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Abstract. An Hamiltonian formulation with complex fluxes and cur-
rents is proposed. This formulation is derived from a recent Lagrangian
formulation with complex electrical quantities. The complexification pro-
cess avoids the usual separation into real and imaginary parts and no-
tably simplifies modeling issues. Simple modifications of the magnetic
energy underlying standard (α, β) models yield new (α, β) models de-
scribing machines with magnetic saturation and saliency. We prove that
the usual expression of the electro-mechanical torque (wedge product of
fluxes and currents) is related to a rotational invariance characterizing
sinusoidal machines.

1 Introduction

In [1] a Lagrangian formulation with complex currents and fluxes is proposed.
In this paper we develop the Hamiltonian counterpart only sketched in [1]. For
three-phase electrical machines we recall the usual model linear in fluxes, currents
and voltages, and give its Hamiltonian formulation based on magnetic energies
depending quadratically on fluxes. We then propose a modification of the usual
magnetic energies in order to take into account magnetic saturation. We prove
that if these additional terms preserve the rotational invariance of the usual
magnetic energies, then the resulting electro-magnetic torque always admits the
usual form and is thus still proportional to the imaginary part of the product of
complex conjugate of fluxes with stator currents.

Section 2 is devoted to permanent-magnet machines. In subsection 2.1 we
present the Hamiltonian formulation of the usual model with saliency effects.
In subsection 2.2 we introduce a class of saturation models and prove that, if
we just replace in the usual model the constant inductances by inductances
depending on the flux level, the resulting model does not admit in general a
magnetic energy and thus is not correct from a physical ground. For sinusoidal
machines where the magnetic energy is invariant with respect to the choice of
angle origin, we prove in subsection 2.3 that the usual formula giving the electro-
magnetic torque as a wedge product between the flux and current remains valid



even in the presence of saliency and magnetic saturation. Section 3 is devoted to
induction machines. In subsection 3.1 we present the Hamiltonian formulation of
the usual model. In subsection 3.2 we introduce a class of saturation models. For
machines with sinusoidally wound phases where the magnetic energy is invariant
with respect to the choice of angle origin, we prove in subsection 3.3 that the
usual formula giving the electro-magnetic torque as a wedge product between
the flux and current remains valid even in the presence of magnetic saturation.
In section 4 we suggest some further developments.

The authors acknowledge John Chiasson for interesting discussions and pre-
cious comments.

2 Permanent-magnet machines

2.1 Hamiltonian modeling

In the (α, β) frame (total power invariant transformation), the usual dynamic
equations read (see, e.g., [2, 4]):

d

dt

(
Jθ̇
)

= np=
(
(λı∗s + φ̄e−npθ − µıse−2npθ)ıs

)
− τL

d

dt

(
λıs + φ̄enpθ − µı∗se2npθ

)
= us −Rsıs

(1)

where

– ∗ stands for complex-conjugation, = means imaginary part,  =
√
−1 and np

is the number of pairs of poles.
– θ is the rotor mechanical angle, J and τL are the inertia and load torque,

respectively.
– ıs ∈ C is the stator current, us ∈ C the stator voltage.
– λ = (Ld + Lq)/2 and µ = (Lq − Ld)/2 (inductances Ld > 0 and Lq > 0,

saliency when Ld 6= Lq).
– The constant φ̄ > 0 represents the rotor flux due to the permanent magnets.

It is proved in [1] that (1) admits the following Hamiltonian formulation

d

dt

(
Jθ̇
)

= −∂Hm
∂θ
− τL,

d

dt
φs = us −Rsıs, ıs = 2

∂Hm
∂φ∗s

(2)

where the magnetic energy Hm

Hm(φs, φ
∗
s, θ) =

1

2Ld

(
<(φse

−npθ)− φ̄
)2

+
1

2Lq

(
=(φse

−npθ)
)2

(3)

=
1

2Ld

(
φse
−npθ + φ∗se

npθ

2
− φ̄

)2

+
1

2Lq

(
φse
−npθ − φ∗senpθ

2

)2

=
1

8Ld

(
φse
−npθ + φ∗se

npθ − 2φ̄
)2 − 1

8Lq

(
φse
−npθ − φ∗senpθ

)2



where the rotor angle θ, the stator flux φs and its complex conjugate φ∗s are
considered independent variables when computing the partial derivatives of Hm.
In particular, ıs = 2∂Hm∂φ∗

s
reads

ıs = enpθ

2Ld

(
φse
−npθ + φ∗se

npθ − 2φ̄
)

+ enpθ

2Lq

(
φse
−npθ − φ∗senpθ

)
=
(

1
2Ld

+ 1
2Lq

)
φs − 1

Ld
φ̄enpθ +

(
1

2Ld
− 1

2Lq

)
φ∗se

2npθ.

Inverting this relation we recover the usual relation between φs and the stator
current

φs = λıs + φ̄enpθ − µı∗se2npθ.

