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Abstract: The control is the potential well absolute position. For two kinds of
potential shape (periodic and box), we propose approximated solutions to the
stead-state motion planing problem: steering in finite time the particle from an
initial well position to a final well position, the initial and final particle energies
being identical. This problem is a quantum analogue of the water tank problem,
where a tank filled with liquid is moved from one position where the surface is
horizontal to another position where the surface is also horizontal.
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1. INTRODUCTION

We consider the control of a quantum particle
represented by a probability complex amplitude
R � q �→ ψ(q, t) solution of

ı
∂ψ

∂t
= −1

2
∂2ψ

∂q2
+ (V (q) + v̈q)ψ (1)

This 1-D Schrödinger equation describes the non
relativistic motion of a single charged particle
(mass m = 1, � = 1) with a potential V in
a non Galilean frame z of absolute position v,
corresponding to the position of the well. Changes
of independent variables (t, q) �→ (t, z) and depen-
dent variable ψ �→ φ, transform (1) into (2) where
the control appears as a shift on the space vari-
able. These classical transformations are as follows
(see, e.g., (Butkovskiy and Samoilenko, 1984)).
The transformations q = z − v and

ψ(t, z−v) = exp
(
ı

(
−zv̇ − vv̇ +

1
2

∫ t

0

v̇2

))
φ(t, z)

yield

ı
∂φ

∂t
= −1

2
∂2φ

∂z2
+ V (z − v)φ (2)

corresponding to the Schrödinger equation in a
Galilean frame q.

Controllability depends strongly on the shape
of the potential V . We will discuss here some
preliminary results with the following potential
shape.

• The periodic potential, V (q) = V (q + a),
where impulsive controls achieve iso-energy
translations with amplitudes multiple of the
period a.

• The box potential (see figure 1), V (q) =
0 for q ∈ [−1/2, 1/2] and V (q) = +∞
for q outside [−1/2, 1/2]. This problem ad-
mits strong similarity with the water tank
problem: around any state of definite en-
ergy, the linear tangent approximate system
is not controllable but it is ”steady-state”
controllable in the sense of (Petit and Rou-
chon, 2002). We guess that, as for the water-
tank system (Coron, 2002), the nonlinear
dynamics is locally controllable around any
state of definite energy.
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Fig. 1. Quantum particle in a moving box

2. PERIODIC POTENTIAL

Take (1) with a periodic potential (period a > 0):

V (q + a) = V (q), ∀q.
The goal is to solve approximatively the transition
between two bounded states of the same energy ψ1

and ψ2 such that

ψ2(q) = ψ1(q − ka)

where k ∈ Z.

Take the form (2) with v as control. Take any C2

function [0, 1] � α �→ y(α) ∈ R such that

y(0) = ẏ(0) = ÿ(0) = ẏ(1) = ÿ(1), y(1) = ka

Then, for ε > 0 small enough the control

[0, T ] � t �→ v(t) =




0 for t < 0
y(t/ε) for t ∈ [0, ε]
a for t > ε.

steers, approximatively, from ψ1 to ψ2. This is
obvious with (2): v(t) is close to a step between 0
and ka; since V (z − ka) = V (z), the influence of
such variation of v on φ solution of (2) remains
small (O(ε)). Thus φ remains closed to ψ1(z)
during the impulse. Thus, up to a phase shift the
real state ψ(ε, q) corresponds to φ(ε, z) = ψ1(z) =
ψ1(q − ka) = ψ2(q).

This simple impulsive control overcomes the fol-
lowing difficulty: such transitions necessarily re-
quires to reach energies in the continuous part
of the spectrum. Moreover straightforward exten-
sions to 2D or 3D periodic potentials can be done.

