Γη × (η ×∇y) · p̃v = 0,

(∇Γ× η) · p̃ω − (Γ
2
η − Γη × (η ×∇Γ)) · p̃v = 0.

Since these equations are SO(3)-invariant, we can set q̄ = 1
and we recover (15) and (16).

D. Characterization of the invariant set

We have seen in sub-section III-C that the possible ac-
cumulation points Pv and Pω for p̃v and p̃ω satisfy the
constraint

(∇Γ× η) · Pω − (Γ
2
η − Γη × (η ×∇Γ)) · Pv = 0

where Γ is the depth profile associated to a position C inside
the domain Ω and with orientation q = 1. We conjecture that,
if the convex domain Ω ⊂ R3 does not admit any rotational
symmetry axis, such constraint is only satisfied for Pv =
Pω = 0. This conjecture leans on the following elementary
geometric properties:
• for Pv = 0, this constraint becomes ∇Γ · (η×Pω) = 0,

which characterizes a rotational symmetry of Σ around
the (C,Pω) axis;

• for Pω = 0, (Γ
2
η−Γη× (η×∇Γ)) ·Pv = 0 cannot be

satisfied for Pv 6= 0 since for η colinear to Pv , we get
Γ‖Pv‖ = 0 (Γ is always > 0).

IV. PRACTICAL IMPLEMENTATION AND SIMULATIONS

A. Adaptation to a spherical cap

Concretely, a spherical camera is only a model, and the
image perceived by real cameras only occupy a part of S2.
Let us call K this portion: y(t, η) and Γ(t, η) are known only
for η ∈ K. The observer introduced in III can not be readily
used since it brings into play the integral of y or Γ over
the whole unit sphere. We will see that one can compensate
this problem by considering virtual observations, equal to
the real observations over the window defined by K. Let K1

and K2 be two compact sets s.t.
◦
K1⊂

◦
K2⊂

◦
K. Let be a C∞

scalar field S2 3 η 7→ φ(η) ∈ R, s.t. φ = 1 on K1, φ = 0
on S2 rK2. Let us define Y = φy and Λ = φΓ. Then,

Ẏ = −∇Y · (η× (ω+ Γη× v)) + y∇φ · (η× (ω+ Γη× v))

and

Λ̇ = −∇Λ · (η × (ω + Γη × v))

+ Γ∇φ · (η × (ω + Γη × v)) + ΓΛη · v.

The adaptation of observer (8) reads

˙̂
Y = −∇Ŷ · (η × (ωm − p̂ω + Γη × (vm − p̂v)))

+y∇φ · (η × (ωm − p̂ω + Γη × (vm − p̂v)))
+kY (Y − Ŷ )

˙̂
Λ = −∇Λ̂ · (η × (ωm − p̂ω + Γη × (vm − p̂v)))

+Γ∇φ · (η × (ωm − p̂ω + Γη × (vm − p̂v)))
+ΓΛ(vm − p̂v) · η + kΛ(Λ− Λ̂)

˙̂pω = −kω
∫
K
λY (Ŷ − Y )((∇Ŷ − y∇φ)× η)

+λΛ(Λ̂− Λ)((∇Λ̂− Γ∇φ)× η)dση
˙̂pv = kv

∫
K
λΛ(Γ̂− Γ)ΓΛη

−λY (Ŷ − Y )(Γη × (η × (∇Ŷ − y∇φ))

−λΛ(Λ̂− Λ)(Γη × (η × (∇Λ̂− Γ∇φ))dση
(17)

Integrals on S2 are actually integrals on K since the inte-
grands vanish out of K. Let us choose the Lyapunov function

V =
1

2

(∫
K

(
λY (Ŷ − Y )2 + λΛ(Λ̂− Λ)2

)
dση

+
(p̂ω − pω)2

kω
+

(p̂v − pv)2

kv

)
.

One can prove just as previously that

V̇ =

∫
K

(
−λY kY (Ŷ − Y )2 − λΛkΛ(Λ̂− Λ)2

)
dση.

We guess that convergence analysis done when K = S2 can
be extended to compact sub-domains K of S2.

B. The observer in pinhole coordinates

The previous observer can be finally adapted to a real
model of camera: the widely spread pinhole camera model
enabling a correspondence between the local coordinates on
S2 with a rectangular grid of pixels. The pixel of coordinates
(z1, z2) corresponds to the unit vector η ∈ S2 of coordinates
in R3:

(
1 + z2

1 + z2
2

)−1/2
(z1, z2, 1)T . The optical camera

axis (pixel (z1, z2) = (0, 0)) corresponds here to the direc-
tion z3. Directions 1 and 2 correspond respectively to the
horizontal axis from left to right and to the vertical axis
from top to bottom on the image frame.