2.2 Magnetic saturation

To take into account magnetic saturation, we keep the structure equations (2)
and modify the magnetic energy Hm given in (3). For obvious physical rea-
sons, Ld and Lq should be decreasing functions of |φs|2. The simplest magnetic
saturation model will be given by setting

Hm(φs, φ
∗
s, θ) =

Sd(|φs|2)

L̄d

(
<(φse

−npθ)− φ̄
)2

+
Sq(|φs|2)

L̄q

(
=(φse

−npθ)
)2

where the saturation functions Sd and Sq are increasing function of |φs|2 with
Sd(0) = Sq(0) = 1 and where L̄d and L̄q are the unsaturated values of Ld and
Lq (low stator currents). The saturation model we propose is then given by (2)
with this modified Hamiltonian.

Using this Hamiltonian formulation to define the relationships between ıs, φs
and τem as in (2) automatically maintains energy conservation. This conservation
results from the fact that mixed partial derivatives are independent of order,

∂2Hm
∂θ∂φ∗s

=
∂2Hm
∂φ∗s∂θ

.

This implies

−2
∂τem
∂φ∗s

=
∂ıs
∂θ

where τem and ıs are considered as function of the independent variables φs, φ
∗
s

and θ.
On the other hand, an incorrect but seemingly ”natural” way to include

saturation in the usual (α, β) model

d

dt

(
J
d

dt
θ

)
= np= (φ∗sıs)− τL

d

dt
φs = us −Rsıs

ıs =

(
1

2Ld
+

1

2Lq

)
φs +

(
1

2Ld
− 1

2Lq

)
φ∗se

2npθ − φ̄

Ld
enpθ



consists in taking Ld and Lq as function of ρ2 = φsφ
∗
s, without changing the

formula for the electro-magnetic torque. If we proceed like this we get

τem =
np
2

((
1

2Ld
− 1

2Lq

)(
(φ∗
s)

2e2npθ − (φs)
2e−2npθ

)
−

(
φ̄

Ld

)(
φ∗
se
npθ − φse

−npθ
))

where Ld and Lq depend on ρ2 = |φs|2 Then some computations give

− 2
∂τem
∂φ∗s

− ∂ıs
∂θ

= np

d
(

1
2Ld
− 1

2Lq

)
dρ2

(
(φ∗s)

2e2npθ − (φs)
2e−2npθ

)

−
d
(
φ̄
Ld

)
dρ2

(
φ∗se

npθ − φse−npθ
)φs.

Thus such modeling does not in general respect the commutation condition
−2∂τem∂φ∗

s
= ∂ıs

∂θ : no magnetic energy exists for such non-physical models. The

correct current relationships include additional terms with derivatives of the
functions Sd and Sq:

ıs =

(
1

2Ld
+

1

2Lq

)
φs +

(
1

2Ld
− 1

2Lq

)
φ∗se

2npθ − φ̄

Ld
enpθ

+
S′d(|φs|2)

2L̄d
φs
(
<(φse

−npθ)− φ̄
)2

+
S′q(|φs|2)

2L̄q
φs
(
=(φse

−npθ)
)2
.

2.3 Sinusoidal models

Assume that the magnetic energy Hm admits the following rotational invariance
associated to sinusoidal back electro-magnetic force (bemf):

∀φs ∈ C, ∀θ, ξ ∈ S1, Hm(enpξφs, e
−npξφ∗s, ξ + θ) = Hm(φs, φ

∗
s, θ).

Then with H(ψ,ψ∗) = Hm(ψ,ψ∗, 0), Hm admits the following form

Hm(φs, φ
∗
s, θ) ≡ H(φse

−npθ, φ∗se
npθ).

In this case

τem = −∂Hm
∂θ

= −np
(
∂H
∂ψ∗

φ∗se
npθ − ∂H

∂ψ
φse
−npθ

)
ıs = 2

∂Hm
∂φ∗s

= 2enpθ
∂H
∂ψ∗

.

Since H is a real quantity ı∗s = e−npθ ∂H∂ψ . Thus we recover the usual formula
relating the electro-magnetic torque to the flux φs and current ıs:

τem = np
φ∗sıs − φsı∗s

2
= np= (φ∗sıs) . (4)



When Hm does not admit such rotational invariance, τem is different from
np= (φ∗sıs). Thus (4) is a direct consequence of rotational invariance. The satu-
ration models considered in the previous subsection admit this rotational invari-
ance and yield electro-magnetic torques satisfying (4).

A simple example of a non sinusoidal model is a machine with a trapezoidal
bemf F (npθ) (a sinusoidal model corresponds to F (npθ) = cos(npθ)). In this
case we change the Hamiltonian in (2) by

Hm =
1

2Ld

(
<(φs(F (npθ) + F (npθ + π

2 )))− φ̄
)2

+
1

2Lq

(
=(φs(F (npθ) + F (npθ + π

2 )))
)2

where e−npθ in (3) is replaced by F (npθ) + F (npθ + π
2 ). This Hamiltonian is

not rotationally invariant.