3. THE MOVING BOX

As illustrated on figure 1 take (2), with V (z) = 0
for z ∈ [− 1

2 ,
1
2 ] and V (z) = +∞ for z outside

[− 1
2 ,

1
2 ]. The dynamics reads:

ı
∂φ

∂t
= −1

2
∂2φ

∂z2
, z ∈ [v − 1

2
, v +

1
2
],

φ(v − 1
2
, t) = φ(v +

1
2
, t) = 0

where v is the position of the box and z is
an absolute position (Galilean frame). Otherwise
stated (see (1))

ı
∂ψ

∂t
= −1

2
∂2ψ

∂q2
+ v̈qψ, q ∈ [−1

2
,
1
2
],

ψ(−1
2
, t) = ψ(

1
2
, t) = 0

where q = z − v is the relative position with
respect to the box. ψ and φ are related via

ψ(t, z−v) = exp
(
ı

(
−zv̇ − νv̇ +

1
2

∫ t

0

v̇2

))
φ(t, z).

3.1 Modal decomposition

For v = 0, the system admits a non-degenerate
discrete spectrum (see, e.g.,(Messiah, 1962)):

ω2n = 2n2π2

ψ2n(q) = 2 sin(2nπq) (3)

ω2n+1 = 2
(
n+

1
2

)2

π2

ψ2n+1(q) = 2 cos ((2n+ 1)πq) (4)

Set ψ(t, q) =
∑
n≥1 an(t)ψn(q) in ı∂ψ∂t = − 1

2
∂2ψ
∂q2 +

v̈qψ, to obtain, for each integer n ≥ 1,

ı
d

dt
a2n = −ω2na2n

+ v̈


∑
k≥0

a2k+1

∫ 1
2

− 1
2

qψ2n(q)ψ2k+1(q) dq




ı
d

dt
a2n+1 = −ω2n+1a2n+1

+ v̈


∑
k≥1

a2k

∫ 1
2

− 1
2

qψ2n+1(q)ψ2k(q) dq


 .

For any integers α ≥ 1 and β ≥ 0:∫ 1
2

− 1
2

qψ2α(q)ψ2β+1(q) dq =

(−1)α+β

(
1[(

α+ β + 1
2

)
π
]2 +

1[(
α− β − 1

2

)
π
]2
)

Notice that odd (resp. even) modes are connected
via the control v to even (resp. odd) modes
(selection rules).

3.2 Tangent linearization

Denote by ψ̄ any state of definite energy ω̄ in (3)
or (4). Set

ψ(t, q) = exp(−ıω̄t)(ψ̄(q) + Ψ(q, t))

in (2). Then Ψ satisfies

ı
∂Ψ
∂t

+ ω̄Ψ = −1
2
∂2Ψ
∂q2

+ v̈q(ψ̄ + Ψ)

0 = Ψ(−1
2
, t) = Ψ(

1
2
, t).

The tangent linear system is obtained, assuming
Ψ and v̈ small and neglecting the second order
term v̈qΨ:

ı
∂Ψ
∂t

+ ω̄Ψ = −1
2
∂2Ψ
∂q2

+ v̈qψ̄

Ψ(−1
2
, t) = Ψ(

1
2
, t) = 0

(5)



We prove here below via operational computa-
tions that (5) is not controllable but steady-state
controllable. We give explicit formulae for the con-
trol [0, T ] � t �→ v̈(t), steering in finite time from
Ψ = 0, v = v̇ = 0 at t = 0 to Ψ = 0, v = a, v̇ = 0
at t = T for any T > 0. Computations are similar
to those we have proposed for heat or Euler-
Bernouilli dynamics where ultra-distributions and
Gevrey functions of order ≤ 1 appear (Laroche et
al., 2000; Fliess et al., 1996; Rouchon, 2001).

Set s = d/dt. Standard computations show that
the general solution of

(ıs+ ω̄)Ψ = −1
2
Ψ′′ + s2vqψ̄

is

Ψ = A(s, q)a(s) +B(s, q)b(s) + C(s, q)v(s)

where

A(s, q) = cos
(
q
√

2ıs+ 2ω̄
)

B(s, q) =
sin
(
q
√

2ıs+ 2ω̄
)

√
2ıs+ 2ω̄

C(s, q) = (−ısqψ̄(q) + ψ̄′(q)).

3.3 Case q �→ φ̄(q) even.

The boundary conditions imply

A(s, 1/2)a(s) = 0, B(s, 1/2)b(s) = −ψ′(1/2)v(s).