The gradients ∇y and ∇Γ must be expressed with respect
to z1 and z2. Let us detail this derivation for y. Firstly, ∇y
is tangent to S2, thus ∇y · η = 0. Secondly, the differential
dy corresponds to ∇y · dη and to ∂y

∂z1
dz1 + ∂y

∂z2
dz2. By

identification, we get the Cartesian coordinates of ∇y in R3.
Similarly we get the three coordinates of ∇Γ. Injecting these
expressions in (17), we get a partial differential equations
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(PDE) system written in terms of (t, z1, z2) as independent
variables. Due to space limitation, this system is not given
here, but its derivation is straightforward and a little bit
tedious.

C. Simulations

The non-linear asymptotic observer (17) is tested on a
sequence of synthetic images characterized by the following:
• virtual camera: the size of each image is 640 by 480

pixels, the frame rate of the sequence is 42 Hz and the
field of view is 50 deg by 40 deg (defining K).

• motion of the virtual camera: it consists of the motion
of a real hand-held camera (filtered data), combining
translations and rotations in each direction; the real
linear and angular velocities expressed in the camera
frame are plotted in Fig.2 and Fig.3; zero-mean nor-
mally distributed noise (standard deviations σv and σω)
is added to these velocities to test the robustness;

• virtual scene: it consists of the walls, ceiling and floor of
a virtual room; the observed walls are virtually painted
with a gray pattern, whose intensity varies in horizontal
and vertical directions as a sinusoid function;

• generation of the images: each pixel of an image has an
integer value varying from 1 to 256, directly depending
on the intensity of the observed surface in the direction
indexed by the pixel, to which a zero-mean normally
distributed noise with standard deviation σy is added to
test the robustness;

• generation of the depth images: to each pixel of the
rectangular grid of an image is attributed the depth
of the corresponding element of the observed surface,
computed with respect with position and orientation of
the camera in the room, to which a zero-mean normally
distributed noise with standard deviation σD is added to
test the robustness.

The numerical resolution used to compute ŷ, Γ̂, p̂ω and p̂v
according to (8) is based on a temporal Euler discretization
scheme where ∇ŷ and ∇Γ̂ are computed via differentiation
filters (Sobel filtering) directly from the image and depth
previous estimates. The observer is then tested for reasonable
biases: in rotation, a bias of 0.05 rad.s−1 (10, 000 deg/h,
for a low-cost gyroscope) around the horizontal axis; in
translation, a bias of 2.5 m.s−1 in the horizontal direction
(9 km/h, for the windspeed). In other words, pω1 = 0.05
rad.s−1 and pvx = 2.5 m.s−1. Biases in the other directions
are set to 0. Initial conditions for ŷ and Γ̂ are y(0, η)
and Γ(0, η). Initial conditions for the estimated biases are
set to zero. The chosen correction gains are: ky = kΓ =
2s−1, kv = 10−2m2.s−2 and kω = 10−5rad.m.s−2. These
correction gains are chosen in accordance with the expected
values of biases and the environment averaged depth, to
enable a reasonable convergence speed. The correction gains
ky and kΓ are comparatively much larger than kv , which is
itself larger than kω , as large oscillations in the estimation
of pω can make the discretized observer to diverge. Finally,
the ponderation coefficients are λy = 1 and λΓ = 5000m2,
chosen to compensate the difference of magnitudes of y
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Fig. 2. Components of the linear velocity used to test the observer: trans-
lations in the horizontal, vertical and optical axis directions, respectively.
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Fig. 3. Components of the angular velocity used to test the observer:
rotations around the horizontal, vertical and optical axis, respectively.

and Γ. First, when image and depth data contain no noise
(σy = σD = 0), the results are plotted in Fig.4 and Fig.5 as
the instantaneous errors of estimations p̃v and p̃ω expressed
in the camera frame, respectively. In the first 6 s, errors
slowly converge towards 0, and coupling between rotation
and translation occurs: this reflects the fact that an horizontal
translation can be interpreted as a rotation around the vertical
axis to a certain extent. Oscillations decrease, and after
convergence, errors stay bounded: for the bias in rotation,
it does not exceed 0.002 rad.s−1 (4 % of the original bias);
in translation, it is less than 0.01 m.s−1 (0.4 % of the original
bias).

Then, to test the robustness of the method, noise is added
to the image data (σy = 30, about 12% of the full scale), to
the depth data (σD = 25 cm, which is three times as much
that can be expected from a Kinect device), to linear velocity
(σv = 0.05m.s−1) and to angular velocity (σω = 0.005
rad.s−1). Results are plotted in Fig.6 and Fig.7. Convergence
time is shorter for biases in translation estimation: after 3 s,
error does not exceed 0.2 m.s−1 (8 % of the original bias).
For the rotation, convergence is slower (as kω is smaller),
but in the last 3 sec of the simulation, biases are estimated
up to 0.003 rad.s−1 (6 % of the original bias).