3 Induction machines

3.1 Hamiltonian modeling

We will now proceed as for permanent-magnet machines. The standard T -model
of an induction machine admit the following form:

d

dt

(
Jθ̇
)

= np=
(
Lmı

∗
re
−npθıs

)
− τL

d

dt

(
Lm

(
ır + ıse

−npθ
)

+ Lfrır
)

= −Rrır
d

dt

(
Lm

(
ıs + ıre

npθ
)

+ Lfsıs
)

= us −Rsıs

(5)

where

– np is the number of pairs of poles, θ is the rotor mechanical angle, J and τL
are the inertia and load torque, respectively.

– ır ∈ C is the rotor current (in the rotor frame, different from the (d, q)
frame) , ıs ∈ C the stator current (in the stator frame, i.e. the (α, β) frame)
and us ∈ C the stator voltage (in the stator frame). The stator and rotor
resistances are Rs > 0 and Rr > 0.

– The inductances Lm, Lfr and Lfs are positive parameters with Lfr, Lfs � Lm.
– The stator (resp. rotor) flux is φs = Lm

(
ıs + ıre

npθ
)

+ Lfsıs (resp. φr =

Lm
(
ır + ıse

−npθ
)

+ Lfrır).

The Hamiltonian formulation proposed in [1] reads:

d

dt

(
Jθ̇
)

= −∂Hm
∂θ
− τL,

d

dt
φr = −2Rr

∂Hm
∂φ∗r

,
d

dt
φs = us − 2Rs

∂Hm
∂φ∗s

(6)



where the magnetic energy Hm now depends on θ, the rotor flux φr and its
complex conjugate φ∗r , the stator flux φs and its complex conjugate φ∗s. The
rotor (resp. stator) current is then given by 2∂Hm∂φ∗

r
(resp. 2∂Hm∂φ∗

s
). For the standard

model (5), we have

Hm = 1
2Lf

(φs − enpθφr)(φ∗s − e−npθφ∗r) + 1
2Ls

φsφ
∗
s + 1

2Lr
φrφ

∗
r (7)

with Lf =
LfsLfr
Lm

+Lfs+Lfr, Ls = Lfs+
Lfs+Lfr
Lfr

Lm and Lr = Lfr+
Lfs+Lfr
Lfs

Lm. Such

Hamiltonian formulations based on fluxes are also named π-models whereas T -
models based on currents correspond to Lagrangian formulations (see, e.g., [5]).

3.2 Magnetic saturation

As in section 2.2, we will take into account magnetic saturation, we assume
that in (7), Ls, Lr and Lf are decreasing function of |φs|2. Then the magnetic
saturation model will be given by :

1

Ls
=
Ss(|φs|2)

L̄s
,

1

Lr
=
Sr(|φs|2)

L̄r
,

1

Lf
=
Sf (|φs|2)

L̄f

where the saturation functions Ss, Sr and Sf are increasing function of |φs|2
with Ss(0) = Sr(0) = Sf (0) = 1 and where L̄s , L̄r and L̄f are the unsaturated
values of Ls , Lr and Lf . The saturated Hamiltonian is then

Hm =
Sf (|φs|2)

2L̄f
|φs − enpθφr|2 + Ss(|φs|2)

2L̄s
|φs|2 + Sr(|φs|2)

2L̄r
|φr|2

With the dynamic equations then given by (6). This saturation model is the
Hamiltonian counter-part of the saturation model proposed in [5].

3.3 Sinusoidal models

The Hamiltonian Hm here above admits the following rotational invariance as-
sociated to a sinusoidal bemf:

∀φs ∈ C, ∀θ, ξ ∈ S1,

Hm(enpξφs, φr, e
−npξφ∗s, φ

∗
r , ξ + θ) = Hm(φs, φr, φ

∗
s, φ
∗
r , θ).

Then with H(ψs, ψr, ψ
∗
s , ψ

∗
r ) = Hm(ψs, ψr, ψ

∗
s , ψ

∗
r , 0), Hm admits the following

form
Hm(φs, φr, φ

∗
s, φ
∗
r , θ) ≡ H(e−npθφs, φr, e

npθφ∗s, φ
∗
r).

In this case

τem = −∂Hm
∂θ

= −np
(
∂H
∂ψ∗s

φ∗se
npθ − ∂H

∂ψs
φse
−npθ

)
Since ıs = 2∂Hm∂φ∗

s
= 2enpθ ∂H∂ψ∗

s
and ı∗s = 2∂Hm∂φs

= 2e−npθ ∂H∂ψs we recover the

usual formula relating the electro-magnetic torque to stator flux and current:

τem = −np
φ∗sıs − φsı∗s

2
= np= (φ∗sıs) .



4 Concluding remarks

It remains also to validate experimentally such magnetic-saturation models. Sub-
stantial modifications to such Hamiltonian formulation are needed to include, in
parallel to magnetic-saturation, magnetic hysteresis and the associated energy
losses [3].
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