The element a(s) is a torsion element (Mounier,
1998), thus the system is not controllable. Nev-
ertheless, for steady-state controllability, we have
a ≡ 0 (as for the water tank (Petit and Rou-
chon, 2002)) and we have the following param-
eterization 1 :

b(s) = −ψ̄′(1/2)
sin
(

1
2

√−2ıs+ 2ω̄
)

√−2ıs+ 2ω̄
y(s) (6)

v(s) =
sin
(

1
2

√
2ıs+ 2ω̄

)
√

2ıs+ 2ω̄
sin
(

1
2

√−2ıs+ 2ω̄
)

√−2ıs+ 2ω̄
y(s)

Ψ(s, q) = B(s, q)b(s) + C(s, q)v(s)

The entire functions of s appearing in this formu-
lae are of order less than 1/2, i.e., their module
for s large is bounded by exp(M

√|s|) for some
M > 0, independent of s ∈ C and q ∈ [−1, 1]. The
above formulae (6) admit then a clear interpreta-
tion in the time domain, as for the heat equation
with the Holmgren series solution (Valiron, 1950),
when y is a C∞ time function of Gevrey order less
than 1: i.e. ∃M > 0 and ∃σ ∈ [0, 1] such that,
∀t, ∀n, |y(n)(t)| ≤ MnΓ(1 + (σ + 1)n) where Γ
is the Gamma function 2 . This results from the
following fact: to an entire function of s, F (s), of
order ≤ 1/2 is associated a series

∑
n≥0 ans

n with

1 Remember that v is associated to a real quantity and the

operator
sin( 1

2
√

2ıs+2ω̄)√
2ıs+2ω̄

sin( 1
2
√−2ıs+2ω̄)√−2ıs+2ω̄

is a real operator.
2 Analytic functions are Gevrey functions of order σ = 0.

coefficient an satisfying |an| ≤ Kn/Γ(1 + 2n) for
all n, with some constant K > 0 independent of
n. To F (s)y(s) corresponds in the time domain,
the series, ∑

n≥0

any
(n)(t)

that is absolutely convergent when y is a Gevrey
function of order σ < 1. Take T > 0 and D ∈ R.
Steering (5) from Ψ = 0, v = 0 at time t = 0,
to Ψ = 0, v = D at t = T is possible with the
following Gevrey function of order σ:

[0, T ] � t �→ y(t) =


0 for t ≤ 0

D̄

exp

(
−
(

T
t

) 1
σ

)
exp

(
−
(

T
t

) 1
σ

)
+ exp

(
−
(

T
T−t

) 1
σ

) for 0 < t < T

D̄ for t ≥ T

with D̄ = 2ω̄D

sin2(
√
ω̄/2)

. The fact that this function

is of Gevrey order σ results from its exponential
decay of order σ around 0 and 1 (see, e.g., (Ramis,
1993; Ramis, 1978)).

3.4 Case q �→ φ̄(q) odd.

The boundary conditions imply

B(s, 1/2)b(s) = 0, A(s, 1/2)a(s) = −ψ′(1/2)v(s).

b is a torsion element and thus the system is not
controllable. Nevertheless, as for the even case, we
have the following parameterization:

a(s) = −ψ̄′(1/2) cos
(

1
2

√−2ıs+ 2ω̄
)
y(s)

(7)

v(s) = cos
(

1
2
√

2ıs+ 2ω̄
)

cos
(

1
2
√−2ıs+ 2ω̄

)
y(s)

Ψ(s, q) = A(s, q)a(s) + C(s, q)v(s).

As for the even case, with

[0, T ] � t �→ y(t) =


0 for t ≤ 0

D̄

exp

(
−
(

T
t

) 1
σ

)
exp

(
−
(

T
t

) 1
σ

)
+ exp

(
−
(

T
T−t

) 1
σ

) for 0 < t < T

D̄ for t ≥ T

where D̄ = D

cos2(
√
ω̄/2)

, we can steer (5) from

Ψ = 0, v = 0 at time t = 0, to Ψ = 0, v = D at
t = T .