V. CONCLUSION

We have proposed a new infinite dimensional nonlinear
observer that simultaneously filters image and depth data
and estimates constant biases on angular and translational
velocities. Observer design is based on a Lyapunov func-

6632



0 2 4 6 8 10 12

-2

-1

0

1

2

time (s)

er
ro

r 
in

 b
ia

s 
es

tim
at

io
n 

(m
/s

)

 

 

v
x

v
y

v
z

Fig. 4. Error of estimation of the biases in translation for noiseless image
and depth data. Real biases are pω1 = 0.05 rad.s−1 and pvx = 2.5 m.s−1
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Fig. 5. Error of estimation of the biases in rotation for noiseless image and
depth data. Real biases are pω1 = 0.05 rad.s−1 and pvx = 2.5 m.s−1
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Fig. 6. Error of estimation of the biases in translation for noisy image and
depth data, and noisy velocities: σy = 30, σD = 25 cm, σv = 0.05m.s−1,
σω = 0.005 rad.s−1. Real biases are pω1 = 0.05 rad.s−1 and pvx = 2.5
m.s−1
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Fig. 7. Error of estimation of the biases in rotation for noisy image and
depth data, and noisy velocities: σy = 30, σD = 25 cm, σv = 0.05m.s−1,
σω = 0.005 rad.s−1. Real biases are pω1 = 0.05 rad.s−1 and pvx = 2.5
m.s−1

tional and convergence analysis has been done under C3

regularity assumptions. We conjecture that, if the domain Ω
and its boundary Σ do not admit any rotational symmetry
axis, conditions (15) and (16) given in theorem 2 induce
convergence of the estimated biases (estimated fields always
converge). Preliminary simulations indicate that our conver-
gence analysis could certainly be extended to more general
situations with weaker regularities. It will be interesting to
test the nonlinear observer (17) on real data, since Kinect-
like devices can provide the necessary image and depth dense
fields.

VI. APPENDIX 1: PROOF OF LEMMA 1

In a first step, let us prove Lemma 1 with a = 0 and
n = 1. Let us consider the solution ϕ(t, η) to the following
Cauchy problem: {

ϕ̇ = −F (t, ϕ)
ϕ(0, η) = η.

(18)

The new function: z(t, η) = h(t, ϕ(t, η)) solves ż(t, η) =
G(t, ϕ(t, η))− kz. Thus

z(t, η) = e−kth0(η) +

∫ t

0

G(τ, ϕ(τ, η))ek(τ−t)dτ

and

∂z

∂η
(t, η) =e−kt

∂h0

∂η
(η)

+

∫ t

0

ek(τ−t) ∂G

∂η
(τ, ϕ(τ, η)) · ∂ϕ

∂η
(τ, η)dτ

On the other hand, ∂z∂η (t, η) = ∂h
∂η (t, ϕ(t, η)) · ∂ϕ∂η (t, η) yields

∂h

∂η
(t, ϕ(t, η)) = e−kt

∂h0

∂η
(η)

(
∂ϕ

∂η
(t, η)

)−1

+

∫ t

0

ek(τ−t) ∂G

∂η
(τ, ϕ(τ, η)) · ∂ϕ

∂η
(τ, η) ·

(
∂ϕ

∂η
(t, η)

)−1

dτ

Considering the function

Σ(τ, t, η) =
∂ϕ

∂η
(τ, η) ·

(
∂ϕ

∂η
(t, η)

)−1

yields
∂Σ
∂τ = ∂

∂τ (∂ϕ∂η )(τ, η) ·
(
∂ϕ
∂η (t, η)

)−1

= −∂F∂η (τ, ϕ(τ, η))Σ

Σ(t, t, η) = Id

Since ∂F
∂η is uniformly bounded (let us denote M1 this

bound), this implies that ∃α > 0 s.t. ∀t, τ ≥ 0,
||Σ(τ, t, η)|| ≤ αeM1|t−τ |. Then, from (18), ϕ satisfies
∂
∂t (

∂ϕ
∂η ) = −∂F∂η

∂ϕ
∂η . Thus

∂

∂t

(
∂ϕ

∂η
(t, η)

)−1

=

(
∂ϕ

∂η
(t, η)

)−1
∂F

∂η
(t, ϕ(t, η))
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and ||
(
∂ϕ
∂η (t, η)

)−1

|| ≤ βeM1t for some constant β > 0.

Finally, using ||∂G∂η || ≤M2

||∂h∂η (t, ϕ(t, η))|| ≤ e−kt||∂h0

∂η (η)||βeM1t

+
∫ t

0
ek(τ−t)M2αe

M1(t−τ)dτ
≤ βδ + M2α

k−M1

for some constant δ > 0, which proves that h and ∂h
∂η are

uniformly bounded, when k > M1. This ends the proof of
Lemma 1 with a = 0 and n = 1.

The proof with a 6= 0 and n = 1 may be done
similarly: ’−kt’ is replaced by ’−kt +

∫ t
0
a(s, ϕ(s, η))’ in

the exponential and k∗ has to be large regarding M1 and a).
The proof with n ∈ N follows by induction on n.
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