3.5 Practical computations

The above method for computing the steering
control requires to develop in series of s and to
calculate high order time derivatives of y. All
these calculations can be bypassed with Cauchy



formula. Take a bounded measurable function
t �→ Y (t) corresponding to the position set-point
for v. From this function, we deduce a complex
entire function ζ �→ y(ζ) via convolution with a
Gaussian kernel with standard deviation ε

y(ζ) =
1

ε
√

2π

∫ +∞

−∞
exp

(
− (ζ − t)2

2ε2

)
Y (t) dt

Consider, e.g, the relation giving the control v in
the even case: v(s) = F (s)y(s) where

F (s) =
sin
(

1
2

√
2ıs+ 2ω̄

)
√

2ıs+ 2ω̄
sin
(

1
2

√−2ıs+ 2ω̄
)

√−2ıs+ 2ω̄

is an entire function of order less than 1 (order
1/2 in fact but 1 is enough here). Thus F (s) =∑

n≥0 ans
n where |an| ≤ Kn/Γ(1+n) with K > 0

independent of n. In the time domain F (s)y(s)
corresponds to

∑
n≥0 any

(n)(t). But

y(n)(t) =
Γ(n+ 1)

2ıπ

∮
γ

y(t+ ξ)
ξn+1

dξ

where γ is a closed path around zero. Thus∑
n≥0 any

(n)(t) becomes
∑
n≥0

an
Γ(n+ 1)

2ıπ

∮
γ

y(t+ ξ)
ξn+1

dξ =

1
2ıπ

∮
γ


∑
n≥0

an
Γ(n+ 1)
ξn+1


 y(t+ ξ) dξ

where 3∑
n≥0

an
Γ(n+ 1)
ξn+1

=
∫
Dδ

F (s) exp(−sξ)ds = B1(F )(ξ).

is the Borel transform (see, e.g., (Boas, 1954)) of
the F that is defined for ξ ∈ C large enough,
|ξ| > K. In the time domain F (s)y(s) corresponds
to

1
2ıπ

∮
γ

B1(F )(ξ)y(t + ξ) dξ

where γ is a closed path around zero. Since y(ζ) =
1

ε
√

2π

∫ +∞
−∞ exp(−(ζ − t)2/2ε2)Y (t) dt we have the

following filter to deduce the control from the
reference signal Y (t):

v(t) =∫ +∞

−∞

[∮
γ

B1(F )(ξ)

ıε(2π)
3
2

exp

(
− (ξ − τ)2

2ε2

)
dξ

]
Y (t − τ)dτ

The kernel

f(τ) =
1

ıε(2π)
3
2

∮
γ

B1(F )(ξ) exp(−(ξ−τ)2/2ε2) dξ

can be computed numerically once for all. One
can check that f(τ) is real and vanishes rapidly
for |τ | � ε. In fact F is here of order 1/2, thus
B1(F ) is defined on C/{0} and admits an essential
singularity in 0 and Thus, the contour γ is any

3 Dδ is the half line starting from 0 in the complex plane
with direction δ chosen to ensure the convergence of the
integral.

contour around 0. Such computations provide a
simple numerical method to generate trajectories
and to solve approximatively the steady-states
motion planning problem for (5). These formulas
are used in a Matlab animation that can be
obtained upon request from the author.
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viscolélasticité et contrôle optimal”, 8ème en-
tretiens du centre Jacques Cartier, Lyon.
pp. 157–168.

Laroche, B., Ph. Martin and P. Rouchon (2000).
Motion planing for the heat equation. Int.
Journal of Robust and Nonlinear Control
10, 629–643.

Messiah, A. (1962). Quantum Mechanics. Vol.
I&II. North Holland Publ. Co.. Amsterdam.

Mounier, H. (1998). Algebraic interpretations of
the spectral controllability of a linear delay
system. Forum Math. 10, 39–58.

Petit, N. and P. Rouchon (2002). Dynamics and
solutions to some control problems for water-
tank systems. IEEE AC 47(4), 594–609.

Ramis, J.P. (1978). Dévissage Gevrey. Astérisque
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